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REMARKS ON THE HYPOTHESES OF DUALITY

R. T. Smythe

Université de Strasbourg

Séminaire de Probabilites 1972/73

- nept, of Mathematics, University of Washington

Seattle, Wa. 98115

Let E be a locally compact topological space with a countable base

and let X - (,~,,~’, ~"t, be a strong Markov process on E, ri ght con-

tinuous with left limits. Let 0 be the resolvent operator of

X; we shall assume X is transient in the sense that U (x,.) is a Padon

measure for each x in E. (If this is not the case we will work instead with

the a-process formed by exponential killing with parameter a.)

It was shown in that if X satisfies hypothesis (L), then X has

a left continuous moderate Markov dual process X,* i.e., the resolvent

~p(x,,) of ~ is in duality with the sense of ~2,~, t p. 253.

Thus although we are not necessarily operating in the classic context of

duality--there need not exist a cofine topology--we do have an excessive

reference measure ~ and a function ud.(x,y) defined on ExE for each 

with the properties that

(i) is 03B1-excessive for the resolvent {Up}, by E E and ~03B1;

(ii) y ~ u03B1(x,y) is 03B1-excessive for the resolvent E and ~03B1;

(i H) U°~f(x) . and 

for all 0, f E b£* (the bounded, universally measurable

functions).

The purpose of this note is to point out that several results which

are well-known under classical duality hypotheses remain valid (sometimes

with minor changes) under weaker hypotheses, in some cases hypothesis (L)

alone, nuring the preparation of this note we have become aware of two

other papers, [j~ and (4~ , , which treat (among other problems) some of

the topics discussed here. The present work is in much the same spirit

(*) X need not be left continuous at ~, but we will consistently abuse

the language by calling such a process left continuous.
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as [4J, although we make no appeal to the theory of Ray compactification;

the results here follow rather easily from those , and our present-

ation should thus be regarded as a natural extension of . The results

of our §1 also overlap, while remaining less interesting than, the results

of §III of tl;. . We plead guilty to Azéma’s charge of having sought to

"generalize abusively" the two characterization theorems of Meyer to the

non-duality case, offering in defense only the remark that, to a certain

extent anyway, it seems to work.

1. Potentials of Additive Functionals

Let A be an additive functional of X which is a.s. finite ; here "add-

itive functional" means that A charges neither 0 nor the lifetime .

Fol lowi ng Revuz ( ~8,~ ) we associ ate with A the measure where

yA(f) =  1/t E { t0 f(X s) dAs}

for (the set of non-negative, bounded, measurable--in the Borel sets

of E--functions). Under the classical duality hypotheses, Revuz shows that

if A is natural and C-integrable (i.e., , E - U n En with t, )~’)

and if the 03B1-potential of A is finite -a.e., then

(1.1) Ex ~’ ‘~ e .at dAt - yA( dy)

From (1.1) one deduces easily that for f e ~+,
(1.2) Ex dAt ~ °

Our first observation is that (1.2) remains valid for continuous additive

functionals under only hypothesis (L). (It may fail for natural additive

functionals in the absence of a cofine topology).

Lemma 1.1 Let X satisfy hypothesis (L). Then (1.2) is valid provided

A is continuous.
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Proof, The proof is essentially that of Revuz ( ~8~, p. 517). The

key observati on here i s that f or f E. b +, , the functi on i s left

continuous with right limits on (0,~) 8.S. P~ ( , p, 139), which implies,

using the reversal operator ( ~2~ , ~ 5) that a,s. P~, is right

continuous with left limits on (0,), Thus the function [f(Xs)], which
is left continuous, differs, for almost all 03C9, from on a countable

s-set, which is not charged by the continuous additive functional A. Apply-

ing the argument of Revuz ( C8~, p. 517) we have
m

(1.3) f(x) A(dx) =  03B2E03BE -03B2s[f(xs)] 
- 

dAs

. -(A(k+1)/n-Ak/n)}
The proof is completed as in (8~ once it is verified that

f ~Uf(X )~ . 0 for any s>O. By Fubini, this probability is

zero for a,e, (Lebesgue) s; let So be such an s, and let t > 0 be arbitrary.
We then have

t ) ~ 
~ - . ~ 

 ~ 
s ) . . 0L 0 ~ 

since  is excessive, Q,E,D,

At this point we introduce two exceptional sets which play a large

role in what follows.

Definition 1,1 t~ . ~y~ E: U(y,E) . 0
One verifies easily that ye H -~ u(x,y) - 0 for all x C E, and that His

polar for , and hence, by the reversal operator, for X,

Definition 1.2 B . x E E; PD(x,,) ~ 03B4x} , where PC(x,.) . lim P (x,,),

The argument of Prop. 4,2 of shows that B is semipolar Clearly N
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(the set of points which co-branch to Q) is a subset of  (the co-branch

points),

Lemma 1.2 Let 1 and 2 be measures such that U 1 = U 2  ~ a.e. ,

and such that 1 does not charge H and 2 does not charge

semipolars. 

proof. The argument of C2~ , VI (1.15) adapted to our case shows,

first, that Uv - 0 ~ 03BD = 0 if 03BD does not charge H, and, second, that 

= 20, i.e., that Thus U( 21) = 0 (since 2

does not charge semipolars) and by the first property, 11 = 0, Thus

.
We come now to the main results of this section.

Theorem 1.1 Let X satisfy hypothesis (L), and be a 

measure. Ux is a regular potential if and only if

(i) Ux is everywhere finite, and

(ii) A semipolar 0.

proof. If U,~ is a regular potential then U,~ is finite and there

exists a continuous additive functional A of X such that U~(x) . 

by Lemma 1.1 the latter expression equals Since ~lA does not charge

semipolars, it follows by Lemma 1.2 that, off H,  = 03BDA and hence that 

does not charge the intersection of any semipolar with H .

Conversely, suppose that that the trace of  on 6 does not

charge semipolars. The result will then follow easily from the following

analogue of Doob’s classical theorem, which we state in a general form

for use also in Theorem 1.2.

Proposition 1.1 Let X be a left continuous moderate Markov process

in duality with a right continuous strong Markov
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process. Let be a series of X-excessive functions

decreasing to the supermedian function f, and let f be

the excessive regularization of f.

Then ~f s  f~ is semipolar. Further, if f - 0

except on a set of potential zero, then f - 0 except

on a polar set.

Proof. Following p. 147, we define
N

f(x) - lim sup f(y)
y -~x
y ~ x

where the limit is taken in the essentially fine topology of X (the strong

Markov dual). By ~f(x) ~ is of potential zero, and 

is X-polar, and thus by reversal X-polar. (It is here that the hypothesis

intervenes; the result quoted from [11] concerns an excessive, not

simply supermedian, f, and since we have not shown any continuity properties

of the function s -~f(X ), the hypothesis f ~f is needed to guarantee

pTf ; f for a stopping time T.)
Thus if f - 0 except on a set of potential zero, we have 0 - 

off a polar set. But is right continuous p’ -a.s. on (0,~), and

by the hypothesis en f and Fubinits theorem, t -~ f(Xt) is P~.a.s, equal to

zero on a t-set of full Lebesgue measure; hence polar, which implies

~f:~ 0~ is polar, proving the second claim of the proposition.

To prove the first assertion, note first that if {Tn} is a sequence of

stopping times with values in the dyadic rationals and such that Tn ffT, we

have that lnm Ex exists for all x such that is

because f(Xt) is a supermartingale). A modification of the argument of

Proposition 6(b) of then applies, since ~ is predictable, to give that
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s ~ f(s) has left limits. Hence

( 1.4) {[t: f(t) ~ [f(t)].] i s countable . 1,
But by Lemma C.I of and the fact that ~f _  f} is of potential zero,
it follows that

(1 . 5) { [t: f(
t
) ~ f(t)] is of Lebesgue measure zero ) - I.

Since t -i ~‘(~t) and t -~f(Xt)~ - are both left continuous it follows that

t1.6) P~ ~t: ~ 0 ;

by (1,4) and (1.5) we then have

(1.7) ~~ Ct: f(X ) f f(~ ) is countable . 1.
But since f ~ f ~f off a polar this implies that semipolar, proving

the proposition.

Returning now to the proof of Theorem 1.1, let {Tn} be a sequence of

stopping times increasing to T a,s, Px, Since z-u(z,y) is excessive, it

follows that for each fixed y and z, PT u(z,y) decreases with n. If 

is of compact support, then PTUf(x) - PnT Uf(x) - Ex f(Xt) dt ~ 0 when 
n n

Thus PT u(x,.) ~ PTu(x,,) a,e, Let gx(,) . lim PT u(x,,) ; ; then gx(,) .
n n

- PTu(x~,) a.e, and thus g (,) . PTu(x,,) a,e, and hence identically since

both are coexcessive. Since {gx  gx} is semipolar by Prop, 1,1,  does not

charge c~ f gx gx} by hypothesis; but u(,,y) . 0 for y ~ , so that PT 
= PTn u( x, Y) ( dY) ~ PTu(x, Y) ( dy) = PTU ( x) f or each x, i , e. ,

U,~" is a regular potential.

Corollary 1.1 There is a 1.I correspondence between the continuous

additive functionals A of X with finite potential and

the measures  such that  ~ and the trace of  on Hc

does not charge semipolars. In fact, any suchAis of the

form ~A for a continuous additive functional A.
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The companion theorem to Theorem 1.1 concerns "natural" additive

functionals, except that for processes not necessarily standard the notion

of natural additive functional should be replaced by that of additive func-

tionals not charging any totally inaccessible stopping time.

Theorem 1.2 Let X be quasi-left continuous and satisfy hypothesis (1),

and let /(be a u-finite measure. U,K is a natural poten-

tial if and only if

( i ) U~t  ~! ; ; and

(ii) i f A i s polar, 0.

Proof. If is a natural potential then is finite by definition.

If the trace of  on 6 charges a polar set A, then it must charge a com-

pact polar subset K of Bc; let 03BD be the restriction of to K. Then 

and Uy is a natural potential.

Let x ~ K and let be a sequence of open sets containing K such

that lim TG >, ~ (It is only for this choice of C that we require
n

quasi-left continuity.)

Lemma 1, 3 PG U 03BD ( x) . U 
n

Admitting for the moment the truth of Lemma 1.3, the first half of the proof of

Theorem 1.2 is easily finished. By the definition of natural potential,

PG as . Thus U y . 0 Off the polar set K, so UW i s iden-
n

tically zero; by Lemma 1,2 ~’ vanishes off H, and in 0.

Proof of Lemma 1.3. The proof in the case of two strong Markov processes

in duality is immediate from Hunt’s "switching formula" ([2], VI, 1.16).
Although this formula is not valid in the absence of a cofine topology, a

weaker f orm of i t will suffice f or our purposes.
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Let T be

Gn
the first hitting time of Gn by the process ~; it is verified without diffi.

culty that TG and ~G are dual terminal times in the sense of ~2~ , It
n n

then follows from (4,I2) of that for f,g ~b~.,+
( 1, 8) g, E 

TG 
n f(Xt) dt> . f, , Gn0 g(Xt) 

But the fundamental duality formula for X and ~, in conjunction with (1.8),

gives
/B r

{ l.g) ~g~ PG 
n Uf ~~, ~ 

~ ~ f ~ E~ T Gn g{xt) 
This being true for all f E b ~+, we have then

(1.10) PG (dx) . .,w E T J g(xt)dt -a.e.
n Gn

and therefore identically since both sides are coexcessive, But for w CG ,
Pw (TG . 0) . 1 if w ~ Bc; since vlives on Bc we therefore have PG Uv (x)

n n

. Uy(x), Q.E.D.

To prove the other half of Theorem 1,2, suppose that  is a measure the

trace of which on Bc does not charge polars, and such that U~, If

{Tn} is an increasing sequence of stopping times with lnm Tn  , the argument
used in the proof of Theorem 1,1 shows that PT u(x,.) decreases a.e. to zero,

n

Let fX{,) . lnm PTnu(x,.) for x fixed, Now consider the measure 0; it

is easily seen (from p, 131 of [11], for example) that PG(x,B) . 0 for
all xE E, Also, 0 and ,.4(,.agree on Since 0 does not charge B,
and fX{,) . 0 off a polar set (Prop, 1,1), it follows that

( I ,11) f d{,u,P ) ~ ,~ c f . 0.( 1. 11) f d ( A(., 0 J B c 
f d.M. - O.

But by the argument of Lemma 1,2, g d~ = g for all coexcessive
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g; since f is the decreasing limit of coexcessive functions it follows that

f d( 0) = 0. Hence lim P 0 and Ud is a natural potential.

Remark 1. Note that the quasi-left continuity of X was not used in the

proof of the second half of the theorem.

Remark 2. In the absence of a cofine topology it is of course possible

that two non-equivalent natural additive functionals could give rise to the

same measure 03BDA (though we suspect that this is not possible if yA(B) . 0) *
Thus we cannot hope to set up a 1-1 correspondence as in Corollary 1.

To complete this section we will consider the case of a measure ~L for

which is not necessarily finite. We will say that a point x E E is

coregular for a nearly Borel set A if x(A = 0) - 1. (This is of course

the usual definition, except that in our case we cannot assert that the

probability in question takes only the values zero and one.) Let rA denote

the set of points coregular for A.

Lemma 1.4 A - rA is semipolar.

Proof. Using the construction outllned in ~2~, p. 55-57, there exists

a decreasing sequence of open sets containing A such that Gn ~ A -a.s.
on{A~} , where B = inf {t  0: t ~ B}. Let fn(x) = x (e-Gn; Gn  ).

Then fn(x), ~ f(x), and by the above,

(1.12) f(x) - Ex (e -D A; A  ) -a.e.
Let g(x) = x (e-A ; A  ). Then the excessive regularization g(x) - of

g(x) is clearly equal to x (e . ~ ; A TA n ~) ^ and equals g(x) ’3 -a.e.; denoting

by f the excessive regularization of f, it follows that f - g‘ ~ .a,e, and

hence everywhere since both are l-coexcessive. But f (x) - 1 on A for each

n (except possibly on the semi polar set 9) so that f(x) - 1 on But

~ff~ is semi polar by Prop. 1.1, so that ~f~ 1~ is semi polar, Q,E,D,
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Corollary 1.2 Ifxdoes not charge semipolar sets and B is a nearly

Borel set then U,~. , °

proof. This follows from Lemma 1.4 and the proof of Lemma 1.3. (A

different proof of this result is given in .)

Corollary 1.3 If  has support in a compact set K and does not charge

semipolars, then sup ~U~~(x) ; sup : x ~ K~’.
Proof. By Corollary 1.2 we have and the result follows

since for each x the measure P03B1K(x,.) lives on K.

We then have, as in [4] or ,

Proposition 1.2 Let ~ be a c-finite measure which does not charge

semipolars. There exists an equivalent finite measure

A with a bounded 1-potential.

Constructing the additive functional which corresponds to  in Prop. 1.2,

we can extend Theorem 1.1 to say that a r-finite measure which does not

charge semipolars corresponds to a continuous additive functional with a

bounded 1-potential.

2, : Two Applications

Our first application is a simple consequence of Lemma 1.1. Let X

be a process such that each point x is regular for itself and such that the

local time Lt (v) at x has the property that is a,s, * con-

tinuous (some conditions guaranteeing this will be found in [6J). Then we

have the following generalization of a result well-known under duality

hypotheses ( [2J, p. 294):

Proposition 2.1 Let X satisfy hypothesis (L). Let h(x) - u 1 (x,x),
and suppose that L is normalized for each x to make

ULx If A is a continuous additive functional

of X, there exists a measure Y such that

At - for all t a.s.
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Proof. Suppose first that A has finite I-potential. Let JI- h VA’
where VA is the Revuz measure associated with A. Let B t - Lt N(dx) ;
clearly B is a continuous additive functional. We have

Ex d Lt y Y( d Y) . ft 
.

But by Lemma 1.1, the I-potential of A is also equal to v A (dy);
thus A and B are indistinguishable. The passage to general A is completed

by the observation ([5J) that A can be represented as a sum of continuous
additive functionals with finite I-potential.

Corollary 2.1 For any Borel set D, (dx)

- f~ for all t a.s.

Our second application concerns the bounded maximum principle (see [3],
and [9] for some later comments). . Let  be a 03C3-finite measure. Following

[3] we say that a process satisfies the bounded maximum rinci le if:

(2,1) Whenever  has compact support K,

bounded --~ sup - sup 
x ~ E xEK

In [3jit is proved under strong hypotheses (including duality) that (2.1)
is equivalent to

(2.2) All semi polar sets are polar.

These hypotheses were weakened slightly in [9] but even there it was
necessary to assume, in addition to duality, that the function U ~(,,E) was

lower semicontinuous for some 03B1 > 0. We shall prove a version of this theorem

here requiring only that X be special standard and satisfy hypothesis (L) as

well as hypothesis (B), given below:
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(B) Let A and C be Borel sets with A a neighborhood of C. Then

TC.03B8TA = 0 a.s. on {TA = TC  ~}.

(It is known from ~1~ that hypothesis (B) is equivalent to the quasi-left

continuity of the right-continuous version of X).

As remarked in ~91, the critical step in establishing the equivalence

of (2.1) and (2.2) is (in our context) this result:

Proposition 2.2 Let X be special standard and satisfy hypothesis (L).

I f i s bounded, the trace of ..(,B, on Bc does not

charge polars.

Proof. Tracing through the proof of this result in ~9~ , , we see that

the essential point is the proof that EX (Z 1(= A)) = 0, where Z(03C9) =
- lim and A is the accessible part of . Letting D -

- {x: U(x,E) ~ 1/n}, then lim PD Ex (Z 1(= A)) and TD a.s.;

letting TD be the terminal time dual to Tn ([12],§4) we easily verify

that TD is an increasing sequence. Calling  the limit, we have {}
n

- P{lim TD  } = 0 so that (the lower semicontinuity was invoked

in f9J only to establish this point). We then have, for h integrable,

~ > h, Pp U > = Dnh(t) dt

where the equality results from the argument used in Lemma 1.3. Hence

PD U)A. --’! 0 a.e. , therefore everywhere since U,A.(., i s bounded, and we have
n

that Ex ~J . 0. As in ~9~ this implies that is a natural po-

tential ; Theorem 1.2 then says that  does not charge AABc if A is polar.

Here finally is the theorem alluded to above; not surprisingly, the

statement is modified somewhat to account for the presence of cobranch
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points. The appropriate analogues of (2.1) and (2.2) for our purposes are

(2.3) For all ,~, with compact support 

bounded .2014~ sup Ua~(x) . sup 
x ~ E xE K

(2.4) All semipolar sets contained are polar.

Theorem 2.1 Let X be special standard and satisfy hypotheses (L) and

(B). Then d~ > 0, (2.3) and (2,4) are equivalent, ’

Pr- oof. First assume (2,4) is true. Let4 be a measure with compact

support KC.Bc and such that is bounded. According to Prop. 2.2, ~u does

not charge the intersection of any polar set with 8c, Thus by (2.4) ,~ does

not charge any semipolar set; by Corollary 1.3, sup U°~~(x) . sup 
x ~ E XEK

Now assume that (2.3) holds. An examination of the proof of the corres-

ponding result in S (Theorem 5.3) reveals that the duality hypotheses in-

tervene only in the establishment of hypothesis (B), which we have assumed,

and in Lemma 5.6, which for our purposes can be weakened as follows:

Lemma 2.1 Assume (2.3) If is compact and thin, then

sup sup Ex ( e~ « TK)
xEE xe K

Proof. Let {h~ be a sequence of bounded nonnegative functions such that

1; and let A. n - hn ~ , . Then ( letting ~K . E’ ( e- a TK) )

Now by formula (1.9), we have

(2.5) g, P03B1KU03B1hn> hn, ~Ke-03B1t g(t)dt>

If we can show that {(t,03C9): t(03C9)~K} is closed from the right a.s.,
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it will follow, since ~( is predictable, that TK is a predictable stopping
time, and we can take advantage of the moderate Markov property of ~, But

since X is quasi-left continuous, it follows ( Prop. 5.5) that

P~r~t~: ~ Xt- E K and Xt- ~ X t . 4,

By reversal we then have

{ 3 t   : X E K and  ~ } = 0 ,
u t; t t~j

so that TK is predictable. Thus (2,5) becomes

(2.6) g, P03B1KU03B1hn > = 03B1KU03B1g, hn>

and we thus have

(2, 7) U 

The proof is then completed as in ~3~, Let M - sup is

x~K 
~ ~ 

carried by K and ~K, Since on K, (2, 3) implies that

M. But ’~ ~ K and so sup ~?K  M, proving
the lemma.

The proof of Theorem 2,1 is then completed exactly as in ~3~, except
for the restriction to ~c,

In closing, we remark that there are undoubtedly many other results

in probabilistic potential theory, known under strong duality hypotheses,

which remain "moralement" valid in the kind of greater generality contem-

plated here (for example, Proposition 7.3 of [3] can be proved using hy-
potheses (L) and (B) and the lower semicontinuity of excessive functions).

There is, however, a class of "deeper" results where the cofine topology

seems to be indispensable (VI, 2.11 of C2~ , the "Riesz decomposition theorem",
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is of this type) -- these are the true "duality theorems" of probabilistic

potential theory.
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