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ON BALAYEES OF EXCESSIVE MEASURES AND FUNCTIONS
WITH RESPECT TO RESOLVENTS

by Takesi WATANABE

The balayage with respect to excessive measures and
functions of a single kernel was studied by Deny [1].
Meyer [h] introduced the notion of the réduite of super-
median functions with respect to resolvents, and then he
[5] applied it to the problem of characterizing the potent-
ial kernel of a single kernel. Here we will define the ba-
layees of excessive measures and functions with respect to
resolvents and study their properties. The basic method is the
passage to the limit from those results obtained by Deny on

balayées for a single kernel (see § 1).

In § 2 we will be concerned with the resolvents over

a measurable space. The main result is Theorem 8 which
states that the balayage operator LA for excessive mea-
sures and the one ﬁk for excessive functions commute with
respect to the potential kernel V. Section 3 is devoted
to the study of resolvents with the continuous potential
kernel over a locally compact space. It is shown (Theorem 11)
that, if A is a relatively compact Borel set, the balayée

over A of every excessive measure is a V-potential. In
§ 4+ we will consider the case when the resolvent is the La-
place transform of a standard semi-group. We show (Theorem

16) that the balayage operator ﬁi, acting on excessive
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functions, is,

represented as the kernel of the '"harmonic" measure with
respect to the penetration time for the set A. Using
this andj:;receding results, one can give alternative proofs
of those results (Theorem 17) obtained by Hunt [2; § 9] .
The method developed here enables us to extend Hunt's the-

orem to more general cases (see [9]).

§ 1. SUMMARY OF THE RESULTS FOR A SINGLE KERNEL

We mostly follow the notation and terminology of
Meyer's book ].

Let (E,E) be a measurable space, and A€E . Let
JA be the restriction kernel, and f [resp. | ], a func-
tion over E [resp. a measure *) over I_j] We will write
flA or fA Et'esp. fAlA or F'A] for JAf [_resp.
f"JA]' The notation [f Zg]A means that f(x)2>g(x) for
x € A. Similarly, [p= u]A stands for §, 2 Y, . A
positive function means a nonnegative function allowing the
value +00, unless it is stated as "strictly positive",
"finite" and so on. Let B ¥ be & -finite measures such
that p 2 v . There exists a unique ¢ -finite measure A
such that p= »+ A. This measure is denoted by - v .
A sequence {pn} of «-finite measures is said to con-

verge to a ¢ ~-finite measure f‘ if every En is domi-

*) We consider only positive measures.
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nated by some &-finite measure » and

(1.1) fL(A) = lim fcn(A) for every A€E such that
n — oo
v ()<,

Let K Dbe a kernel. A ¢ -finite measure of the
form pK 1is called the K-potential of [ o is said
to belong to the domain of K. A function of the form Kf,
where f 1s a positive function, is said to be the K-
potential of f. Let M be a measure. We often write
(psf) or p(f) for gf(x) p(dx) .

Let N be a kernel over (E,E) and G, the potential
kernel of N:

(1.2) G= > N%.

n>o
A positive function u is called excessive for N if
w =2 Nu., A positive measure w» is called excessive for N
if it is & -finite and » 2 uN. Let » [resp. u] be an
excessive measure [resp. a finite excessive function]. Tre

measure [resp. function]
1.3) p=2 (I-N) [resp. f = (I—N)u]

is called the charge measure of I:resp. charge function
of u ]

Let A€E. Given any & -finite measure v, which

is dominated by some excessive measure, define

(1.4) 2T inf {u'; [JJ'Z)J]A, v' is excessive} .
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»L, 1is excessive. oL, 1is called the balayée of w

A
over A. Similarly, one defines the balayée (or réduite)

RAu of a positive measurable function u by
(1.9) RAuk:ffnf {u'; [u'z u]A, u' is excessive} .
It is shown (Mokobodzki) that RAu is excessive.

Define the kernels HA’ KA by

(1.6) Hy = r%:) ((x-3)8)%,,
(1.7 K, => 73, [ma-3p)*.

n2o

They are called the balayage kernels.

The whole results of this paper are based on the fol-
lowing results due to Deny [1].

THEOREM 1.

(a) For every excessive measure 2/ , one has

(‘1.8) vL, = uKA.

(b) The charge measure of ‘"LA is given by

(1.9) (L,)(I-N) = uH, +1im &N®) [(1-7,)N]"7, ,
) WLy FoA S o L A]A

where ® is the charge measure of » and vN®=

limyN®. 1In particular, the charge measure of uLA is
n-»0

supported in A.

(c) If either » is a potential or |, belongs to
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the domain of G, vL, 1s a G-potential. *)

(@) If » 1is a G-potential of a measure p+ supported
in A,

(1.10) (L)L, = KkG.

Note that the assertion (d) 1is a version of the

principle of domination.

THEOREM 2.
(a) For every excessive function wu, one has
(1.11) R,u = H,u .

(b)) If u is a finite excessive function, the charge
function of RAu is given by

(1.12)  (I-N)(R,u) = K,f+1im J, [N(1-3,)]* (%) ,
A A5 Al N

where f is the charge function of u and N%u= 1im N™u.

n = oo
(¢) If either u is a finite potential or G(uIA) is
finite, then RAu is a G-potential.

(@) If u is a G-potential of a positive function f

supported in A,

(1.13) RA(Gf) = Gf .

Hereafter we will write ”KA [?esp. HAﬁ] for the
balayée of an excessive measure u [?esp. an excessive

function @] for a single kernel N.

*) L, = vK, < »J,-G. Hence, if .u|A belongs to the
domain of G, "LA is a G-potential.
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§ 2. BALAYAGE WITH RESPECT TO RESOLVENTS OVER MEASURABLE
SPACES

General properties

Let (V“ )°‘>0 be a resolvent over a measurable space

and V, the potential kernel of (V, ):

V=supV, =1limnV_ .
>0 o =>0

is

To lighten the exposition, we assume that (V) ,  is

a submarkov resolvent and V is proper throughout the

paper.

A supermedian l:resp. excessive] measure » for

(Vo) 1is defined as a ¢&-finite measure such that, for

every o > 0,

(2.1) v 2>V, [resp. moreover, v = limT¥- «V_].
)

We omit the well-known definition of supermedian [resp.

excessive] functions.

Let A€E. Given any 6 -finite measure » domi-

nated by a supermedian measure, define
(2.2) »L,: = inf{u'; [»'22],, »' 1is supermedian J .

v L, 1is supermedian. vL, 1is called the balayée of i
over A for (V,). Let u be a positive measurable
function. Define

(2.3) Ryu:= inf {u';[u'zu]A, u' is supermedian} .

It is shown (Mokobodzki and Lemma 3) that RAu is super-
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median. RAu is called the réduite of u over 4 for

(Vo). Define

VAN
(2.4%) Ryu: = ocli)moo(“v“ )(RAu) .
/ﬁAu is excessive. /E?Au is called the balayge of u over

A for (V).

LA’ RA’ /R\A are called the balayage operators.
NOTATION,
« o
We write N, for «V_ . HA’ K.A. are the balay-

!

age kernels for the single kernel N .| Let G, Dbe the
potential kernel of N_,. By a well-known resolvent iden-

tity, one has

(@.5) D I ML e

no no

Note that N, 1s a submarkov kernel.

LEMMA 3,
Let «< g,

(a) If a ¢-finite measure v is excessive for NF ,

then it is excessive for N,

(b) If a positive function u is excessive for Np , then

it is excessive for N, .

The proposition (b) was proved by Meyer [5; p.231].
The proof of (a) 1is the same.

It is obvious that a measure w» I:resp. function u:[
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is supermedian for (V, ) if and only if . [resp. u]

is excessive for N , for every « > 0.

THEOREM Y4,

LA has the following properties for supermedian mea-

sures.

(a) If a sequence {w } of supermedian measures increa-

V.
ses to a supermedian measureE then unLA increases to

uLA.

(b) Let u» Dbe supermedian. If AyTA in E, then

Y] LAJT yLA .
(c) L, is positively linear for the class of all super-

median measures : 1if vy (i=1,2) 4is supermedian and

(2.6) (o v+ ,suz)LA = o (u1LA) + p(UQLA) .

(d) Let B be a measure, supported in A and belonging

to the domain of V. Moreover, assume that there is an in-

creasing sequence {X n} of supermedian measures such that

ApA M increases to w . TIhen

(2.7) (kL = V.

THEOREM 5

RA and /E?A have the following properties for super-

median functions.
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(a) If {un} is an increasing sequence of supermedian

functions, then R u, [resp. /P?Aun] increases to R,

(1im u ) [resp. /R\A (1im uh)].

(b) Let u Dbe supermedian. If AJ’I‘A in E, then
A ~
RAju [resp. RAJU‘] increases to R,u [resp. RAu:l .

(¢) R, and fi\A are positively linear for the class of
supermedian functions.

(d) If fepE *) i supported in A,
(2.8) . vt =R, (VE) = R (vf)
. —-RAV = R, .

Theorem 5 was proved by Meyer [5; Théoréme 5:] The-
orem 4 is proved in the same way. We repeat the proof of

Meyer for the convenience of latter reference.

Let » be supermedian for (V). Since o is
excessive for N, , the balayée of » for N_ 1is
UKZ. By Lemma 3(a) and the following remark, yK:
increases to a measure »', supermedian for (V_,), as
® >o0. Let T Dbe any supermedian measure such that
[L’z.u:]A. Obviously, I > uKZ , so that > v', One

has proved that

(2.9) vL, = 1limT »kK%.
a = tinl vKy

Since KZ is a kernel, (a) and (c) of Theorem % are

immediate. The proof of (b) is also easy.

We proceed to the proof of (d). Write g, for

*) positive E-measurable function.
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ApA K - By Theorem 1 (d) and formula (2.5), one has
fx.n(I+ xV) = ’Ln(1+ aV)K: ,

so that
o -1 o « _ =1 «
an - f‘nVKA La f‘n(Iﬂxv)KA 'l“nVKA =« /‘nKA

-1 -1
S o MKy Lo Ap

since An is supermedian. Letting « > oo, one gets

o
(2.10) ,,LnV = ul-j;moanVKA = (f‘nv)LA .

Letting n = oo, one gets (2.7).
Similarly to (2.9), for every supermedian function
u for (V),

(2.11) Ryu= lim 1 Hy u .
oL = 00

REMARK ,

Note that Theorem 5(d) is nothing but the principle
of domination of supefmedian functions for (V_,). On the
other hand, Theorem 4(d) shows that the principle of domi-
nation of supermedian measures is valid only under certain
additional requirement on f . Here is a simple example
for which the principle of domination is false. Let (V)
be the resolvent of N(2>3)-dimensional Brownian motion
semi-group. V is the Newtonian potential kernel. Take
A={x}, p= E’x; It is easy to see that ( ¢ V)L{x} =

04 e,V (see also Theorem 12).
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The kernels VLA and 'ﬁAV.

It is easy to see that the balayage kernels KA and

H for a single kernel commute with respect to the poten-

A
tial kernel G:

(2.12) GK, = H\G.

In fact, let w = £,6 1in Theorem 1, By (b) and (c),
( €xG).KA is the G-potential of € _H,, which proves
(2.12). The balayage operators for a resolvent (V. ) do
not admit the representation as kernels, in general, con-
trary to those for a single kernel. However, we can prove

a relation similar to (2.12)1

Ay
Define VLA, RAV, RAV by
VL, (x,B): = [(e VLB ,

R\V(x,B): = [R,(VIp)] (%) ,

R,V(x,B): = [R,(VIp)] (x) .

It is immediate from Theorem 4 and 5 that each of VLA,

A
RAV, RAV defines a proper kernel dominated by V. More-
over, using formula (2.9) and (2.11), one sees that

(2.13) 'LL-VLA

1}

AN
(kV)L,, R\V-f = R (VE), RV.£=R, V),

(2.14) /ﬁAV

n

lim TV, - R,V.
o > 0

A
Obviously, RAV-f is excessive for every fepE . Later

we will show that
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LEMMA 6,

(a) If p 1is a measure belonging to the domain of V,
p+R,V and lu.-ﬁAV are excessive for (V).

(b) For every fepE, VL,*f 1is excessive.

PROOF _
(a) For every fepE ,
(pVv,£) 2 (p-R,V,f) = (y.,RAv-f) = (r-,RA(Vf))

= (r,dlimoc‘)l‘ HZ (V£))

= 1im (pHY +V,f) .
d_)oof“A )

Therefore, fc-RAV is a 6 -finite measure and it is

the increasing limit of V-potentials F.HZoV. One has
proved that p°'R,V 1is excessive. By (2.14),

(2.19) pRyV = 1im TCpe@Vy )RV,

which proves that 'RAV is excessive.

(b) The proof is similar to (a).

LEMMA 7,

(a)
(2.16) VLASRAV .

(b) Suppose that p is a measure dominated by a super-
median measure » . Then

(2.17) peVL, = IL*RAV.
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(e)

N\
(2.18) VL, = R,V.
PROOF,

(a) It is enough to show that, for every bounded
f epE,

(2.19) ( 5x°VLA,f) <( €X,RAV-f) .
By (2.5), the following inequality is obvious:
o ' o -1

The left side increases to (( ExV)LA,f) = ( ex-VLA,f).
On the other hand, by (2.12),

o -1 o -1 « -1
GO‘KA.ot f'—'HAG“.“ f=HA(cL f+Vf) ,

o
A

4

Hy

caTlega gl my 1< (lgll b0 (¢ o),

where || f“oo = sup | f(x)|. Therefore,

o -1 o
1im (€_,G6_K, » « f) = 1lim ( &_,H, (Vf))
« = X'« A g XA

= (&R, (VD)) = (€,,RV+E) ,
so that (2.19) was proved.
(b) Let {f"'n} be a sequence of bounded measures increa-
sing to @ . Let f be a bounded function in pE which

is supported in a set Be€E such that v (B)<oo. It is

enough to show that, for every such f,

(2.20) (VL) 2 CppyR V1)
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The proof is similar to that of (2.19). By (2.9),
-1 o o
(x f‘n'HA Gu,f)_> ( f‘n’HA vf) .

The right-hand side increases to (Iun,RA(Vf)) =
(f‘n’RAV'f)' On the other hand,

-1 o

o -1
& PptHpG, =x  pptG Ky

o« p -KAéd'1u-KZ§J1u ,

= g * DK,

-1
so that (o an'HZG“,f) = (DL E) = (py VL, )
which proves (2.20).

(¢) For each « >0, the measure ¢g_°«V, 1is dominated

x
by the excessive measure & . e V. Hence, by (v),

((egeaVy )oVLy,f) = (( €, xV, )*R,V,f), fEe€DE .

By Lemma 6 (b),
the left-hand side =« Vg (VL,-f)(x) = (VL,*f) (x).

But, by (2.14),
the right-hand side = « V, (R,V+f)(x) » ®R,V-1) (x) .

This proves (2.18).

One now summarize the preceding results.

THEOREM 8,

A
VLA and RAV represent the same proper kernel.
This kernel has the following properties.

(a) For every f¢ Delonging to the domain of V,
;L-VLA is the smallest supermedian measure among those
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which dominate FV over A. Moreover, F.-VLA is

excessive for (V,).

(b) For every fepE , VLA'f is excessive. It is the
smallest one among those supermedian functions which do-

minate Vf over A except on sets of potential zero. *)

It remains to prove the latter half of (b). But
A
since VL -f = R,V-f = ﬁA(Vf), this is a special case
of the next theorem (b).

THEOREM 9,

(a) f o is excessive, vL, 1is also excessive.

(b) Let u be a supermedian function. ﬁAu is exces-
sive and it is the smallest one among those supermedian

functions which dominate u over A except on sets of

potential zero.

PROOF,

(a) Choose a sequence {ILnV} of V-potentials increas-
ing to ¥ . By Theorem 8(a), ( L, = KnVL, is ex-
cessive. Since »1L, = lim T (fch)LA by Theorem 3 (b),

n = 0
"LA is excessive.

(b) Note that [hAu =4§AQ]E\N’ where N 1is a set of
potential zero (Meyer [&; p. 195]). Since [3Au = @]A,

*) A set BeE is said to be of potential zero if VIg=0.
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A

it follows that [ﬁ\Au = ujA\N' Hence R,u belongs to

the class of functions described in (b).

Suppose that u' is a supermedian function such that
[u'Zu]A\N, where N is a set of potential zero. Since
N, =«xVy , one has

n n
[a-3pn I > [@-7p8, % m>1),
so that, by (1.6),
ol [~
HA u' > HAu on ENN .

Therefore, letting « > oo, one has [RAu'ZRAu]E N’
which implies that u'zﬁAu'zﬁAu .

§ 3. RESOLVENTS OVER LOCALLY COMPACT SPACES

Let E Dbe a locally compact space. We assume that
E is & -compact. (Many results are true without this re-

striction.) Excessive measures are restricted to Radon ex-

cessive measures. *) We omit the name "Radon". V)
is a submarkov resolvent of dispersion-kernels. We also
assume that V 1is a dispersion-kernel such that VIK is

bounded for every compact set K.
NOTATION,

B(E) [resp. gu(E)] stands for the € -algebra of

all Borel l:resp. universally measurablej subsets of E.

*)  Although such restriction is sometimes inconvenient,
the present case is not the case.
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Co(E) [resp. Co(E)] 1is the collection of all contin-
uous functions with compact supports [iesp. bounded con-
14

tinuous functioné].

A dispersion-kernel K is said to be continuous

resp. strictly positive| if K maps C_(E) into (. (E)
. SLL1CLLY DPoslitive . Zc =b

[Eesp. if all of the measures K(x,+) are not zero].

A resolvent (V) 1is said to be weakly continuous

if oV, (x,°) converges weakly* to € for every x.

X
It is obvious that, if (V, ) 1is weakly continuous, every

Vo (and hence V) is strictly positive.

The following theorem is well-known.

THEOREM 10,

Let (V,) Dbe weakly continuous.

(a) Every supermedian measure is excessive.
Radon

(v) If o is a V-potential of a finite,measure 7

the charge measure M® is uniquely determined by the
following formula:

. = - .
(3.1) (p,D) ul_i)mcgt[(u,f) (v,aVy D), feg, (E)

(¢) If V is a continuous kernel, the result (b) is

valid without the restriction that F’ is finite.

PROOF ,

(a) The proof is omitted.
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(b) Since p 1is finite, it follows that, for every
+
fecC,(E),

(3.2) (p,f) = lim (p, @V, ) = lim o (py[V- «vVy I1)

o« = 00 d => 00
= lim « [(v,f) - (v,«V, £)] .
o => 00

(¢) Let A be a relativelt compact set in Qu(E). Since
V 1is strictly positive and continuous, one can choose

g E_(_;z(E) such that

(3.3) ¢ = inf Vg(x)> 0.
X€EA

Let f egZ(E). By the above remark, one can choose
gegz(E) such that f<Vg. Hence o« V. f <oV, VglVg.
But since (p,Vg) = (v,g)<o0, the dominatefconvergence

theorem is applied to obtain the first equality in (3.2).

THEOREM 11,

Suppose that V is a strictly positive, continuous ker-

nel. Let . be an excessive measure for (V,) and let

Aegu(E) be relatively compact. Then, ‘VLA ‘ is a V-

potential of a measure P supported in .

PROOF,

We keep the notation N_,, G, etc. in § 2. Since A is
relatively compact, uIA belongs to the domain of G, .
By Theorem 1, » KZ is a G, -potential of a measure g,

supported in A
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(3.4) ))KZ= /.LQ,G“ .

Choose géigz(E) satisfying (3.3). One has
(v,8) 2 (0K 8) = ( pusGog)
2 x( po,Vg)
2el « p (@],

so that the measures {°‘ H“}aoo are uniformly bounded.
Hence there is a subnet { B {'LF} which converges weakly™
to a measure p supported in A. Since Vf is contin-

uous for every fe_g_:;(E), one has

(WKL) = (g Gy u) = Cp (T+ T),1)

1}

(parD) + (B fg,VE)
= (p,V8) = (pV,0) .

On the other hand, uK: increases to .uLA as &4 > o0,

the subnet {w K:} converges weakly” to uLA. Hence one

has proved that ULA = ,v.V.

Here is a sufficient condition under which the domi-

nation principle for excessive measures is wvalid.

THEOREM 12,

Suppose that (V_,) 1s weakly continuous. Moreover, sup-

pose that either of the following conditions is fulfilled.

(i) V is a continuous kernel.
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(1i) For every « >0, V., is a continuous kernel.
Then the principle of domination for excessive mea-

sures is valid for every open set A.

PROOF,

Let » Dbe a V-potential of a measure [ supported
in A. Let L' be an excessive measure for (V“) such

that [.u'z JJ]A. One has to show that
(3.9) v'zyv= puv.

Case (i).

Take any compact subset K of A. It is enough to
show that w»'2> ,U-JK-V. Let B be a relatively compact
open neighborhood of K, contained in A. Define =
,u',\(,uJK-V). By Theorem 11, ZLB = KV with ,21' a
measure supported in B. Noting that [ &= F’JK'V]B’

one has
[gV = pIg-vlps FVS pdgVe.
Therefore, for every fegc(E) which is supported in B,

(pIg,f) = dl_i)moz [Cpag v, f) = (pdgeV, «Vy £)]

IN

lim «[(EV,£) - (RV, «aVq )]
o => 00

]
=
E
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Case (ii).
Apply the result of case (i) to the resolvent

{ Vﬂ‘ﬂB}PO and the V, -potential pV, , and then
take the limit (¥ ->0).

Let {An} be a sequence of relatively compact
open sets, increasing to E. An excessive measure

is said to be a potential if

(3.6) inf v L
n

= 0.
E\An

Let Ep be the set of points xe€E such that
V(x,+) 1is a potential. By (2.9) and (3.6), it is
not difficult to see that Ep Egu(E) .

Theorem 11 and the followlng results generalize
those results in Kunita and the author [3; § 7] (see
also Meyer [6; Chap. III, § 1]).

THEOREM 13,

Let (V,) DXe ’weaklx continuous and V, a_continuous

kernel. Let {F.nV} be a sequence of V-potentials which

are dominated by a Radon measure A .

(a) There exists at least one cluster point of {/An}

in weak* topology.

(b) If P is a cluster point of {ftn} and if p V
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*
converges weakly® to a Radon measure w , ) then

(3.7) vz pV.

(¢) Equality holds in (3.7) for every cluster mea-
sures p of {,un} if and only if, for each

f EQZ(E) and every & > 0O, there exists a relatively
compact set Aegu(E) such that

(3.8) g- VE(x) /un(dx) < € for every n.
ENA

In this case, {)“n} is weakly* convergent.

THEOREM 14

Suppose that (V) and V satisfy the conditions of
the preceding theorem. Then, every potential is a V-
potential of a measure supported in Ep.

PROOF OF THEOREM 13

(a) Let A be relatively compact. Take geg:(E) as in
(3.3). One has

o >(x,g) > _(/LnV,g) > a- ,“n(A) )

which proves (a).

*) We don't know if & 1is excessive in general. v is
excessive if either of the following conditions is sa-
tisfied. (i) Every V, 1is a continuous kernel.

(ii) p oV converges to » in the sense of 1.1,
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(b) Take a subnet {(ln,} converging to g . For each
+
fegc(E),

(v,f) = Un(p,V,f) = Mn( g ,,VE)
2 (p,VE) = (pV,f) .
Inequality " >" follows from the fact that Vf is

positive and continuous.

(c) Suppose that (3.8) is valid. Take geCy(E) such
that [g=1]A and 0<g<1. One has

(3.9) (g Vo) = CppiygeVe) + (ppy, (1-g) VL)
S(fcn.,Vf) + E .
Taking the limit for n', one has
(v,f) £ (p,Vf) + €.

Suppose that (3.8) 1is false. Let {Ak} be a sequence
of relatively compact open sets, increasing to E, such
that A C KnCAnH' Choose fegZ(E), € > 0, n(k)
such that

{ VE(x) Fa (x) (dx)> €, k=1,2,000 &
E\A

k

By an evaluation similar to (3.9), it is not difficult
to see that a cluster measure of {Fn(k)} does not satis-
fy the equality in (3.7). The final statement is obvi-

ous from Theorem 10(c).
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PROOF OF THEOREM 14,

Let {An} be a sequence of relatively compact sets,
increasing to E. By Theorém 11, each uLAn is a V-
potential of a finite measure g . Since w V = uLAn'T‘ v,
it is enough to verify condition (3.8). Take any
fegZ(E) and € > 0. Since » 1is a potential, there

exists a compact set A such that (oL ,f)< €,

E\A
Using Theorem 12, one gets

£ > (vLlgf) 2 (Cp Vg, ,,T)
2 (CppTp g gy D)

= (Fpfpan VoD

‘( Vf(x) an(dx) s
ENA

so that » 1s the V-potential of the weak” limit
[ of {Iun} . It is obvious that [ is supported in
Ep.

§ 4. RESOLVENTS OF STANDARD SEMI-GROUPS

Let E be a locally compact Hausdorff space with a
denumerable base. Let (Pt)tZO be a standard semi-group
of submarkov kernels in the sense of Meyer [7] Let
(U,) be the resolvent of (Pt) and U, the potential

ad>0
kernel of (U_);
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. [0 0] (e o]
-dt
U, = g e™"'p.dt, U= S P,dt .
(o] o

As in § 3, we assume that UIp is bounded for every

compact set K. Note that (U,) is weakly continuous.

Let X = (2,F,(F),&t),®")) be a standard
realization of (Pt)’ Let A€B(E) and WA be the

*)
penetration time of (X(t)) for the set A:
t
(+.1) W, = inf {t>0; g I,° X(s)ds>0}
)

n

+ oo if the set { 3} 1is empty .
Define

(4.2) Py, (5B = P*{xw)en}.

LEMMA 15 (H. Rost [8]).

Let f €pB(E). Then, P, Uf is the increasing limit of
- A

a_sequence {Ufn} of U-potentials such that each charge

function fn is supported in A.

*) The author wishes to thank Professor Meyer for the
suggestion of tﬁg:ﬁgnetration times. In the begin-
ning the author used the usual hitting time TA in
place of WA and proved Theorem 16 only when A is

open.
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THEOREM 16,

(a) For every Ace€B(E),

()+o3) ﬁU = P

(b) For every excessive function u,

(.4) Ru=P, u.

PROOF,

(a) Since R,U=TUL,, it is enough to show that

%.5) (e 0L, = E.XPWA-U .

Let f epB(E) be supported in A. By the strong Mar-
kov property,

( €,U,f) = Uf(x) = PwAUf(x) = (ewaA-U,f),

so that [exU = EXPWA-U] 4+ One has proved the inequa-
lity "<" in (4.5).

To show the converse, write U" for (eXU)LA.
Let {r.nU} be a sequence of U-potentials increasing
to w'. Take any f €pB(E). Due to Lemma 15, choose
{Ufk}, increasing to PWAUf, such that each f, is

supported in A. One has

(e P, U,f) = 1im ( €_,Uf.) = 1im (o', )
W S e XBUR T S o Tk

= lim lim (pr U,f, ) =1im 1lim( Uf, )
k - oo n-»ookn,kn—aook-}eoﬁn, k
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= lim (an, PWAUf)

n -» o

Snl_i:)moo( an,Uf) = (u»',1) ,

which proves that (¢ U)L, = »'> eXPwA.U .

(b) This is an immediate consequence of (a).

The following theorem is essentially due to Hunt

[2; § 91.

THEOREM 17,

Suppose that U is a continuous kernel. Let . be an

excessive measure., Let {Ah} be a sequence of relatively
compact sets in B(E), increasing to E. Then, there

exists a unique sequence {/J.n} of finite measures such
that

4.6) pU T v,

(.7 Fn = Fn+ PWA :
n

In this case, one has

(%.8) poU= vL, ,

n

so that p = is supported in Kn .

PROOF

By Theorem 11 and Theorem 10(c), vL, is a U-
n
potential of a unique measure Fne Noting that
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(vL )L, = vL, and making use of Theorem 8 and

n+1 n n
17, one gets

A

P ‘U= ( L, = (1L )L
Fn+1 wAn Fn+1 An An+1 An

1]

v L = .
An Fn
By Theorem 10(¢), one has (4.7). (4.6) 1is obvious.

For the uniqueness, suppose that {[&n} satisfies
(4.6) and (4.7). By a calculation similar to the
above, one sees that

gl = f"n+1PWA U = (f"n+1U)LAn = 44
n

]

{ M n+mU) LAn

—> vL, (m - o0) ,
n ‘

which proves (4.8) and the uniqueness of {/An} .

REMARKS

(a) In the context of this section, G. Hunt [2; p. 86~
88] defined a balayage operator of excessive measures

(denoted by L, in his paper, but fA here) as follows.

Let A€B(E) (or more generally, nearly analytic).
Let « > 0 and HZ, the o« -harmonic measure kernel for

the set A. Let + be an « -excessive measure (« > 0)
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and {g U,} , a sequence of U, -potentials increa-
sing to v . He proved that F‘nHZ * U, 1increases to

an o -excessive measure (denoted by v f:) independent

)

of the choice of {p % :

+.9) vI s = 1im T wHY - U_ .
A n - oo Fn a <

Then he proved that, if » is (0-) excessive, uf:

increases to an excessive measure (denoted by yfA) as

d >0

(4.10) »T, : = 1im T »T%.
A at

This balayage operator EA coincides with ours LA’ if
A is open (or more generally, nearly open). In fact, all

of the preceding results are valid for the balayage ope-

o
rator LA with respect to the resolvent (Uet+,9)p>o' If
A 1s open, P;I = HZ . *) Therefore,
A
lim p HY+ U, = lim (.U )LY =,L1%
no ol mA e n_)oof‘nWA A

as far as {f‘nU} increases to ~» as n-—o. It is
easy to see that "LZT”LA as « >0 for every exces-

sive measure » . Hence wL, = qu .

(b) M. Weil [10] discovered a nice method of construct-

ing approximate Pt-processes, based on Theorem 17. In

) Py (B) = B Lo WA 1. xaip]
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Weil's construction in the present context, the use of
the penetration times is not indispensable, since it
is enough to take a sequence of relatively compact open

sets as {An} in Theorem 17, for which the penetration

times are identical with the hitting times. However, in
a more general context in [9], the use of penetration

times becomes essential.
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