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ON BALAYÉES OF EXCESSIVE MEASURES AND FUNCTIONS

WITH RESPECT TO RESOLVENTS

by Takesi WATANABE

The balayage with respect to excessive measures and

functions of a single kernel was studied by Deny I1~.
Meyer ~4~ introduced the notion of the reduite of super-

median functions with respect to resolvents, and then he

{~5] applied it to the problem of characterizing the potent-

ial kernel of a single kernel. Here we will define the ba-

layees of excessive measures and functions with respect to

resolvents and study their properties. The basic method isthe

passage to the limit from those results obtained by Deny on

balayees for a single kernel (see § 1).

In § 2 we will be concerned with the resolvents over

a measurable space. The main result is Theorem 8 which

states that the balayage operator LA for excessive mea-

sures and the one R A for excessive functions commute with

respect to the potential kernel V. Section 3 is devoted

to the study of resolvents with the continuous potential

kernel over a locally compact space. It is shown (Theorem 11)

that, if A is a relatively compact Borel set, the balayee

over A of every excessive measure is a V-potential. In

§ 4 we will consider the case when the resolvent is the La-

place transform of a standard semi-group. We show (Theorem

16) that the balayage operator R., acting on excessive
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functions, is
epresented as the kernel of the "harmonic" measure with

respect to the penetration time for the set A. Using

this and preceding results, one can give alternative proofs
of those results (Theorem 17) obtained by Hunt [2; § 9~[ .
The method developed here enables us to extend Hunt’s the-

orem to more general cases (see L9J)*

§ 1. SUMMARY OF THE RESULTS FOR A SINGLE KERNEL

We mostly follow the notation and terminology of

Meyer’s book [4] .

Let (E,~) be a measurable space, and A E~ . Let

J A be the restriction kernel, and f [resp. a func-

tion over E [resp. a measure *) over F~. We will write

or f A [resp. ° or fAJ for JAf [resp. °

The notation means that f (x ) > g (x ) for

Similarly, stands for A

positive function means a nonnegative function allowing the

value +oo, unless it is stated as "strictly positive",

"finite" and so on. Let be ~ -finite measures such

There exists a unique 6’ -finite measure X

such + X. . This measure is denoted by ~- ~ . .

A sequence of ~-finite measures is said to con-

verge to a 6’ -fini te measure  if every n is domi-

*) We consider only positive measures.
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nated by some 6’-finite measure ~ and

( 1.1 ) (A) = lim n (A) f or every A such that
n 2014 ~

y (A)oo. .

Let K be a kernel. A ~ -finite measure of the

form f K is called the K-potential of  .  is said

to belong to the domain of K. A function of the form Kf,

where f is a positive function, is said to be the K-

potential of f. Let f be a measure. We often write

(f,f) or ~ (f ) for .

Let N be a kernel over (E,E) and G, the potential

kernel of N : :

(1.2) G = ~ Nn . .
n~ o

A positive function u is called excessive for N if

Nu. A positive measure ~ is called excessive for N

if it is 6’ -finite and v Let » [resp. it be an

excessive measure [resp. a finite excessive function]. TtB

measure [resp. function]

(1.3) ~. _ ~ (I - N) [resp. f = (I - N)u~ ,

is called the charge measure of y ~resp. charge function
of u ~ . .

Let A E . . Given any ~’ -finite measure L , , which

is dominated by some excessive measure, define

(1.4) = ~ y’2 y’ I is excessive} .
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is excessive. 03BDLA is called the balayée of 03BD

over A. Similarly, one defines the balayée (or reduite)

RAu of a positive measurable function u by

(1.5) u’ is excessive.}. ’

It is shown (Mokobodzki) that RAu is excessive.

Define the kernels HA, KA by

(1.6) C(I - s

(1.7) KA =  JA 

They are called the balayage kernels.

The whole results of this paper are based on the fol-

lowing results due to Deny [1] .

THEOREM 1.

(a) For every excessive measure y , one has

( 1. 8 ) 

(b) The charge measure of is siven by

(1.9) (03BDLA)(I-N) = H A 
+ lim (03BDN~) [

(I-J A)N]nJA ,

where  is the charge measure of 03BD and 

In particular, the charge measure of is

supported in A.

(c) is a potential belongs to
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the domain of G, is a G-potential. *)

(d) If ..v is a G-potential of a measure r supported

in A,

(1.10) 

Note that the assertion (d) is a version of the

principle of domination.

THEOREM 2.

(a) For every excessive function u, one has

(1.11) RAu = °

(b) If u is a finite excessive function, the charge

function of RAu is given by

(1.12) = KAf + lim JA[N(I-JA)]n(N~u),

f is the charge function of u and lim Nnu.
n -~ oo

(c) If either u is a finite potential or G(uL) is

finite, then RAu is a G-potential.

(d) If u is a G-potential of a positive function f

supported in A,

(1.13) RA(Gf) = Gf .

Hereafter we will write 03BD KA (resp. for the

balayee of an excessive measure v ~resp. an excessive
function u] for a single kernel N.

*) Hence, if belongs to the
domain of G, v LA is a G-potential.
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§ 2. BALAYAGE WITH RESPECT TO RESOLVENTS OVER MEASURABLE

SPACES

General properties

Let be a resolvent over a measurable space

and V, the potential kernel of (V~ ):

V = sup V ~ = lim V ~ . .
o~ > 0 o~ -~0

To lighten the exposition, we assume that (V~ )~ is

a submarkov resolvent and V is proper throughout the

paper.

A supermedian [!esp. excessive] measure L/ for

is defined as a ~-finite measure such that, for

every o~ ;> 0,

(2.1) [resp. moreover , » = 
o~ -~ oo

We omit the well-known definition of supermedian [resp.
excessive~) functions.

Let A . Given any «-finite measure » domi-

nated by a supermedian measure, define

(2.2) ~’ is supermedian}. °

is supermedian. is called the balayée of i/

over A for Let u be a positive measurable

function. Define

(2.3) u’ is supermedian}.
It is shown (Mokobodzki and Lemma 3) that R~u is super-
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median. RAu is called the reduite of u over A for

(V« ) . Define

(2.4) Au: = lim (03B1V03B1)(RAu) .

RAu is excessive. RAu is called the balayée of u over

A f or (V « ) .

L~, RA’ R are called the balayage operators.

NOTATION. .

We write for « V« . are the balay-

age kernels for the single kernel N~ . Let G « be the

potential kernel of By a well-known resolvent iden-

tity, one has

~’~ G « - ~ n2o Na - ~ n2o °

Note that is a submarkov kernel.

LEMMA 3.

Let ~.

(a) ~-finite measure » is excessive for N ~ ,
then it is excessive for N a .

(b) If a positive function u is excessive for N , then

it is excessive for N  .

The proposition (b) was proved by Meyer [5; p.231~.
The proof of (a) is the same.

It is obvious that a measure v [resp. function ul
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is supermedian for (V03B1) if and only if 03BD [resp. u]
is excessive for N « for every 03B1 > 0 .

THEOREM 4.

LA has the following properties for supermedian mea-

sures.

(a) If a seauence {03BDn} of supermedian measures increa-

ses to a supermedian measure then increases to

JJLA.

(b) Let y be supermedian. If Aj t A in E , then

(c) LA is positivelY linear for the class of all super-

median measures : if v i (i=1,2) is supermedian and

(2.6) ( ~ y~ + ( v ~LA) ( y 2LA) .

(d) Let  be a measure, supported in A and belonging

to the domain of V. Moreover, assume that there is an in-

creasing seauence {03BBn} of supermedian measures such that

~ n~ ~, increases to Then 
’

(2.7) ~CV . °

THEOREM 5.

R and R hav_e the properties for 

median functions.
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(a) If is an increasing seauence of supermedian

functions. then res . increases to R
(lim u ) [resp. A (lim un)].

(b) Let u be supermedian. If in E , then

RA j U [resp. Aju] increases to RAu Au].
(c) RA and R are positively linear for the class of

supermedian functions.

(d) If f E p *) is supported in A,

(2.8) I Vf 

Theorem 5 was proved by Meyer C5~ Theoreme 5]. The-

orem 4 is proved in the same way. We repeat the proof of

Meyer for the convenience of latter reference.

Let » be supermedian for (Y« ) . Since » is

excessive for the balayee of y for is

v K A. By Lemma 3 (a) and the following remark, 

increases to a measure y’, supermedian for (Va ), as

ex -+ oo. Let  be any supermedian measure such that

. Obviously,  ~ 03BD K03B1A , so that 03BD ~ JL/ ’ . One

has proved that

(2.9) 03BD LA = lim ~ 03BDK03B1A.

Since is a kernel, (a) and (c) of Theorem 4 are

immediate. The proof of (b) is also easy.

We proceed to the proof of (d). Write f n for

*) positive E-measurable function.
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H- ’ By Theorem 1 (d) and formula (2.5), one has

so that

~ n V - ~‘n VK A - a ~ a -1 ~’ n ( I+ aV ) K A °~ - ~‘n VK A °~ - -1 

~~~ ~«’~~ , ,

since 03BBn is supermedian. Letting 03B1 ~ ~, one gets

(2.10) nV = lim nVK03B1A = ( nV)LA .

Letting n ~ oo , one gets (2.7).

Similarly to (2.9), for every supermedian function

u for (V~ ),

(2.11) R.u = lim 
A 

~ -~ oo 
A

REMARK.

Note that Theorem 5(d) is nothing but the principle

of domination of supermedian functions for (V a ) . On the

other hand, Theorem 4(d) shows that the principle of domi-

nation of supermedian measures is valid only under certain

additional requirement on f. Here is a simple example

for which the principle of domination is false. Let (V~ )

be the resolvent of N(_> 3)-dimensional Brownian motion

semi-group. V is the Newtonian potential kernel. Take

A = r = ~x. It is easy to see that ( 

(see also Theorem 12).
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The kernels VL and °

It is easy to see that the balayage kernels KA and

HA for a single kernel commute with respect to the poten-

tial kernel G:

(2.12) GKA=HAG. °

In fact, in Theorem 1. By (b) and (c),

( is the G-potential of which proves

(2.12). The balayage operators for a resolvent (V ~ ) do

not admit the representation as kernels, in general, con-

trary to those for a single kernel. However, we can prove

a relation similar to (2.12).

Define VLA, RAV, by

RAV(x,B): = 
°

It is immediate from Theorem 4 and 5 that each of VLA,
/B

RAV, RAV defines a proper kernel dominated by V. More-

over, .using formula (2.9) and (2.11 ) , one sees that

(2.13) RAV.f = RA (Vf), 

(2.14) RAV = lim~03B1V03B1 . RAV.

Obviously, is excessive for every f E pE . Later

we will show that

VLA = A V .
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LEMMA 6.

(a) If ~C is a measure belonging to the domain of V,

/ .RAV and are excessive for 

(b) For every fepE, is excessive.

PROOF.

(a) For every f E pE ,

(f,RAV.f) = (r,RA(Vf))
= ( , lim T H A a (Vf» 

,

= lim .

A

Therefore, .RAV is a 03B4-finite measure and it is

the increasing limit of V-potentials One has

proved that is excessive. By (2.14),
(2.15) 
which proves that -RAV is excessive.

(b) The proof is similar to (a).

LEMMA 7.

(a)

( 2 .16 ) 

(b) Suppose that ~C is a measure dominated by a super-

median measure .v. Then

(2.17) ~. °
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(c) ,

n

(2.18) VLA=RAV.

PROOF. .

(a) It is enough to show that, for every bounded

f E pE ,

(2.19) ( ( 

By (2.5), the following inequality is obvious:

( ~xV.K03B1A,f)~( ~x,G03B1K03B1A . 03B1-1f) .

The left side increases to 

On the other hand, by (2.12),

= G03B1 . oc’ 1 f _ H03B1A ( 03B1-1f+Vf) ,

H03B1A . 03B1-1 f ~ 03B1-1 ~f~~H03B1A . 1~03B1-1 ~f~~ ~ 0 (03B1~~),

where )I = sup I f (x) ~ . Therefore,

lim oc-1f) = lim (Vf))

= (~x,RA(Vf)) = (~x,RAV.f),

so that (2.19) was proved.

(b) a sequence of bounded measures increa-

sing Let f be a bounded function in pE which

is supported in a set B 6 E such that  oo . It is

enough to show that, for every such f,

(2.20) (fn.VLA,f) 
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The proof is similar to that of (2.19). By (2.~),

(03B1-1 n.H03B1A G03B1,f) ~ ( nH03B1AVf).
The right-hand side increases to 

On the other hand,

03B1-1 n.H03B1AG03B1 = 03B1-1 n.G03B1K03B1A = (03B1- 1 n + nV)K03B1A ,
 
1 

~ a -103BD.K03B1A ~ 03BD ,

so 
1 

which proves (2.20).

(c) For each « > 0, the measure EX. « Va is dominated

by the excessive measure 8 Hence, by (b),

(( ê x. 01. Vex) . VL A’ f) = (( E ~ f E PE .

By Lemma 6 (b) ,

the left-hand ~ (x) .

But, by (2 .14) ,
the right-hand side = ~ Va (R A V.f) (x) -~ 

This proves (2.18).

One now summarize the preceding results.

THEOREM 8.

A

VLA and RAV r-ese t the same proper kernel.
This kernel has the following properties.

(a) For every ~C belonging to the domain of V,

~C is the smallest supermedian measure amons those
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which dominate ~V over A. Moreover, is

excessive for (V~).

(b) For every fepE, is excessive. It is the

smallest one among those supermedian functions which do-

minate Vf over A except on sets of potential zero. *)

It remains to prove the latter half of (b). But

since this special case

of the next theorem (b).

THEOREM 9.

(a) If 03BD is excessive, 03BDLA is also excessive.

(b) Let u be a supermedian function. R.u is exces-

sive and it is the smallest one among those supermedian

functions which dominate u over A except on sets of

potential zero.

PROOF. .

(a) Choose a sequence of V-potentials increas-

ing By Theorem 8(a), = ex-

cessive. Since = lim ~ ( nV)LA by Theorem 3 (b),
~- -~ oo 

’

is excessive.

(b) Note that where N set of

potential zero (Meyer ~-; p. 195]). Since = 

~) A set is said to be of potential zero if 
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it follows that = Hence belongs to

the class of functions described in (b).

Suppose that u’ is a supermedian function such that

where N is a set of potential zero. Since

N03B1 = 03B1 V03B1 , one has

(n~1) ,

so that, by (1.6),

H~ u 2 on 

Therefore? letting 03B1 ~ ~, one has 

which implies that u’~Au’~Au.

§ 3. RESOLVENTS OVER LOCALLY COMPACT SPACES

Let E be a locally compact space. We assume that

E is 6’-compact. (Many results are true without this re-

striction.) Excessive measures are restricted to Radon ex-

cessive measures. *) We omit the name "Radon". 

is a submarkov resolvent of dispersion-kernels. We also

assume that V is a dispersion-kernel such that VIK is

bounded for every compact set K.

NOTATION.

B(E) [resp. Bu(E)] stands for the 6’-algebra of

all Borel [resp. universally measurable] subsets of E.

*) Although such restriction is sometimes inconvenient,
the present case is not the case.
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[resp. is the collection of all contin-

uous functions with compact supports [resp. bounded con-
tinuous functional.

A dispersion-kernel K is said to be continuous

[resp. strictly positive] if K maps C =c (E) into 

[resp. if all of the measures K(x,.) are not zero].
A resolvent (V~) is said to be weakly continuous

if d V oe (x,.) converges weakly* to 6 for every x.

It is obvious that, if (V~ ) is weakly continuous, 3 every

(and hence V) is strictly positive.

The following theorem is well-known.

THEOREM 10.

Let (V03B1) be weakly continuous.

(a) Every supermedian me asure is excessive.

’R_ad on
(b) is a V-potential of a finite  measure  ,
the charge measure ~C is uniauely determined by the

following formula:

(3.1) ( ~,f) = a lim ~ ~ a ~( z,f) - (~, ocV~ f)~, 
(c) If V is a continuous kernel, the result (b) is

valid without tha restriction that Lc is finite.

PROOF.

(a) The proof is omitted.
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(b) Since f is finite, it follows that, for every
.

(3.2) ( ~C,f) - lim = lim 
~ -~ oo ~ -~ oo

=lim a ~(s~,f) - (.~, ~V~ f)~ .

(c) Let A be a relativelt compact set in Bu(E). Since

V is strictly positive and continuous, one can choose

g ~ C+ (E) such that

(3.3) c = inf Vg (x) ~ 0 .
xEA

Let By the above remark, one can choose

g E C+ (E) such that f _ Vg. Hence « V a f  x Vg  Vg.

But since ( f> Vg) - the dominated convergence
theorem is applied to obtain the first equality in (3.2).

THEOREM 11.

Suppose that V is a strictly positive, continuous ker-

nel. Let » be an excessive measure for (V ~ ) and let

be relatively compact. Then 
‘ 

is a V-

potential of a measure p supported in A .

PROOF.

We keep the notation N ~, G~ etc. in § 2. Since A is

relatively compact, belongs to the domain of G .

By Theorem 1, is a G « -potential of a measure ~

supported in A;
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(3.4) 

Choose satisfying (3.3). One has

( ~ ~ g) Z ( y Ka~ g) - ( 

~~( f«,Vg)

z ~ C ~ 

so that the measures ’~ ~ ~x ~ x> o are uniformly bounded.

Hence there is a subnet {03B2 03B2} which converges weakly
to a measure f supported in A. Since Vf is contin-

uous for every one has

= 

~ ,f) = ( ~ (I+ ~V),f)
= ( f P ~f) + (I~ f~~ ~Vf)

- --~ ( , Vf ) _ ( ~c, V, f ) .
x

On the other hand, ;v KA increases to as ~ 

the subnet converges weakly* to Hence one

has proved that = f V.

Here is a sufficient condition under which the domi-

nation principle for excessive measures is valid.

THEOREM 12.

Suppose that (V ~ ) is weakly continuous. Moreover, sup-

pose that either of the following conditions is fulfilled.

(i) V is a continuous kernel.
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(ii) For every oc > 0~ V~ is a continuous kernel.

Then the principle of domination for excessive mea-

sures is valid for every open set A.

PROOF.

Let y be a V-potential of a measure f’ supported

in A. Let y’ be an excessive measure for (Vex) such

i ~ A. One has to show that

(3.5) y’ Z ~ _ fV.

Case (i).

Take any compact subset K of A. It is enough to

show that Let B be a relatively compact

open neighborhood of K, contained in A. Define ~=

~’~(~J~V). By Theorem 11, = f V with ~ a

measure supported in B. Noting that ~ .~ = 
one has

~ ~V = ^’V  

Therefore, for every which is supported in B,

( JK,f) = lim 03B1[( JK.V,f) - ( JK.V, 03B1 V03B1 f)]f K K

 aVa f)]

= (,f) ,

which proves that Hence,

~V = jyLg D"  ~’ . .
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Case (ii) .

Apply the result of case (i) to the resolvent

~ and the V~ -potential and then

take the limit ( ~ -~ 0) .

be a sequence of relatively compact

open sets, increasing to E. An excessive measure

is said to be a potential if

(3.6) 0 .
n n

Let Ep be the set of points x E E such that

V(x,.) is a potential. By (2.9) and (3.6), it is

not difficult to see that 

Theorem 11 and the following results generalize

those results in Kunita and the author ~3~ § 7J (see

also Meyer [6 ; Chap. III, § 1] ) .

THEOREM 13.

Let (V ~ ) be weakly continuous and V, a continuous

kernel. Let be a seauence of V-potentials which

are dominated by a Radon measure ~- .

(a) There exists at least one cluster point of ~~. ~
in weak~ topology.

(b) If f is a cluster point of and if fn V
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converges weaklY * to a Radon measure y , ) then

(3.7) 

(c) Equality holds in (3.7) for every cluster mea-

sures fa of if and only if, 41 for each

f and ever ~ > 0, there exists a relatively

compact set such that

(3.8) ~ for every n .

EBA

In this case, {fLn} is weakly~ convergent.

THEOREM 14.

Suppose that (V a ) and V satisfy the conditions of

the preceding theorem. Then, every potential is a V-

potential of a measure supported in Ep.

PROOF OF THEOREM 13 ,

(a) Let A be relatively compact. Take as in

(3.3). One has

00 >(À,g) 2 (f-nV,g) ¿ a. fn(A),
which proves (a).

*) We don’t know if ~/ is excessive in general. » is

excessive if either of the following conditions is sa-

tisfied. (i) Every V ~ is a continuous kernel.

(ii) ~. V converges to » in the sense of (1,1 ) .
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(b) Take a subnet { n,} converging to f. For each

(v ~f) - lime 

> ( ~C,Vf) - ( ~.V~f) .

Inequality " ~" follows from the fact that Vf is

positive and continuous.

(c) Suppose that (3.8) is valid. Take such

that [g = 1J A and 0  g ~ 1. One has

(3.9) ( ~n,v,f) - + (1-g)’Vf)

~ .

Taking the limit for n’, one has

(~ ,f)  + ~ . .

Suppose that (3.8) is false. be a sequence

of relatively compact open sets, increasing to E, such

that An~An C An +1. Choose f E C+c(E), ~ > 0, n(k)

such that

F (dX) ~ ~ , k=1 ~ 2, ....

E~Ak
By an evaluation similar to (3.9), it is not difficult

to see that a cluster measure of does not satis-

fy the equality in (3.7). The final statement is obvi-

ous from Theorem 10 (c) .
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PROOF OF THEOREM 1~.

Let ~A~ be a sequence of relatively compact sets,

increasing to E. By Theorem 11, each 03BDLAn is a V-

potential of a finite measure n. Since nV = 03BDLAn~03BD,
it is enough to verify condition (3.8). Take any

and E > 0. Since » is a potential, there

exists a compact set A such that (~Lp..,f) ~ .
Using Theorem 12, one gets

~ >~L~,f) 

= f Vf(x) ’

EBA

so that » is the V-potential of the weak* limit

~. of It is obvious that ~. is supported in

~p-

§ ~-. RESOLVENTS OF STANDARD SEMI-GROUPS

Let E be a locally compact Hausdorff space with a

denumerable base. Let standard semi-group

of submarkov kernels in the sense of Meyer [7]. Let

resolvent of and U, the potential

kernel of (U ~);
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=( U=~ Ptdt.
o o

As in § 3, we assume that UI~ is bounded for every

compact set K. Note that (U~) is weakly continuous.

Let X= (n,F,(F~),(X(t)),(~~)) be a standard

realization of (P~). Let AeB(E) and W~ be the

penetration time 
~ of (X(t)) for the set A :

(~.1) 
o

. 

= + oo if the set { ~ is empty.

Define

(~-.2) P., (x,B) 

LEMMA 15 (H. Rost [8~).

Let Then, PWUf is the increasing limit of
~ A

a sequence of U-potentials such that each charge

function f is supported in A.

*) The author wishes to thank Professor Meyer for the

suggestion of the use of penetration times. In the begin-
ning the author used the usual hitting time T. in

place of W. and proved Theorem 16 only when A is

open.
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THEOREM 16.

(a) For every A E B (E) ,

(4.3) RAU = Pw A .U .
(b) For every excessive function u,

(4.4) Au = PWAu .

PROOF.

(a) Since RAU = UL,, it is enough to show that

(~+.5) ( E xU)LA = 
Let f EpB(E) be supported in A. By the strong Mar-

kov property,

= Uf(x) = PW A Uf(x) = .U,f),

so that [(xU = E xP One has proved the inequa-

lity "~" in (4.5).

To show the converse, write » ’ for 

Let be a sequence of U-potentials increasing

to L ’ . Take any f E pB (E). Due to Lemma 15, choose

increasing to P.. A Uf, such that each fk is

supported in A. One has

(~ Pw U,f) = lim (E x’ Ufk) = lim ( v’ , fk)
= lim lim (.nU, fk) = lim 
k ~ oo "
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= lim ( n, PWAUf)

~ lim = ( » ’, f) ,

which proves = ~ ’ ~ 

(b) This is an immediate consequence of (a).

The following theorem is essentially due to Hunt

[2; § 9].

THEOREM 17.

Suppose that U is a continuous kernel. Let j~ be an

excessive measure. Let be a seauence of relatively

compact sets in B(E), increasing to E. Then there

exists a unique seauence of finite measures such

that 

(~.6) 

~ ~n 
= 

In this case, one has 

(4.8) nU = 03BDLAn ,

so that n is supported in An .

PROOF,

By Theorem 11 and Theorem 10(c), is a u-

potential of a unique measure n. Noting that
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= and making use of Theorem 8 and

17, one gets

" (y 

- ~ LA - 
By Theorem 10(c), one has (4.7). (4.6) is obvious.

For the uniqueness, suppose satisfies

(4.6) and (4.7). By a calculation similar to the

above, one sees that

= 
...

= ( n+mU)LAn

~ L LA (m ~ ~) ,
n

which proves (4. 8 ) and the uniqueness of 

REMARKS

(a) In the context of this section, G. Hunt [2; p. 86-

88J defined a balayage operator of excessive measures

(denoted by LA in his paper, but LA here) as follows.

Let A E B(E) (or more generally, nearly analytic).

Let « > 0 and H., the o~ -harmonic measure kernel for

the set A. Let » be an 0~ -excessive measure ( ~ > 0)
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sequence of -potentials increa-

sing to x . He proved that increases to

an « -excessive measure (denoted independent

of the choice 

(4.9) = 

Then he proved that, if v is (0-) excessive, 03BDL03B1A
’

increases to an excessive measure (denoted by v LA) as

~ --~ p .

(4.10) 03BDLA : = lim ~ 03BDL03B1A .

This balayage operator LA coincides with ours LA, if

A is open (or more generally, nearly open). In fact, all

of the preceding results are valid for the balayage ope-

rator LA ol with respect to the resolvent . If

A is open, Pw 
A 

= *) Therefore,

lim nH03B1A . U03B1 = lim ( nU03B1)L 03B1A = 03BDL 03B1A ,

as far increases to » as It is

easy to see as of. -~ 0 for every exces-

sive measure 03BD . Hence = 

(b) M. Weil [10] discovered a nice method of construct-

ing approximate Pt-processes, based on Theorem 17. In

~) 
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Weil’s construction in the present context, the use of

the penetration times is not indispensable, since it

is enough to take a sequence of relatively compact open

sets in Theorem 17, for which the penetration

times are identical with the hitting times. However, in

a more general context in [9], the use of penetration

times becomes essential.
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