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TWO FOOTNOTES TO A THEOREM OF RAY

John B. Walsh

Let E be a locally compact metric space and E its Borel

field. Let (R ) 
p > 

- be a Markov resolvent family on (E,E),
that is, for p > 0 and x E E, R (x,.) is a measure on E of mass
1/p, for each A E E R (.,A) is Borel measurable, and the resolvent

equation is satisfied:

Rp - Rq = (q - p)RpRq . .

Recall that a positive universally measurable function f is said to

be q-supermedian if for each p > 0, f ~ pR p+q . Let C(E) be the class
of functions continuous with finite limits at infinity and C..(E) the
class of continuous functions with limit zero at infinity, and let

S(E) be the class of continuous 1-supermedian functions. We say

(Rp) is a Ray resolvent if S(E) separates points of E and for each p

Rp:CO(E) -~ A very important theorem of Ray states:

THEOREM (Ray) Let (R ) be a Ray resolvent. Then there exists a

unique semigroup satisfying

(i) tPt(x,.) is vaguely right continuous;
(ii) (Pt) has resolvent (Rp).

Further, for each probability measure V on E there exists a right
continuous strong Markov process whose paths have left limits in E,
and which has transition semigroup (Pt) and absolute distributions
(Pt)t0 .(1),(2)

(1) In general Pt is not the only semigroup corresponding to the
resolvent (Rp). In fact, let (Q,t) be defined by

if t = 0 ; 

if t > 0.vague lim P (x,.) if t > 0.
s~t

Then (Qt) is also a semigroup, and is the transition function of a left con-
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tinuous moderately Markov process. Recall that a left continuous process

is said to be moderately Markov relative to an increasing family 0

of fields and transition function Pt(x,A) if it is adapted to Ft and
if for each predictable stopping time T, t ~ 0, and bounded Borel f

E~ f(X ) l F - = °

This is a natural form of the strong Markov property for a left

continuous process; moderately Markov processes have recently
been shown to be interesting in their own right. The left handed

version of Ray’s theorem is:

. 

THEOREM 1 Let (R ) be a Ray resolvent. Then there exists a

unique semigroup ~ satisfying

( i ) t-~ Q~(x,.) is vaguely lef t cont inuous and %(x,.) = I

for each x 6- E ; ;

(ii) (Q~) has resolvent (Rp).
Further, for each probability measure ~ on E there exists a left
continuous moderately Markov process whose paths have right limits

in E and which has transition semigroup (Q,t) and absolute

distributions ( Jq,t )t >, 0 . °

Some of the standard proofs of Ray’s theorem can be modified

to prove both right and left-handed versions at the same time, and

this is doubtless the most satisfying method of proof, but Theorem

One can be derived from the other without great difficulty. It is

interesting, tho, that the semigroup property of Q~ doesn’t seem to
follow easily unless one uses some properties of the sample paths.
A corollary of this theorem is that if X is a right continuous

strong Markov process with the above semigroup (Pt)’ then the

left continuous process (Xt ) is moderately Markov with semigroup (Q,t).
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PROOF Let be the vaguely right continuous semigroup corresponding

,to (Rp) and define (Q,t) as above . Fix a probability measure 1~ on

E, and let X be a right continuous strong Markov process with

semigroup and absolute distributions (~Pt). . It is enough to

prove the theorem in the case =xo 6 for some fixed x . Define

a process Y by lim X . . if t > 0,
Yt ‘ t 

s 

if t=0. .
0

Now Q,t(x,.) = except for possibly countably many points, ,
so certainly = for each p > 0, x ~ E

and A ~ E , , so that ( Q,t ) also has (Rp) for resolvent .
Suppose f E CC(E). Then = if{ = q,~f(x) . .

Further, Rpf ~ CD(E) so that is left continuous.

If T > 0 is a predictable stopping time and (T ) is a sequence of
stopping times announcing T, that is Tn  T and Tn~ T, then in the
limit the equation

Exo {p~oe-ptf(XTn+t)dt|FTn} = pRpf(XTn)

gives

Exo {p~oe-pt f(XT+t)dt|FT-} 
= pRpf(YT) °

Therefore if have

(1.1) FT_ - .

For each t > 0 let us calculate

Ex° f(Y ) ( F _ - EX° Ex° B 

= E ( T " T .

But if t > 0 we claim PpQ,t = , . Since for f E both 
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and are left continuous functions of t, it is enough to prove

equality of the Laplace transforms. But that is immediate:

= P R f(x) - 
Therefore = ~ Hence Y is moderately
Markov. To show that ( Q,t ) is actually a semigroup, Set T = s ? 0

and take expectations of both sides. We get

Qs+tf(xo) = QsQtf(xo) if t>0 , s>0 .

But Q0 is the identity, so clearly Qs+t = if either s or t is

zero, and we are done.

(2) It is tempting to say that for each 1~, "there is a process

with initial measure ~ ." Generally, however, this is false; there

exist points, called branching points, at which PO(x,.) ~ Sx.
A process "starting from x" in such a case has initial measure PO(x,.),
that is to say it starts from some point entirely different from x!

The possibility of having branching points is one of the most interesting

aspects of these processes. It is well known, for instance, that a

right continuous strongly Markov process with a Ray resolvent (Ray
process for short) is quasi left continuous except when it approaches
a branching point; at such a time it always jumps. This is in fact

evident from (*). Another question involving the branching points

is the question of discontinuities of the fields Recall that

an increasing family of Borel fields is said to be free of
discontinuities if for each stopping time T and sequence T n f T of
stopping times, FT . It is well known that (Ft) is free

of discontinuities iff for each predictable T, FT = where

F is given by Fg - n , and (T ) is any sequence of stopping times
announcing T.



287

For concreteness, let Q be the space of right continuous

functions from {0,00) to E and let X. be the coordinate random
variable. F denotes the Borel field generated by {Xs, s  t} and
F =VF.. If P is a measure on F, then F is the completion of F
with respect to P, and F. is the Borel field generated by F. plus
all P-null sets of F . The following theorem is implicit in the

field continuity theorems of Meyer; we provide a proof for the

sake of completeness.

THEOREM 2 Suppose that X is strongly Markov (and necessarily right
continuous but not necessarily a Ray process) on (0,F ,P). Let

(T ) be a sequence of stopping times increasing to a stopping time T.
Then a necessary and sufficient condition that FPT=VFPTn is that
X- be measurable with respect to 

=l 

PROOF We will write F and Ft instead of respectively.
The condition is surely necessary, for XT is FT measurable On the
other hand the martingale convergence theorem assures us that if

?T’ then for each integral random variable Y
~’~ 

w.p.1.
n

allowing Meyer, it ~s enough to show (2.1) for Y of the form
,where continuous of compact support,

for these span a space dense in 

For each n . 1,... ,e , (with T = T) write
Tn 

* 
T .

Yj = Y-j(n) + Yoj(n) + Y+j =  fJ(Xs)ds + fJ(Xs)ds + fj(Xs)ds .
Then E {Y|FT} is a sum of products of the form

n

Y~)...Y,(n)E{Y~(n)..~(n)Y~...Y~F,J,
where a,...,b,...,k is a permutation of 1,...,n . .
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As n ~ ~, Y°(n) tends to 0, hence so does any term containing Y.(n).
An integral is a continuous function of its upper limit, so Y.(n)
tends to Y-j(~) for each j. Let Z = Y ,...,Y,. It remains to show

E{Z|FT} ~ E{Z|FT}. But 

E{E{Z|XT}|VFTn} = {Z|XT}
n

by the strong Markov property. As n tends to infinity, this tends to

since X is VFTn measurable, and we are done. . 

qed

Now let us return to the case where X is a Ray process, with

resolvent (R ) and (right continuous) semigroup (?+)’ For each

probability measure  on E there is a measure P on F0 corresponding
to the process X "with initial measure ." We define the fields

F=~FP and Ft=~FPt ; in short, the usual situation. We say x
is a branching point if P..(x,.) / ~ . The set K of branching points

is a Borel set. If T is a predictable time, then X = X a.s. on

Kj. This is well known, but is also a trivial consequence of

(1.1): for f bounded and Borel measurable

which is zero on K ~.

THEOREM 3 Let X be a Ray process, and suppose the resolvant separates

points. Let T be a predictable stopping time. Then T is a time of

discontinuity for the fields (F ) if and only if for some probability
measure " on £’ 

°

REMARK The hypothesis that the resolvent separates points is

less for truth than for beauty. If it doesn’t, one can always

identify points with the same resolvent, or simply replace K

by L c ~x: is not a point mass~ .
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PROOF According to Theorem 2, = ~ iff for all bounded Borel

f and probability measure s ~ on E ~ f(XT) , or

equivalently, iff

(2.2) for all f E C(E) and probability measures ~ on E,
= f(XT) a.s. (P’) . 

-

Suppose 0 for all . Then for all e: = X T a.s. (P)
so 

= = f(XT) a.s. (PJ) .

Conversely, suppose that for some 9 , XT- E KJ > 0.
We remark that a necessary and sufficient condition for a measure N on

E to be a point mass is that for any two functions f and g in C(E)
= N(f ) ~ N(g) . . Now since x E K, PC(x, . ) cannot be a point mass ’

for if = 1 for some y ~ x, say, then Rp(x,.) = 
= R (y,.), contradicting the hypothesis that the resolvent separates
points. Thus as C(E) is separable, , we can find a pair f and g in

C(E) such that with positive P-probability

.

But this clearly implies that we can’t have (2.2) for all three
functions f, g, and f n g . , qed


