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(Equations aux dérivées partielles

en dimension infinie)

4e année, 1977/78, n° 2, 7 p.

POLYNOMILLS AND MJLTILINE/R FORMS ON FULLY NUCLEAR SP/.GES
by Philipp J. BOLAD ()

Lbstract. —= In this paper, we consider the spaces of continuous and hypo conti-
mwous n-linear forms and polynomials on fullv nuclear spaces. We consider these
spaces endowed with the topologies T0 (uniform convergence on compact sets) and

tw (Nachbin ported topology), and develop some duality relationships for these topo-
logies..

1« Preliminaries.

In this paper, E will represent a fully nuclear space, that is E and E' are
complete reflexive nuclear spaces over the field of complex numbers. Any Fréchet
nuclear (FN) space or the strong dual of a Fréchet nuclear (QFN) space is fully nu-
clear. ©, 0', Tl 0 x ZN C are other examples of fully nuclear spaces.

e("E) (respectively f.HY(mE) ) is the space of continuous (hypo contimuous, i. e.
continuous on compact sets) m~linear forms on E . ﬁs(mE) is the subspace ¢f
E(mE) of symmetric m-linear forms. e is the topology of uniform convergence on
compact sets. P("E) (respectively PHY(mE) ) is the space of conmtimnuous (hypo
contimious m=homogeneous polynomials on E . T is also defined on P(mE) gnd
PHY(mE) - 7, is the topology on P(E) defined by all semi-nomms p ported by
compact subsets of B ( p is ported by K if, for all open U , where KcUc E,
there exists G; > O such that p(f) ¢ Gy [f]y , for all £ eP("E) ). 1, isa
bornological topology on P(mE) , and it may also be described as the topology de-
fined by all semi-norms on P(™E) which are ported by zero [6].

If E is a K-space [10] (i« e. f: E —> X is contimuous if f 1is conti=-
nuous on the compact subsets of E ), then EHY(mE) = 2("E) and PHY(mE) =p("E) .
Every metrizable or ®OFN space is a K-space. HN C x ZN.(}. is not a K-space. The
following example shows thet ® ( ® = O(R) complexified) is not a K-space.

Example 1. - P (%0) # (%) .

Proof. - Define p -_-Z;’: . (3" 89)6, » where 5, is the Dirac delta function at
a « If X is compact in ® , there exists an m such that K <@ (= complexifi-—
. .n
cation of {p € ® : support o < (-m, m)} ). ’gherefore PIk :Zgl___l[ (3" 50) 6y
which is contimuous on K . Therefore p € PHY( ®) . However, one may show that p

is not bounded on any neighbourhocd of zere, and hence p ¢ P(2®) (see [5]).

(*) Texte regu en janvier 1979.
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Note that, from the above P(%0) , 19 18 not complete. We will now see that, if
E is fully mclear, then (P, ("E) , ;) 1is the completion of @@ , 1) -

2. Density of contimuous polynomials.

If U 4is an open sbsolutely comvex set in E , then E(U) = E/(pal (0)) , where
Py, is the Minkowski functional of U . Similarly, if B is a closed absolutely
- convex bounded set in E , then E(B) = U nB and E(B) is a normed space with
unit ball B . We may identify (E(U))' with B! (UO) , and E? (BO) is a subspaee
of (E(B.'))é (see [11]).

PROPOSITION 2. -~ Let E be fully nuclear. Then (SEHY(mE) y 1) = (=("E) , 7o)
and (PHY(mE) , -.-0) = (PT(-m’E'),\TO) , for all m (where F is the completion of F).

Proof. — It suffices to show that ©("E) is dense in (SZHY(mE) , TO) . Therefore,
let L e EHY(mE) sy ¢>0, and K absolutely convex and compact be given. We want
to find A' € £("E) such that |4 - 4'fg<e -

Without loss of generality, E(K) is Hilbert and therefore E' —3 E'(K) has a
dense image as E is reflexive. Now, there exists an absolutely convex compact set
K, containing K such that E(K) —~— E(Kl) is nuclear. Hence, there exist
(p,) € (B(K))' and (y ) < K, such that, for all x € E(K) ,

X = Zn CPn(X) Yy (convergence in E(Kl) )

and

Zn l(Pan pKl(yn) =0 <+

Now, 4 is contimous on X, (is e on mK1 ), and hence, for X,y eee y X €K,

A(xl g ece y xm) = A(Zn (pn(xl) Ty 5 o0 s Zn ‘Pn(xm) yn)

= an, ey (-Dnl (Xl) e 'anm(Xm) A(ynl y cee Ynm)
= Z se s X eeo X fr‘a es e .
nl geeey nm cpnl (an( 1 ’ ’ m) (ynl ’ b4 ynm)

Ls Zn lq,an Py (yn) C <+ o, it follows that there exists a finite set F of

indices such that
lA - ZF(pn o-oq)n I.(yn gy oo yn )IK <% .
1 m 1 m
Since E! is dense in E!(K) , we can find contimious linear forms Vn. € Et
such that i

X €
I(Pnlo-ocpnm h(ynl 9 ese ynm) Ld \!;nloco'q;nle <'§"I‘T‘" »

and therefore

I (p seo lﬂi(y aee ¥ ) Ll \ 00 8 l < eno
ZF n, can n, ’ > n Z1“‘*’nl Van, 2

Hence |4 = ZF Y v oy lK < ¢ 5 and therefore S‘:f(mE) (the space of continuous
m-linear forms of flniten%lype on B ) is dense in (SZHY(mE) , TO) .
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Similarly, it follows that Pf(mE) (and hence P(E) ) is dense in
(PHY(mE) ] To) .

COROLLARY 3. — Let U be a balanced open set in the fully nuclear space E .
Then, H(U) 4is demse in (Hy,(U) , 7y) (where H(U) and
the holomorphic and hypo analytic functions on U ).

HHY(U) are respectively

Proofl. - This follows from proposition 2 and the Taylor sexfies expansion of
elements of (H.HY(U) , To) .

Remark 4., — If E 1is a fully nuclear space with an absolute basis, then it is

considerably easier to prove proposition 2 (see [4]).

3+ Duality for spaces of polynomials.

There is a natural algebraic isomorphism between (e(™E) , TO)' ané P("E')

when E 1is a fully muclear space. The isomorphism is via the mapping
B3 (P(mE) ’ To)' -% P(mE') ’

where BT(yp) = T(q;m) (see [2]). Note that, because of proposition 2,
(PHY(mE) , TO)' and P(ME') are also isomorphic.

We will now show that, when E is fully muclear, then (P("E) , i)~ PHY(mE') .

Initially, however we need some definitions and a lemma.
Definition 5. - Let U be an absolutely convex neighbourhood of zero in E . Then
. . 1 } m
f,N(mE(U)) = { iy L e ﬁ(mE) ) b= Zn < ’ an>aoa< ’ a,n> ’
i ' 1 m
where each 4 e (E(U))! and Zn IaniU"'lan'U <+ ®} o
We define the norm m; on f,N(mE(U)) by
, . 1 m 1 m
ﬂU(lk) = lnf{zn ‘anluooolanlU e A= Zn <' 9 an>‘oo< 9 an>} .
Similarly, we define ‘
m
Pn(mE(U)) = {p € P(mE) ’ P = Zn (?n ’
m
where each ¢ € (E(U))' and ananlU <+ @) .
. . m m
We define the nomm m; on PN(mE(U)) by nU(p) = 1nf{%_l qunIU $ p= Zn Pl
Note that, if p e P(“E) and L, is the symetric m-linear form e ES(mE)
corresponding to p , then '

p €P (mE(U)) e L € S’:N(mE(U))

Th:Ls follows since if . = Z ( ) )...( ,y & ) € EN(mE(U)) , where

Z Ia ]U...la |U < + o , then (a ceeB, )S is such that P al o
LN N ] nS

e P.("E(U)) end
mm m 1 1 m
ﬂU(p 1 m ) $'I'E's' TTU((a eo0 el )S) n_q TTU(a se08 ) ! IanIUooolanlU

a_ esef,
n°°**"n’s
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1 . o . 1 m
fwhere (an...aﬁ)S is the symetrization of a ... a and P( 1 my is the
anoocan S
polynomiel corresponding to (aln coe ag) g ) - Moreover, we see that
B
m
ﬁU(p) m’ TTU(Ap) S'ﬁ?ﬂU(p) ’ for P GPN(mE(U)) .
See [8]. |

Definition 6. - If B is an absolutely convex set in the fully nuclear space E ,
we define xp on fN(mE(U)) by

zg5(4)

=sup{[Z (zl ’ a) N (zm, ar::)l s L= Zn(, aI-ll) eoe ( aI;) andzieBOO} .

Note that, as E is reflexive, ZB(A) = lAlB « Similarly, we mat define ZB on
PN(mE(U)). Note that x, may be infinite.

Now, we know that, if E is fully nuclear and U 1is an absolutely convex neigh-
bourhood of zero in E , then there exists an absolutely convex neighbourhood V
of zero such that Vc U, BE(V) —) E(U) is nuclear and 4 e EN(mE(V)) , whenever
L e 2(®E(U)) . See [2].

LEMM4 7. - Let U be an absolutely convex neighbourhood of zero in the fully nuw
clear space E . Then, there exists C >0 and absolutely comvex neighbourhoods of
ero W, V,uhere WcVcU suchthat, if 4e £("E) and |i|; <+ o, then
ke g ("B(W) and m () < " 5y(s) = C"aly , for allm > 1 .

Proof. — We prove this only for the case m =2 . 4s E 1is fully nuclear, we magy
assume that E(U) is pre-hilbert. New, we can find absolutely convex pre-hilbertian
neighbourhoods of zero W and V such that WeVcU and '

E(W) dual nuclear\ E(V) nuclea:n‘i E(U) .

Hence, there exist (V) < (B W) = E(V) and (y ) < B () such that, for
all P € E! (V ) 9

= Zn (@ » Voovy (convergence in E! (WO) )

Zn an{VO Wnlw =0 <+ o o
Whthout loss of generality, we may assume C >1 .

Now, if 4 eP(ZE) and |i; <+ » , we know that L e ZN(gE(V)) and hence
Le SEN(ZE(W)) « Therefore, there exists an o € (QN( E(W)) , n )!'  such that
(A) =(h, &) and 1<“ , @ < g mylit) , for all &' e £y ( E(W)) In parti-

cular, if g 5 gy € B (V ) , then 9, @y € E(ZE(W)) and

l(‘lPl Qg » Q’)l lmllw Icpzlw
Since E(W) -3 E(V) is dual nuclear,

(o Pg » ¥ = Zn @y » Vn>(“’n‘P2 y Q) o
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Now, as L € EN(ZE(V)) , 4 may be represented in the form
A= Zp 9op 8. where P 0 &, € EI(VO) and Zr Icprlv ‘erv <+ ® e
Therefore
n (&) = by @) = (Zep e, @ =2 (o, 8, @)
ZI‘ZI)<(Pr’V><Vnr’a> Z(un(z <Cprsv>‘§)’°’>
\&I\knlwl%@)r) >‘I’ Iw\gnl\l‘n'glz (CPT’VM’ lv
< 2 ligly lvn o Sy(8) = oy (0) < 6% 5 (n) .

COROLLARY 8. = Let U be an absolutely convex neighbourhood of zero in the fully
nuclear space E . Then, there exist C' >0 and absolutely convex neighbourhoods
of zero W end V, where WcV<cU such that, if p e P("E) and |ply<+ o,
then p e PN(mE(W)) and

TT”(P) (c ) eV(P) (cn)™ Ipr y for all m ?; .

Proof. - Let p be given, and let Ap be the symmetric m-linear form corres-—
ponding to p . Let C, W, V be as in lemma? Then, A € 2N(mE(w)) and

rrw(p) I:lﬁw(A ) < mo GV(A ) ( )2 eV(P)
Hence, by choosing C' = sup_ (™ (@™/mi) 2)1/m

) € (€)™ o, (0)

PROPOSITION 9. — Let E be a fully mnuclear space. Then, (P("E) , )t~ PHY(mE').

Proof. - We define g : (P("E) , )= PHY(mE’) by BI(p) = T(p") ,
T e (P(UE) » T )' and ¢ €E' . It is clear that 3 is well defined, and more-
over as Pf(mE) is dense in (P("E) , Tw) (see [4]), it follows that B is ||

We now show that B is surjective. Let p' € Py (mE ) « We define T pt OB
P("E) as follows. If p e P(®E) , then p € Py (mE(U )) , for some U! . Hence,
p = Z (p , where ]@ | , <+ o « We define T r(p) Zn D (cpn) . Tp, is well
deflned on P("E) (see [8]), and we show that Tp,' is Tw—corrbirruous. In fact, we
show that ‘I‘pl is ported by zero. Hence, let U be an absolutely convex neigh-
bourhood of zero, and let C' , V and W be as in corollary 8. Then, if
p € P(mE) and ]pl <+ o, we know p may be represented in the form p = 2 (pﬁ ,

n
where l(Pnlw <+ @ e
Hence,
]T (P)| = IZ p ((pn)l < |p'| o n ICPnlw
Therefore

1T @) < Ip’lw0 m;(P) < lp'|w0 (€)™ ey (p) < lp'lwo(C')m ey (P)

Hence Tp' is ported by zero. Since ﬁTp, = p' , this complete the proof.



COROLLARY 10. = Let E be a fully nuclear space. Then
T - -
(PHY(mE) K] TO)B - (P(mE) ’ |w) °

Proof. - (PHY(mE) , TO) is a complete nmuclear space and hence, semi-reflexive
(see [3]). By proposition 9, (p("E") y Tw)' is isomorphic to PHY(m'E) «Let ¢
denote the topology on P(TE') induced by (PHY(mE) , TO) é . Then (P("E') , Tw)
and (P("E') , T,) have the same dual. Ty is bornological and hence Mackey. Since
o is semi-reflexive on PHY(mE) » Ty is barrelled and hence also Mackey. There-

fore, on P("E!) , completing the proof.

3 =T,
PROPOSITION 11. ~ Let E be fully nuclear. If T bounded subsets of P(mE)
are locally uniformly bounded, then (P("E) , Tu))é = (PHY(mE‘) s TO) .

Proof. = Let U an absolutely convex neighbourhood of zero in E and ¢ >0 be
given. We will show that there existe a T, bounded subset B of P(mE) such
0 ‘ 1
that B” < {p' ; p' e PHY(mE) s |p'l o0 < ¢} o« Let B={(p e P(mE) , ]p[U\<-€-) .
Then, if T e g° » |BT(p)| = [T (o) | I\<I€ , for all ¢ e 1° . Hence

B c(p'; p! e P, ("B) , lp‘lUO <e} e
Conversely, let B be a given bounded subset of ®™e) , q—w) . By assumption,
there exists an absolutely convex neighbourhood of zero U and o > O such that
Befps; peP(E), |pl|yj<a} +Llet C', W, UV be as in corollary 8, and let

y={p'; p' eP,("E), lp'luo < /()™ @)} . Then

' 1 m
lTpt(P)l £ lp'|wo TTW(P) < (C')m a (c) |P|U )

for all p € P("E) such that |p|U <+ o o Hence vy c B® and this completes the

pI’OOf.

4. Some examples.

Remark 12. - If E 1is a Fréchet nuclear space or a ®FN space, then o and Ty
bounded subsets of P(TE) are locally uniformly bounded (see [1]). In this case,
as T is bornological, we have that TO,b =T, where 0,b is the bornological
topology associated with To However, since a Fréchet nuclear space or a dual of
Fréchet nuclear space is a K-space, it follows from corollary 10 and proposition
11 that (P("E) s '1'0) is reflexive and hence ry =1  on p (") , whenever E is

a Fréchet nuclear or dual of Fréchet nuclear space.

Example 13+ - The space E = r{\l E x %\Y E is a fully nuclear space which is neji-
ther a FN or @FN space. Although T bounded subsets of P(mE) are not necessari-
ly locally uniformly bounded,

Therefore
(8 , 1)) = By (D) , 7o)

and (P ("E) , 7)) 1is reflexive. Note that ry# r  on p("E) , but
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() , 1) = @CB) , 1) ad CCE), 1)} = EyCH , 7)) -
Exémple 14, = Let E=0® . Then, E is a fully muclear space and
P("0) # PHY(m(D) white P(T0') = PHY(m@') , for m>1 . Also 7y =T, on p("0)
while rp .y =1, # 1o OB p(Tor) . 7o bounded subsets of P("0!') are locally
7o bounded subsets of P(™@) are not lofally unifor-
mly bounded. Otherwise, by corollary 10 and proposition 11, 4 would be reflexive

uniformly bounded. However,

and this would imply =19, on P(O') .
’
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