
Séminaire Paul Krée

PHILIPP J. BOLAND
Polynomials and multilinear forms on fully nuclear spaces
Séminaire Paul Krée, tome 4 (1977-1978), exp. no 2, p. 1-7
<http://www.numdam.org/item?id=SPK_1977-1978__4__A3_0>

© Séminaire Paul Krée
(Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L’accès aux archives de la collection « Séminaire Paul Krée » implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SPK_1977-1978__4__A3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


2-01

POLYNOMIALS AND MULTILINEAR FORMS ON FULLY NUCLEAR SPACES

Philipp J. BOLAND (*)

~

Séminaire Paul KREE
(Equations aux dérivées partielles
en dimension infinie)
4e année, 1977/78, n° 2, 7 p.

Abstract. - In this paper, we consider the spaces of continuous and hypo conti-
nuous n-linear forms and polynomials on fullv nuclear spaces. We consider these
spaces endowed with the topologies m (uniform convergence on compact sets) and
Tuj (Nachbin ported topology), and develop some duality relationships for these topo-
logies.

1. Preliminaries.

In this paper, E will represent a fully nuclear space, that is E and E’ are

complete reflexive nuclear spaces over the field of complex numbers. Any Fréchet

nuclear (FN) space or the strong dual of a Fréchet nuclear ((BFN) space is fully nu-

clear. are other examples of fully nuclear spaces.

L(mE) (respectively LHY(mE) ) is the space of continuous (hypo continuous, i. e.
continuous on compact sets) m-linear forms on E. LS(mE) is the subspace of

E(~) of synmetric m-linear forms. "0 is the topology of uniform convergence on

compact sets. p(~) (respectively PHY(~) ) is the space of continuous (hypo
continuous m-homogeneous polynomials on E. "0 is also defined on and

PHY(mE). "w is the topology on P(mE) defined by all semi-norms p ported by

compact subsets of E ( p is ported by K if, for all open U , where K cUe E ,
there exists Cu &#x3E; 0 such that p (f) ~ ~ for all f E p(~) ). "w is a

bomological topology on P (~) , and it may also be described as the topology de-

fined by all semi-norms on p(~) which are ported by zero [6].

If E is a K-space [10] (i. e. f: E........, X is continuous if f is conti-

nuous on the compact subsets of E), then = E(~) and = P (~) ..

Every metrizable or DFN space is a K-space.  x is not a K-space. The

following example shows that ()J ( (B = o(R) complexified) is not a K-space.

Example 1.. - P(2D) .
Proof. - Define p =? 1 (~n Ôo) õ , where § is the Dirac delta function at

’ w n a

a .. If K is compact in (jJ } there exists an m such that K C o (= complexifi-
cation of {qJ E (jJ : support q:&#x3E; 

C (- m , 11)} ).. Therefore PIK =03A3mn=1 (on 
which is continuous em K . Therefore p E PHy(26J) e However, one may show that p

is not bounded on any neighbourhood of zero, and hence ?( (&#x26;) (see [5J).

(tIf.) Texte regu en janvier 1979.
Philipp J. BOLAND. Department of Mathematics, University College Belfield,

DUBLIN 4 (Irlande)...
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Note that, from the above P( 9 a) ~ TO is not complete. We will now see that, if

E is fully nuclear, then To) is the completion of (?(~(E) ~ T

2. Density of continuous polynomials.

If U is an open absolutely convex set in E , then E(U) = (0)) , where

p 
u 

is the Minkowski functional of U . Similarly, if B is a closed absolutely
convex bounded set in E , then E(B) = Un nB and E(B) is a normed space with

unit ball B . We may identify (E(U))’ with E’(UO) , and E’ is a subspace
of (E(B;))~ (see [11J).

PROPOSITION 2. - Let E by nuclear. Then T~) = W~) ~)
and T-o) = (P(~) ~ To) ~ for all m (where F is the completion of F ).

Proof. - It suffices to show that 2(~E) is dense in Tr~) * Therefore,
let A E e &#x3E; 0 ~ and K absolutely convex and compact be given. We want
to find AI E E(~E) such that )~ -  e .

Without loss of generality, E(K) is Hilbert and therefore E’ --~ Et (K) has a

dense image as E is reflexive. Now, there exists an absolutely convex compact set

K1 containing K such that E(K) - E(Kl) is nuclear. Hence, there exist

(E(K) )’ and (y~) c; K1 such that, for all x E E(K) ,

Now, A is continuous on K 1 (i. e, on mK ~ 1 ~ and hence, for ... , x m E K ,

As I 
n L p (y ) = C  + ~ , it follows that there exists a finite set F of

indice s such that

Since E~ is dense in E~ (K) ~ we can find continuous linear e E~

such that 
i

and therefore

Hence 11:. - ~ Wn L  e , and therefore (the spaQe of continuous
m-linear forms of finite on E ) is dense in (LHY(mE) , 0) .
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Similarly, it follows that P~(~E) (and hence P(%) ) is dense in

(P~) . "0) .
COROLLARY 3. - Let U be a balanced open set in the fully nuclear space E.

Then, H(U) is dense in "0) (where H(U) and are respectively

the holomorphic and hypo analytic functions on U ).

Proof. - This follows from proposition 2 and the Taylor series expansion of

elements of 

Remark 4. - If E is a fully nuclear space with an absolute basis, then it is

considerably easier to prove proposition 2 (see [4J).

3. Duality for spaces oi polynomi al s 
There is a natural algebraic isomorphism between (P(mE) , 0) t and 

when E is a fully nuclear space. The isomorphism is via the mapping

where 3T(cp) = (see [2]). Note that, because of proposition 2,

To)’ I and P(~E~) are also isomorphic.

We will now show that, when E is fi3lly nuclear, then (P(~E) ~ r )~ ~ 
Initially, however we need some definitions and a lemma.

Definition 5. - Let U be an absolutely convex neighbourhood of zero in E . Then

Similarly, we define

where each cp E (E(U))’ and  + 

We define the norm rrU on by = inf{03A3n |03C6mn|U ; P = § 
Note that, if p E P(~) and A is the symmetric m-linear form E 

corresponding to p ~ then 
’
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where (a is the symmetrization of an ... ¿n P 1 m 
is the

n n n n 

( 8n...~ ) S
polynomial corresponding to (al .... am) S ). Moreover, we see that

__m 
n is -

See [8]~

Definition 6. - If B is an absolutely convex set in the fully nuclear space E ,
we define Eg on ~(~E(U)) by

Note that, as E is reflexive, = 1t..IB . Similarly, we mat define Eg 01~

PN(mE(U)). Note that 03A3B may be infinite.

Now, we know that, if E is fully nuclear and U is an absolutely convex neigh-

bourhood of zero in E , then there exists an absolutely convex neighbourhood V

of zero such that V c U , E(V) 2014~ E(U) is nuclear and 1~ e S~(~E(V)) ~ whenever
A ~ E(~E(U)) . See [2].

LEMMA 7. - Let U be an absolutely convex neighbourhood of zero in the fully nu-

clear space E . Then~ there exists C &#x3E; 0 and absolutely convex neighbourhoods of

zero W ~ V , where W c: V c U such that~ if A e and  + then

A ~ N(mE(W)) and em = for all m  1 .

Proof. - We prove this only for the case m = 2 . As E is fully nuclear, we may

assume that E(U) is pre-hilbert. we can find absolutely convex pre-hilbertian

neighbourhoods of zero W and V such that W c: V c: U and 
.

Hence, there exist (Vn) c (E’(V0))’ = E(V) and 03C8n&#x3E; s Et ( W- ) such that, for

E E~ (V~) 
~ 

and

Without loss of generality, we may assume 

Now, if A e 9(~E) and  + co , we know that A E E~(~(v)) and hence

A~ E.-(~E(W)) . Therefore, there exists an a E (E~j( E(w)) ~ such that

(A , a) and 11’, a)1 ~ Ti~(~’) , for all A’ E ~(2E(W» . In parti-

cular, E E~(V~) , then , CP2 E 2(~E(ll~) and

Since E(W) 2014~ E(V) is dual nuclear,
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Now, as A ~ LN (2E(V)) , A may be represented in the form

Therefore

COROLLARY 8 . - Let U be an absolutely convex neighbourhood of zero in the fully
nuclear space -E . Then~ there exist C’ &#x3E;0 and absolutely convex neighbourhoods
of zero W and V , where such that, if p and |p|U  + ~ ,
then p and

Proofs - Let p be given, and let A be the symmetric m-linear form corres-

ponding to p . Let C, W, V be as in lemma 7. Then, A E LN(mE(W)) and
m m m P

Hence, by choosing

PROPOSITION 9. - Let E be a fully nuclear space. Then, (P(mE) ~ 

Proof. - We define t3 : (P(~E) , ~ )~ 2014~ j3T (~) = 
T ~ (P(mE) , 03C9)’ and 03C6 ~ E’ * It is clear that g is well defined, and more-

over as is dense in (P(mE) 9 r~) (see (4~)~ it follows that p is [-"[ *

We now show that 03B2 is surjective. Let p’ ~ We define T , on

P (~) as follows. If p e P(~E) ~ then p e P~(~E(U’)) ~ for some U’ . Hence,

p - n (p~ ~ where )~tu’  + ~ " ~ define Tp~ (p) = n p’ (cp~) . T , is well

defined on (see [8]), and we show that Tp’ is 03C9-continuous. In fact, we
show that Tp’ is ported by zero. Hence, let U be an absolutely convex neigh-
bourhood of zero, and let V and W be as in corollary 8. Then, if

p e and + 03 , we know p may be represented in the form p == n 
where 03A3n|03C6mn|W  + co .

Hence,

Therefore

Hence T f is ported by zero. Since p’ ~ this complete the proof.p p
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COROLLARY 10 . - Let E be a fully nuclear space. Then

proof. - is a complete nuclear space and hence~ semi-reflexive

(see [3]). By proposition 9, (P(~E’) ~ T )’ is isomorphic to Let ~8
denote the topology on P(~E’) induced by ~8 ’ Then (P(~) ~ T~)
and (P(mE’) , 03B2) have the same dual. T is bornological and hence Mackey. Since

’f0 is semi-reflexive on T~ is barrelled and hence also Mackey. There-

fore, ’f i3 
= 

T on completing the proof.

PROPOSITION 11. - Let E be fully nuclear. If r bounded subsets of P(mE)
are locally uniformly bounded, then (P(~E) ~ ’fw) S = 
Proof. - Let U an absolutely convex neighbourhood of zero in E and e &#x3E; 0 be

given. We will show that there existe a r bounded subset B of such

that 1:! c ~p’ o p’ ~ {?’) Q Let B = £p~ e P(~) , 
Then, if T E B~ , ( = ~T(~ )I ~ e , for all ~ E U . Hence 

Conversely, let B be a given bounded subset of (P(mE) , T ) . By assumption,
there exists an absolutely convex neighbourhood of zero U and a &#x3E; 0 such that

P ~P(~E) ~ W~ V be as in corollary 8, and let

y = tP’ ? P’ tP’! a) i . i Then 
, m , ,

for all such that  + co . Hence y c B and this completes the

proof.

4. Some examples.
Remark 12. - If E i s a Fréchet nuclear sp ace o r a SFN space, then TC and r

bounded subsets of P(mE) are locally uniformly bounded (see [1]). In this case,
as T is bornological, we have that Tr~ -~ = "w ’ where is the bornological

topology associated with T . However, since a Frechet nuclear space or a dual of

Frechet nuclear space is a K-space, it follows from corollary 10 and proposition
11 that (P(mE) , T ) 0 is reflexive and hence 0 = 03C9 on P(mE) , whenever E is

a Frechet nuclear or dual of Frechet nuclear space.

Example 13. - The space is a fully nuclear space which is nei-

ther a FN or QFN space. Although "0 bounded subsets of P(~!) are not necessari-

ly locally uniformly bounded.

Therefore

and To) is reflexive. Note that T on P(~E) ~ but
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(P (~E) ~ ~P W) . TW~ and ~P UE) ~ T~~ ~ _ ~PHY ~~~ To) .
Example 14. - Let E = D . Then, E is a fully nuclear space and

p (mGJ) ~ PHY(mD) while P(mD’) = PHY(mD’) , for m &#x3E; 1 . Also 0 
= 

03C9 on 

while 03C9 ~ Tp on P (mp’ ) . 0 bounded sub set s o f P (m6J’ ) are lo cally

uniformly bounded. However, 0 bounded subsets of P(mD) axe not locally unifor-

bounded. Otherwise~ by corollary 10 and proposition 11~ ;~ would be reflexive

and this would imply T~ = °n P~ m ~t~ ’
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