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REFLECTIONS ON FORMALISM AND REDUCTIONISM IN LOGIC 
AND 

COMPUTER SCIENCE 

Giuseppe Longo 

Many logicians have now turned into applied mathematicians, whose role 
in Computer Science is increasingly acknowledged even in industrial 
environments. This fact is gradually changing our understanding of 
Mathematical Logic as well as its perspectives. In this note, I will try to 
sketch some philosophical consequences of this cultural and "sociological" 
change, largely influenced by Computer Science, by a critique of the role of 
formalism and reductionism in Logic and Computing. 

In mathematics, we are mostly used to a dry and schematic style of 
presentation: numbered definitions and theorems scan the argument. This 
may add effectiveness and clarity, though nuances may be lost: the little 
space allowed here requires to stress effectiveness. 

Themes - Three main aspects relating Computer Science and the logical 
foundation of mathematics will be mentioned below, namely 

1. the growth of a pragmatic attitude in Logic 
2. revitalization and limits of formalism and constructivism 
3. the role of space and images. 

1. Pragmatism in Logic 

1.1 Tool vs. foundation. In Computer Science, Mathematical Logic is no 
longer viewed as a foundation, but as a tool. There is little interest in setting 
on firm grounds Cobol or Fortran, say, similarly as Logic aimed at founding 
Number Theory or Analysis by, possibly complete, axiomatic systems. The 
actual work is the invention of new programming languages and styles, or 
algorithms and architectures, by using tools borrowed from Mathematical 
Logic This also may originate in attempts to base on clear grounds known 
constructs, but the ultimate result is usually a novel proposal for computing. 
Functional and Logic Programming are typical examples for this. 

This "engineers approach" in applied Logic is helping to change the 
philosophical perspective in pure Logic, as well. 

1.2 An analogy: the completeness of mechanical systems. The interests in 
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the foundation of mathematics, in this century, have been a complex blend 
of technical insights and philosophical views. We must acknowledge first 
that philosophical a priori, in Logic, may have had a stimulating role, in 
some cases. Yet ideologies and the blindness of many attitudes have been a 
major limitation for knowledge, an unusual phenomenon in scientific 
research. They have been the source of 

- wrong conjectures (completeness, decidability, provability of 
consistency) 

- false proofs, by topmost mathematicians (just to mention the main 
cases: an inductive proof of the consistency of Arithmetic, by Hilbert, refuted 
by Poincaré in 1904-05; a second attempt, based on a distinction of various 
levels of induction, debated by Hermann Weyl in the twenties). 

The wrong directions taken by the prevailing formalist school may be 
understood as a continuation of a long lasting attitude in science and 
philosophy. On the shoulders of last centuries1 giants, Newton and Laplace, 
typically, the positivist perspective believed in perfect and complete 
descriptions of the world by classical mechanics, namely by sufficiently 
expressive systems of partial differential equations. Similarly, in Logic, 
adequate axiomatic systems were supposed to describe completely Analysis 
or the whole of mathematics. Two levels of descriptions, both exhaustive, 
or complete in the sense of Logic: one of the world by mathematical 
equations, the other of mathematics by (finitely many) axioms. 

Still, this posivistic vision, in Logic, was not compelled by the times. 
Hermann Weyl conjectured the incompleteness of number theory and the 
independence of the axiom of choice in "Das Kontinuum", in 1918. Poincaré 
rejected purely logical or linguistic descriptions as the only source for 
mathematics and stressed the role of geometric insight. As I will try to hint 
below, Poincaré's distinction between analytic work and the intuition of 
space as well as his approach to the foundation of mathematical knowledge 
may be today at the base of a renewed foundational work, similarly as his 
work on the three body problem is at the origin of contemporary mechanics 
(Lighthill[1986]). 

1.3 Foundation of mathematical knowledge. Another mathematician 
should be quoted among those who did not except the reductionist and 
formalist attitudes, in the first part of this century: Federico Enriquez. Also 
in Enriquez's philosophical writings, the interest in the interconnections of 
knowledge and in its historical dynamics suggested more open philosophical 
perspectives. It may be fair to say that Poincaré, Weyl and Enriquez were 
interested in the foundation of mathematical knowledge more than in the 
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technical foundation of mathematics. 
The difference should be clear: by the first I mean the epistemology of 

mathematics and the understanding of it "as integral part of the human 
endeavor toward knowledge" (to put it in Weyl's words). Not a separated 
transcendence, isolated in a vacuum, but an abstraction emerging from our 
concrete experience of the real world of relations, symmetries, space and 
time (Poincar£[1902,1905], Enriquez [1909], Weyl[1918,1952]). 

In contrast to this broad attitude, the purely technical, internal 
foundation, as pursued by formalistic and reductive programs in their 
various forms, somewhat reminds of a drawing of a book on a table and of 
the belief that the table really supports the book, while they are designed by 
us by the same technique and the same tools. This cognitive circularity is at 
the source of the negative results in Logic 

1.4 The unity of formal systems. The first step towards a more open attitude 
comes with the need for a variety of systems and the understanding of their 
interconnections. The laic attitude inspired by applications and the 
suggestions coming from geometric intuitions are at the origin of recent 
inventions of new systems of Logic, where unity is given not by a global, 
metaphysical, system, but by the possibility of moving from a system to 
another, by changes in the basic rules and by translations or connecting 
results. Indeed, Girard's focus on the structural rules in Girard[1987] and his 
seminal work in Girard[1992] are largely indebted to a pragmatic attitude that 
views Logic as part of (applied) mathematics, with no special "meta-status." 
In this perspective, geometric structures and applications suggest formal 
systems, guide toward relevant changes, propose comparisons, in the 
common mathematical style where connections and bridges preclude 
ideological closures within one specific frame. In this sense, its unity is a 
deep mathematical fact, as much as Klein's unified understanding of 
Geometry. 

2. Formalism and Constructivism in Computer Science (and their limits). 

2.1 Linguistic notations. The volume in Combinatory Logic by Curry and 
Feys contains many pages on the renaming of bound variables and related 
matters (in set-theoretic terms, {x I P(x)} is the same as {y I P(y)}). I believe 
that the foundational relevance of these pages, if any, may be summarized in 
about three lines. The formalist treatment is a typical example of purely 
symbolic manipulation, where meaning and structures are lost (see Curry .s 
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book on a formalist foundation of mathematics for an extremist's view in 
that direction). This opinion is shared by all working mathematicians who 
simply ignored the discussion and explain the problem to students in twenty 
seconds, on the blackboard. Still, it happened that variable binding is a 
crucial issue in computer programming. Thus, the discussion in Curry et al. 
has been largely and duly developed in functional programming and it is at 
the core of detailed treatments in implementations. 

This example is just a small, but typical one, of the revitalization of 
formalism and constructivism due to Computer Science. It happens that 
computers proceed as our founding fathers of Logic described the parody of 
mathematics: linguistic definitions and formal deductions, with no meaning 
as a guidance. Meaningless, but effective constructions of programs, more 
than unifying insights and concepts. Mathematical invariants are lost, but 
denotations are very precise. This requires technically difficult insights into 
pure calculi of symbols and, sometimes, brand new mathematics. However, 
the branching of methods and results, due to translations and meaning, 
which are at the core of knowledge, may be lost within extremely hard, but 
closed, games of symbols. This is part of everyday's experience on the 
hacker's side even in theory of computing. 

2.2 Denotational semantics. Fortunately, though, even programming has 
been affected by meaning. In the last twenty and odd years, various 
approaches to the semantics of programming languages embedded 
programming into the broader universe of mathematics. Here is the main 
merit of the Scott-Strachey approach, as well as of the algebraic or other 
proposals, most of which are unifiable in the elegant frame of Category 
Theory (this is partly summarized in Asperti&Longo[1991]). In some cases, 
the meaning of formal systems for computing, over geometric or algebraic 
structures, suggested variants or extensions of existing languages. More 
often, obscure syntactic constructs, evident at most to the authors, have been 
clarified and, possibly, modified. As a matter of fact, in the last decade, 
computer manuals have slowly begun to be readable, as they are moving 
towards a more mathematical style, that is towards rigor, generality and 
meaning at once. We are not there yet, as most hackers think in terms of 
pure symbol pushing and are supported in this attitude by the formalist 
tradition in Logic. Many still do not appreciate from mathematics that the 
understanding and, thus, the design of a strictly constructive, but 
complicated system may also derive from highly non constructive, but 
conceptually simple, intellectual experiences. 
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2.3 Resources and memory. Brouwer, the founding father of intuitionism, 
explicitly considers human memory as "perfect and unlimited," for the 
purposes of his foundational proposal (Troelstra[1990]). This is implicitly at 
the base of the formalist approach as well. Indeed, computer memories are 
perfect and, by a faithful abstraction, unlimited. This has nothing to do with 
human memory, and mathematics is done by humans. One component of 
mathematical abstraction, as emerging from our "endeavour towards 
knowledge," may precisely derive from the need to organize language and 
space in least forms, for the purposes of memory saving. A "principle of 
minima" may partly guide our high level organization of concepts, 
Sambin[1990]. Moreover, imperfection of storage is an essential part of 
approximate recognition, of analogy building. 

For the aim of founding mathematical knowledge, we need exactly to 
understand the emergence of abstraction, the formation of conceptual 
bridges, of methodological contaminations between different areas of 
mathematical thinking. There may be a need for psychology and 
neurophysiology in this approach. Good: the three mathematicians quoted 
in 1.3 have been often accused of "psychologism", of "wavering between 
different approaches", in their foundational remarks. The proposed "one­
way" alternatives lead to the deadlock where formalism and reductionism 
brought us in understanding mathematics (and the world). Moreover, so 
much happened in this century in other areas of knowledge, that we should 
start to take them into account. 

2.4 Top down vs. bottom-up. There is no doubt that formalism and 
reductionism have been at the base of Computer Science as it is today and of 
its amazing progress. In particular, top-down deductions and constructive 
procedures set the basis for the Turing and Von Neuman machines as well 
as for all currently designed languages, algorithms and architectures. Yet, 
there is a growing need to go beyond top-down descriptions of the world, 
even in Computer Science. The recent failures of strong Artificial 
Intelligence are the analogue of incompleteness and independence results in 
Logic: most phenomena in perception and reasoning escape the stepwise-
deductive approach. Partly as a consequence of these failures, there is an 
increasing interest in bottom-up approaches. Relevant mathematics is being 
developed in the study of the way images, for example, organize space by 
singularities, or how the continuum becomes discrete and reassembles itself, 
in vision or general perception, in a way which leads from quantitative 
perception to qualitative understanding, Petitot[1992J. 
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3. Space and Images 

3.1 Denotations and Geometry. In the practice of mathematics, formal 
notations and meaning are hardly distinguished. Indeed, one may even 
have symbolic representations where, besides the geometric meaning, there 
exists a further connection to Geometry, at the notational level. Relevant 
examples of this are given by Feyman's and Penrose's calculi or by Girard's 
proof nets. 

In Feyman's calculus, planar combinations of geometric figures allows 
computations representing subatomic phenomena. Penrose's extends 
familiar tensorial calculi over many dimensional vector spaces in a very 
powerful way: bidimensional connections between indexes explicitly use 
properties of the plane to develop computations. A more recent example 
may be found in Girard's Linear Logic. In this system, formal deductions are 
developed by drawing planar links between formulae in a proof tree. Proofs 
(and cuts) are carried on by an explicit use of the geometric representation, by 
modifying the links. As the proof-theoretic calculus is essentially complex, 
according to recent complexity results, the use of the geometric 
representations comes in as an essential tool for the formal computation. 

In a sense, all these calculi derive from (physical) space or Geometry and, 
after an algebraic or syntactic description, end up in geometric 
representations, possibly unrelated to the original one. As a matter of fact, 
even Linear Logic originated in Geometry, as it was suggested by the 
distributive or linear maps over coherent spaces (Girard[1987]), and ends up 
into a Geometry of proofs. 

3.2 Geometric insight. I would like to mention here the possible relations of 
the novel mathematical approaches to vision mentioned in 2.4, and similar 
ones in other forms of perception, to the wise blend of linguistic, or analytic, 
and geometric experiences required by the practice and the foundation of 
mathematics. 

It should be clear that, in mathematics, synthetic explanations may 
provide an understanding and a foundation as relevant as stepwise 
reductionist descriptions. The drawing on a blackboard may give as much 
certainty as the search for least axioms for predicative Analysis. The point 
now is to understand what is behind the drawing, which intellectual 
experiences give to it so much expressiveness and certainty. The point is to 
turn this practice of human communication, by vision and geometric 
insight, into a fully or better understood part of knowledge. This is where 
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our endeavor towards general knowledge cannot be separated from the 
foundation of mathematics. Mathematics is just a topmost human 
experience in language and space perception, unique as for generality and 
objectivity, but part of our relation to the world. 

A few examples may be borrowed from neurophysiology (see 
Ninio[1991], Maffei[1992]). It seems that only human beings perform 
interpolations (vertices of a triangle or of a square seen as complete figures, 
sets of stars as a constellation... ). Apparently this is done by minimal lines 
which complete incomplete images. We seem to interpolate by splines, 
when needed. More: there are neurons which recognise (send an impulse) 
only in presence of certain angles, or others which react only to horizontal or 
vertical lines. This is recomposed in intellectual constructions which are at 
the base of our everyday vision and of the so called optic illusions (which are 
just attempted reconstructions of images). And, why not, at the base of our 
geometric generalizations. 

But how? How can we make this "composition of basic mental images" 
as part of a new foundation of mathematical knowledge, in the same way as 
formal, linguistic axioms, have been describing part of the analytic 
developments in mathematics? 

I can only mention the problem, for the time being, and stress what is 
really missing, the possible source of incompleteness: the lack of Geometry 
and images in foundational studies. A modern rediscovery of these aspects 
may be at the core of an understanding of image recognition which goes 
together with an appreciation of geometric abstraction in mathematics. 

In a sense we should enrich the insufficient attempts to deduce all of 
mathematics by linguistic axioms, by adding, at least, the knowledge we have 
today of space perception and of the process of image formation. This may 
help to focus the way in which mathematics emerges, surely by 
compositions of elementary components (the lines and triangles I 
mentioned before), but also by "synthesis" and reorganization of space, as 
mentioned in 2.4. In this, a renewed Artificial Intelligence, far away from 
the prevailing formalist one, may be a novel contribution of Computer 
Science to the foundation of mathematical knowledge, and conversely. The 
difficult point is to be able to move, in foundational studies and everyday's 
work, from local, quantitative and analytic approaches to global, qualitative 
and geometric perspectives and still preserve the crucial (informal) rigor of 
mathematics. 

3.3 The continuum and minima: more about reductionism. In "Das 
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Kontinuum" Weyl[1918], Hermann Weyl raises the issue of the continuum 
of Analysis vs. the continuum of time. The understanding of the latter is 
based on the simultaneous perception of past, present and future. In this 
irreducible phenomenological intuition of time it is not possible to isolate 
the temporal point, in contrast to the analytic description where this can be 
done by reduction to linguistic abstractions, that is to symbols and (derivable) 
properties. Weyl, a mathematician working also in relativity theory, 
expresses his unsatisfaction and raises a major point for mathematical 
knowledge: the convenient analytic unity of space and time does not 
correspond to our fundamental experience (see also Petitot[1992]). This 
problem has not been sufficiently studied since then, as we were mostly 
concerned by formalist reductions and the search for complete and (self-
)consistent Set Theories, as a basis for Analysis. These formal theories have 
not been able to tell us anything even about the cardinality of an arbitrary set 
of reals (independence of the Continuum Hypothesis), let alone the 
profound mismatch between time and the analytic description of space, as 
given by the real line. 

This need of ours to "fill up the gaps", possibly by continuity, may 
probably go together with the principles of minima, mentioned in 2.3 and 3.2 
as a possible description of some aspects of abstraction (memory 
optimization and the formation of images, respectively). These principles 
are usually very complex in mathematics and, when referring to them, we 
depart from reductionism. Yet another relevant mathematical experience 
then, to be added to the continuum of time, which seems to escape 
reductionism. Reductions are surely a relevant part of scientific 
explanations, however they are far from proposing complete methodologies 
or providing the only possible foundation of knowledge. 

In conclusion, we need to focus on alternative approaches to formalism 
and reductionism both in applied as well as in theoretical approaches to 
cognition. In 2.4 and 3.2, the role is mentioned of current inverse paradigms 
with respect to the prevailing top-down, deductive formalizations: bottom-
up descriptions, for example, which may give a complementary account of 
perception and conceptual abstraction. What really matters now is to extend, 
not to keep reducing our tools. Our rational paradigms must be made to 
comprehend the mathematical, indeed human, intuition of space and time. 
In other words, we need to lower the amount of magic and mystery in these 
forms of intuition, and bring them into the light of an expanded rationality. 
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