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DESCARTES, EULER, POINCARÉ, 

PÓLYA—AND POLYHEDRA

by  Peter H i l t o n  and Jean P e d e r s e n

1. I n t r o d u c t i o n

When geometers talk of polyhedra, they restrict themselves to configurations, 

made up of vertices. edqes and faces, embedded in three-dimensional Euclidean 

space. Indeed. their polyhedra are always homeomorphic to thè two- 

dimensional sphere S 1. Here we adopt thè topologists* terminology, wherein 

dimension is a topological invariant, intrinsic to thè configuration. and not a 

property of thè ambient space in which thè configuration is located. Thus S 2 is 

thè surface of thè 3-dimensional ball; and so we find. among thè geometers' 

polyhedra. thè five Platonic “solids”, together with many other examples. 

However. we should emphasize that we do not here think of a Platonic “solid” as 

a solid : we have in mind thè bounding surface of thè solid. not thè interior. It 

seems to us that geometers are sometimes able to be cavalier about this 

distinction iso that, for them. a polygon may be thè closed polygonal path or thè 

homeomorph of a disk), but we will need, in what follows, to be precise about 

meanings.

In this article we retrace an interesting historical path in thè study of 

polyhedra and even carrv thè story further ourselves—though with modest 

expectations! We begin with a result due to Descartes (1596-1650). Let us 

consider a convex polyhedron P, homeomorphic to S2. Euclid proved that thè 

sum of thè face angles at any vertex P is less than 2n; thè difTerence between this 

sum and 2rc is called thè angular defeci at that vertex. If we sum thè angular 

defects over all thè vertices of P we obtain thè total angular defect A : Descartes 

proved. using methods of spherical trigonometry, that A = 4n for every convex 

polyhedron P. Thus in Figure 1 (b) there are 8 identical vertices on thè cube and

thè angular defect at every vertex is so that thè total angular defect A is 4tt.

Notice that thè polyhedra shown in Figure 2 are not homeomorphic to S 2 and 

they fail to satisfy thè formula.
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(b)

F igure I (c)

(b)

F igure 2

Pólya gave an argument in a lecture at Stanford University on March 6.1974 

(see [ 1 ]) to deduce Descartes’ theorem, using thè fact that thè Euler characteristic 

of any polyhedron homeomorphic to S 2 is 2. Here thè Euler characteristic x (P) >s 

given by thè formula

X(P) = V -  E + F ,  (11)

where V is thè number of vertices of P, £  is thè number of edges of P, and F is thè 

number of faces of P. Thus Pólya's proof (which appears in slightly modified 

form in [ 2]) shows that A =  2nx  and hence A =  4n since x (P) ~  -  w^en P is 

homeomorphic to S 2.

(a)
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However Pólya's proof rcally demonstrates a much more generai fact; 

namely that

A = 2*x (12)

for any 2-dimensional polyhedral manifold l ). Thus if S is any rectilinear 

surface. subdivided into vertices. edges and faces in such a way that every edge is 

incident with exactly two faces, then formula (1.2) holds for S. Of course, we have 

to interpret A somewhat more generally in thè sense that, since we no longer 

require convexity, we must allow thè angular defect at any vertex to be negative.

Let us now take S to be any closed surface, orientable or not. Then we may 

find a homeomorphic rectilinear model T  of S, and we may compute A ( T), x ( T). 

Since we know that x(T') *s a topological invanant of S—a result due to 

Poincaré—it follows that A ( T), too. is a topological invanant of S, a result which 

is surelv rather surprising.

In thè next section we give. in its more generai setting, Pólya’s proof of thè 

relation ( 1.2), and point to thè topological significance of thè result. In Section 3 

we consider analogous formulae for A (P), where P is a polyhedron of dimension 

greater than 2. Now Schlàfli [9] generalized Euler’s formula to spheres of higher 

dimension. He succeeded in demonstrating that if P is a polyhedral subdivision 

of thè n-dimensional sphere Sn and if /V, is thè number of i-dimensional cells in thè 

subdivision. then

X (P) = 2 if n is even.

(1.3)
X (P) = 0 if n is o d d ,

w h ere

x (P i = ì  ( - n \ v , ,  (i.4)
i = 0

We cali this alternating sum (1.4) thè Euler-Poincaré characteristic of P and 

note that it may be defined for any polyhedron P, of any dimension. Poincaré

[10] proved that x(P) is a topological invanant. This means that if X  is any 

geometrie configuration embedded in some Euclidean space (of arbitrar)- 

dimensioni and if P, Q are any two polyhedra, subdivided into cells of dimension

0. 1.2..... n (vertices, edges, faces,...), such that P  and Q are each homeomorphic

to À\ then x (P) = X (0 -  This result is one of thè great triumphs of homology

1 ) Here. of course. we use thè term “polyhedron" in thè more generai sense favored by 
topologists. Thus a polyhedron. in this broader sense. certainly need not be 2-dimensional : 
and an n-dimensional polyhedron need not be homeomorphic to an n-dimensional sphere.



- l i  -

theory [12, p. 167]. For there are naturai numbers p0, p „  p„ measurìng thè

number of “holes” in X  of dimensions 0, 1..... n, and one may show that, for any

polyhedron P homeomorphic to X.

K - D ' N ,  = I ( - l ) ‘p,. (1.5)

The numbers p0» Pi..... P« are called thè Betti numbers of X ; they are thè

dimensions of thè homology groups of X in dimensions 0, 1,..., n. For an 

n-dimensional sphere S", we have

Po (S") =  pn (S-) =  1, ^  (S") = 0, i #  0, n ; (1.6)

thus (1.5) and (1.6) explain Schlàfli's result (1.3).

For any polyhedron P, we may continue to define thè total angular defect 

A (P ) exactly as in thè two-dimensional case. However, A (P) obviously depends 

only on thè two-dimensional structure of P—its vertices, edges and faces—so 

that we cannot expect. for higher-dimensional polyhedra. either that A ( P) will be 

an invariant or that it will be related to thè Euler-Poincaré characteristic. 

However, we may stili attempt to generalize Póly?‘s argument and thus to 

express A (P) as a function of V, E and F(or. in our present notation. S 0, and 

N 2).

We prove in Section 3 that. indeed, A (P) may be expressed in terms of 

S 0, ;V,, ,V2, provided only that thè cellular structure on P has thè property that 

there exists an integer q such that every edge of P is incident with exactly q faces. 

We give three examples of standard cellular subdjvisions of S" with this property. 

Reverting to thè language of geometers (as exemplified by Coxeter [3]), such 

structures on S" are called polytopes, and thè three polytopes considered are 

called, in [3], respectivelv simplexes, cross polytopes. and parallelotopes—and 

will be so referred to by us. The numbers q in these cases are. respectively 

n, 2n — 2. n. We compute A in these three cases. We remarle that thè fact that A 

is, in these cases, a function of N 0, N ly and N 2 shows that it is a combinatoria!, 

rather than a geometrie, invariant ; that is, we may pulì and push thè n-sphere 

around. squeeze it, squash it, elongate it, stretch it, without altering A. Once 

again our intuition may be at fault!

We dose this article with a brief resumé of thè history of thè question. In this 

resumé, as in thè article itself, we do not take account of another direction in 

which it may be said that formula (1.2) has been generalized—in thè direction of 

differential geometry. For formula (1.2) contains thè seeds of thè celebrated
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Gauss Bonnet formula for smooth manifolds; an exccllent account of thè 

development in this direction is to be found in thè article by Chem  ([13]; see 

especially formula (4) on p. 343).

2. P ó l y a ’s p r o o f  o f  D e s c a r t e s ’ t h e o r e m

We start from thè position that Euler’s formula for a polyhedral 2-sphere S 2 is 

known ; that is to say, if P is a polyhedron homeomorphic to S 2 with V vertices, E 

edges and F faces. then

V -  E +  F =  2 .  (2.1)

In Figure 1 (a), for example, V =  4, £  = 6, F =  4. Thus 4 — 6 +  4 =  2. 

verifying (2.1). Euler s formula is discussed in many elementary books on 

polyhedra and many proofs have been given. The book by Courant and Robbins, 

IVhat is Staihematics? [4] contains a proof using networks. Pólya's book. 

Maihematics and Plausible Reasoning, Voi. I, [1], has a sequence of problems 

that leads thè reader to a proof. Lakatos' Proofs and Refutations [8] is cleverly 

wntten in thè format of a dialogue between a mathematics teacher and his 

extremely bright students (who continually find counterexamples to thè 

proposed theorems). The “generai” proof must be attributed to Poincaré [ 1 0 ]  

who. as explained in thè Introduction, proved that thè generalized Euler- 

Poincaré characteristic is a topological invariant which takes thè value 2 on any 

even-dimensional sphere.

We now show how Pólva deduced Descartes theorem from (2.1); this 

argument is essentiallv that given in [2].

Let P be a polyhedron homeomorphic to 5*, subdivided into vertices. edges 

and faces in such a wav that every edge is incident with exactly two faces.

Number thè vertices 1, 2.....V and let thè sum of thè piane face angles at thè i-th

vertex be a,. Then thè angular defect at thè i-th vertex is

5j =  2n -  o , .

Note that ò, will be positive if P is convex, but that, in generai, may be negative 

or zero. Let

A =  £  5,-. 
i = 1

We want to show that A =  4n.



Proceed by numbering thc faccs 1, 2..... F and let Sj bc thè number of sides ')

of thè y-th face. Thcn

(St —2) it + (S2 —2) n + (S3 —2) « + ... + (SF- 2) it

=  V (2n) -  £  6, =  V{2 n) -  A . 
i = 1

Rearranging thè terms on thè left yields

k ^  f  S j)  -  2nF  =  2nV  -  A . (2.2)

Now, since thè total number of sides of thè faces which make up thè polyhedron
F

P is twice thè number of edges, £, on P, we have S; =  2£, so that

jc(2£) -  2nF = 2k V -  A

or

A = 2nV — 2 n£  +  2rc£

= 2^ ( K - £  + £)

But, by Euler's formula (2.1), V — E +  F =  2. Thus

A = 2ji ( 2) = 4ti .

O ur first observation is that Pólya s argument immediately generalizes to 

arbitrary 2-dimensional polyhedra (in thè topologists' sense!). Thus let P be any 

2-dimensional polyhedron, subdivided into vertices. edges and faces in such a 

way that every edge is incident with exactly two faces. Define thè Euler 

characteristic,

X (P) =  V -  E +  F .  (2.3)

where P has V vertices, £  edges and F faces. Define thè total angular defect A as 

above: that is

A =  I  5 ,.
1 = 1

') It is very important to thc understanding of this proof to distinguish between thc 
meaning of a side and an edge. If a line segment joining two vertices is considered in relation 
to a face, to whose boundary it belongs, it is called a side of that face; if it is considered io 
relation to thè whole polyhedron (forming thè common boundary of two neighbonng 
faces) it is called an edge of that polyhedron. Thus we see that we may think of thè 
polyhedron as being formed by taking thè individuai faces and joining thè sides of thè faces 
to each other in pairs so that each pair then becomes a single edge of thè polyhedroo.

-  b -
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where 5j is thè sum of thè piane face angles at thè i-th vertex and =  2n — a,. 

Then Pólya's argument immcdiatcly yields thè theorem

T heorem 1. A ( P )  =  2nx{P).

A polyhedron P of thè type discussed in this theorem is described in thè 

literature of topology as a two-dimensional pseudomanifold. Included in this 

category is thè family of closed surfaces. If 5 is such a surface we may take a 

rectilinear model of 5, that is, a polyhedron P, homeomorphic to 5, and 

subdivided into vertices, edges and faces as above. Closed surfaces are either 

orientable or non*orientable. An orìentable closed surface of genus g (g ^O )  may 

be thought of as formed by attaching g handles to a sphere S 2. Thus if g =  0 we 

have thè sphere ; if g =  1 wehave thè torus ;if<j =  2 wehave thè doublé torus... 

In generai, for an orìentable surface 5 of genus g.

Observe that x = 2 for all of thè models displayed in Figure 1. When thè 

manifold is homeomorphic with a torus x =  0. Figure 2 (a) serves to illustrate 

this example of Theorem 1. Notice that thè figure has 14 vertices. 29 edges and 15 

faces (2 triangles and 13 quadrìlaterals). The computation for thè sum of thè 

angular deficiencies produced at all of thè 14 vertices may be verifted to be 2n%. 

This computation may be displayed. instructively, as follows:

A = 14 (2rr) -  {2 (3 —2) jc +  1 3 (4 -2 )* }

= I4(2rc) -  29 (2n) +  15 (2n)

V E F 
= 2 ^ (1 4 -2 9 + 1 5 )

= 0 .

x (S) = 2 -  2 g . (2.4)

c

sphere 
(split along are A B) + Mobius band

c

projective piane

F igure 3

+

A B

B A

A

B

B

A
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P

F igure 4

A non-orientable surface may be formed from a sphere S 2 by adding cross* 

caps (i.e., Mòbius bands). If one cross-cap is added. we have thè projective piane 

(see Figure 3). In generai, for a non-orientable surface S with k cross-caps

X (S) =  2 -  k . (2.5)

We now exemplify Theorem 1 for thè projective piane (k= l).  A cellular 

subdivision of thè projective piane is shown in Figure 4 (where. for aesthetic 

reasons, we have maintained thè rounded edges rather than draw. artificially. a 

strictly polyhedral figure). The cells consist of 6 quadrilaterals and one hexagon. 

so that thè sum of all thè face angles may be expressed by 6 (4 — 2) n +  1 (6 — 2) jt. 

There are 9 vertices, 15 edges and 7 faces. We display thè computation for & in 

thè same m anner as thè last example so that it may suggest thè generai approach.

A =  9 (2 jc) -  ( 6 ( 4 - 2 ) *  +  1 ( 6 - 2 )  ji}

=  9 (2n) -  15(2k) +  7 (2ti)
V E F 

=  2 j i ( 9 - 1 5  +  7)

=  2t i ( 1)

=  2tt .

Q

RQ

R
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Theorem 1 exhibits a remarkable fact about thè total angular defect of P. For, 

quite apart from thè precise relationship between A and x which it expresses, it 

shows that A (P) depends only on thè topologica! type of P. It would be 

remarkable enough that A (P) is independent of thè cellular subdivision of P \ 

but, in fact, it does not vary if P is replaced by some other polyhedron 

homeomorphic to P. Thus A {P) may be said, paradoxically, to be defìned by thè 

geometry of P—and to be independent of that geometry! In fact thè situation is 

even more remarkable, since thè Euler characteristic is not only a topologieal 

invariant but even a homotopy invariant ; this means that we may deform P 

continuously without changing x (P)— and thus without changing A (P).

3. T h e  a n g u l a r  d e f e c t  in  h ig h e r  d im e n s io n s

We look now at thè possibility of obtaining a formula for thè total angular 

defect for a polyhedron of arbitrary dimension. We will largely confine attention 

to polytopes (see [3]), that is, homeomorphs of *) S " " 1, for some n ^  3. As 

explained in thè Introduction, we will no longer expect to find any significant 

relationship with thè Euler characteristic, so we will concentrate on thè question 

of whether, for such a polytope f \  we may obtain a formula for A (P) in terms of K 

£ and F. Our first result is very generai, but will prove to be applicatele for certain 

standard polytopes.

T h eo rem  2. Lei P be an arbitrary polyhedron in which every edge is 

incident with precisely q faces. then

Al P) =  i H 2 V - q E  + 2F) .  (3.1)

Proof We have only to make a small modification of Pólya’s argument. We 

procecd as in thè proof of Theorem 1 as far as thè relation (2.2). But now

£  s, =
)= 1

so that (2.2) implies that

q n E  -  2n F  =  2 n V  -  A , 

from which (3.1) immediately follows.

') We explain later in thè section why it is more convenient to talk of S"~1 than of S".



The restriction in thè hypothesis of Theorem 2, that every edge be incident 

with precisely q faces, is very severe, except in thè case that P is 2-dimensional. 

What is remarkable is that it is satisfìed in thè case of three standard polytopes. 

These we now describe. In doing so it will be convenient sometimes to adopt thè 

notation of thè Introduction, replacing K £, F by N 0, N lt N 2, and, generally. 

using Ni to designate thè number of cells of dimension i in thè polytope P.

SIM PLEXES are produced, as illustrated in Figure 5. by beginning with a 

single point ot0 ; we then take this existing structure. introduce another point and 

join it to thè previous one, thus producing ott (an edge or line segment); again. we 

begin with this existing structure, introduce a single point, not in thè linear space 

spanned by and join it to each of thè existing points to produce ot2 (a triangle 

or 2-simplex); we continue by taking thè structure of oc; . introducing a single 

point, not in thè linear space spanned by ot2, and joining that point to each of thè 

existing points to obtain ct3 (a tetrahedron or 3-simplex) ; etc. In thè generai case 

thè (>* + 1) points we ha ve introduced are thè vertices of an n-dimensional simplex. 

or «-simplex, a„, whose cells are themselves simplexes formed by subsets of thè

When all thè edges are equal these structures are called regular simplexes, in 

[3] denoted a,. The oc, of Figure 5 should be viewed as though they are in 

perspective since they were intentionally drawn to show a symmetric placement 

of thè vertices in a 4.

*3

Simplexes 

F igure 5

*0 *1 *2

f  n + l \  f n +  l \  / n+ l \
(n +  1) points, so that there are I I vertices, I ,  ) edges, I 3 )

faces, ^  tetrahedra, etc. Hence we see that. if P , is thè boundary of

-  lu -

<V(P|)k
n + l N

* + ly
k



-  11 -

If we remove thè interior of ot„ we obtain a cellular subdivision of S"~ It is 

for this reason that we prefer to speak in this section of S"~1 rather than S". Since 

every proper subset of thè (n +  1 ) vertices of a ,  span a celi of S" '  \  we see that, for 

this polytope, every edge is incident with precisely {n — 1) faces, so that we may 

apply Theorem 2 with q =  n — 1. Since for this polytope, with n ^  3,

we bave, from Theorem 2,

C o r o l l a r y  1. Let P, be thè polvtope obtained by subdividing Sn~ 1 

us thè boundary o f an n-simplex, n ^  3. Then

A ( P , ) =  -  j ( n - 4 ) ( n +  l)(n  + 3 ) .
0

Proof. We have. from (3.1) and (3.2)

/ .  , , n ( n + l )  ^  ( n + 1) n ( n - 1 ) \  
à l P i) =  J t ( 2 ( n + 1 )  -  ( n - 1 ) — -----  +  2 ------------------- J

= j ( n + l ) ( 1 2  -  3 n ( n - l )  +  2 n ( n — 1))
6

0t Pi Pi fi*

Cross Polytopes 

F ig u r e  6

V =
’/ t + f

£
n +  1

F  = (3.2)

= -  7 (« + l) (> r  
6

- n —12).

lt is interesting to note that. while a simplex is convex. A ( P t) is negative for 

n è  5 (and zero for n = 4).

We now turn to our second example of a polytope.
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CROSS PO LY TO PES may be introduced by recognizing that an 

important aspect of n-dimensional space is thè possibility of having n mutually 

perpendicular lines through any point 0. For example, each regular simplex a , . , 

(of Figure 5) involves n points equidistant from 0. Now if we choose to take points 

equidistant from 0 in both directions we obtain thè cellular subdivision of thè 

(n — l)-sphere called a cross polytope. These have 2n vertices and their(n — l)-cells 

consist of 2" of thè t’s. Figure 6 illustrates thè cases where n is equal to 1,2, 3, 

and 4 respectively. Thus 3, is a pair of points (vertices) and we can think of 

progressing from P, to & + , by beginning with P„ introducing a pair of 

diametrically opposed points (vertices), not in thè linear space spanned by (3j, and 

then joining each of these points to thè existing points of P, (but not to each 

other). The polytope p„, which we will cali is, in fact, homeomorphic to S"“

It can easily be shown by induction that

We now prove

P r o p o s i t i o n  1. In thè polytope P z every edge is incident with precisely 

(2/i — 4) faces, n ^  2.

Proof We first assert that it is plain that in P„ every vertex is incident with 

precisely (2n — 2) edges. This follows by an easy induction on n. For P„_, has 

(2n —2) vertices and every vertex is. by induction, incident with |2n — 4) edges. 

Thus a vertex of P ,,., is incident with ((2n —4) +  2) edges of P„, while a new 

vertex of P„ is incident with (2n — 2) edges of P„.

Now suppose that, in P„_ every edge is incident with (2n — 6) faces—this is 

certainly true if n =  3. Then an edge of P„ _ , is incident with ((2/i — 6) +  2) faces 

of P„, while a new edge of P„ is incident with (2/i — 4) faces of p„ (since a vertex of 

P„_ , is incident with (2n — 4) edges of P„_,).

This proof illustrates how we pass from P„_, to P„ by “stepping up 

dimensions by 1”. This is thè point of view of topologists, who introduced such an 

idea into combinatorial topology without, perhaps, realizing that it had already 

been introduced by thè geometers. Topologists cali thè passage from P„_ ! to P,

4
V = 2n , E =  2 n {n — 1), F =  — n(/i — l)(n  — 2) (3.3)

.V (P , )k =  2*+ 1

Thus, in particular. for this polyhedron P 2,
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suspension, and apply this idea to arbitrary topological spaces. Thus thè 

suspension of X  is obtained by joining X  to two independent points or. 

equivalently, by taking two cones with base X  and joining them together along 

their bases.

Returning to P 2, we are now ready to prove

C o r o l l a r y  2. Let P 2 be thè polytope obtained by subdividing Sn~ l asa  

cross polytope. Then

A (P 2) =  - y f l ( r - 3 n - l ) .

Proof. W eassemblethefactsfrom(3.1),(3.3)and Proposition 1 to in fe rtha t

8
A (P : ) =  * (4/j -  4n ( n -  1) (n — 2) +  -  n (n— 1) (n — 2))

4 ti/j

=  ~T~
(3 -  (n — l)(/i —2))

4rt
= — — n 1) .

Here we note that A iPz) is negative for n ^  4.

Finallv we turn to our third example of a polytope.

y<> /I y i

Parallelotopes 

F igure 7

PARALLELOTOPES are illustrated in Figure 7. The passage from y, to 

y,, t is achieved by translating y* (not along any of its own lines) from its initial to 

a final position and then joining in pairs each of thè originai points with thè

73 74
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corresponding point of thè translated figure. If all edges have thè same length thè 

polytope is called a measure polvtope. The quantities N k can be computed by 

considering thè passage from y, to 7j + |. Thus we readily obtain thè inductive 

relation

Now y„ is. combinatorially, a hypercube—we specialize thè construction by 

taking y t to be thè unit interval and always translating orthogonally by unit 

distance. Thus thè boundary of y, is topologically S"~l. We cali thè boundary P j 

and infer from (3.4) that

Note that. for n = 3, we get. combinatorially. thè unit cube, with 8 vertices. 12 

edges. and 6 faces. fn generai thè polytope P s, with n ^  3. yields thè valucs

By an argument very similar to. but simpler than. that of Proposition l. we 

may show

P r o p o s it io n  3. In thè polytope P 3, with n ^  3. every edge is inadcnt 

with (n — 1) faces.

We are now ready to prove

C o r o l l a r y  4. Let P 3 be thè polytope obtained by subdividing S" ' 1 os 

thè boundary oj an n-dimensional parallelotope. fi ^  3. Then

A (P 3) =  — 2 "" : k ( / r - > i - 8) .

Here we note that A (P 3) is negative for n >  4.

The fact that A (P t), A (P , ), and A (P3) are all diflerent (except for n = 3) 

shows that thè total angular deficiency has no chance of being a topologica!

N ( j ' . ù  =  2N  (y,)* +  N  (y,)»-, ,  k i . (3.4|

0 «

V = 2". E =  2"" 1 m. F = 2""3 /i (n — l ) . (3.5)

Proof. From (3.1). (3.5) and Proposition 3 we have

A (P 3) =  ti (2"" 1 -  2"“ l f i ( n - l )  + 2" - 2 n ( « - t ) )  

= 2""2 7t(8 -  n ( n - D )

=  - 2 " ~ : K ( n : - n - % ) .

.VIPj), =  2"-*
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invariant for polyhedra of dimcnsion ^  3. O n thè othcr hand it is stili striking 

that A depends only on thè cellular structure and is independent of thè 

underlying geometrie structure.

Remarks. (a) The polytopes P ,, P 2, P 3 not only enjoy thè property that 

each edge of P{ is incident with thè same number of faces of P{, i =  1,2, 3— thè 

property we used to calculate A (P,) from Theorem 1—they also enjoy thè 

property that each face has thè same number of sides. This latter property could 

also have been used to calculate A (P). Thus if P is a polyhedron subdivided so 

that each face has thè same number s of sides, then one may show that

F ig u r e  8 

Data for P ,. P :. P ì when n =  4

Xumber Sumber
Some o f sides offaces

of polviope \ 0 .V i .V, ,V3 on inciderli A
( P.) each wif/t

;V, mc/i

Simplex ( P , ) 5 10 10 5 3 3 0 

Cross
polytope |P ; ) 8 24 32 16 3 4 — I6n

Parallelotope (Pj) 16 32 24 8 4 3 — 16n

A (P) = 2nV - n F  (s — 2). (3.6)

It is easy to deduce either of thè formulae (3.1), (3.6) from thè other if thè 

polyhedron P enjoys both thè relevant properties. For if every edge of P  is 

ncident with q faces and every face of P has s sides. then

qE =  sF . (3.7)

Of course there is an equality corresponding to (3.7) in higher dimensions.

(b) The polytopes P 2 and P 3 may be regarded as dual. in thè sense that there 

is a one-one correspondence between thè cells of P 2 of dimension k and thè cells
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of P 3 of dimcnsion l) (n — 1) -  k. Morcovcr, thè incidcncc rclations are carried 

over by this duality ; thus if, in P 2, every (i -  l)-face is incident with 2) s, i-faces, 

then, in P 3, every (n-i)-face is incident with s, (n — i — l)-faces (and there is a 

symmetrical statement interchanging P2 and P 3). In this sense P l is selfdual. 

Figure 8 displays these dualities for n = 4, as well as thè value of A.

3. H is t o r i c a l  c o m m e n t  a n d  s u m m a r y

René Descartes (1596-1650) and  Leonhard Euler (1707-1783) worked on 

these subjects independently—yet, as we ha ve seen, Pólya (1887- ) has shown 

that their seemingly different formulae for convex polyhedra homeomorphic to 

S 2 are entirely equivalent to each other. One might believe from thè evidence that 

Euler may have known about Descartes’ work on this subject. That would be an 

erroneous assumption since Descartes’ work on this matter [5] was not printed 

until a century after Euler’s death (see [ l ] ,  p. 56).

Euler [6] oflered a variety of verifications but no formai proof of his formula. 

We have observed that each of thè formulae is somewhat surprising by itself and 

that their connection rather defies intuition since at first glance they seem to be 

dealing with different qualitative aspects of polyhedra. As a matter of fact neither 

Euler's nor Descartes* formula is easy to prove independently; yet. as we have 

seen, it is not at all diffìcult to follow Pólya's proof that thè two formulae are 

equivalent.

The formulae diverge in higher dimensions so that their relationship is a 

special phenomenon of dimension 2. Euler’s formula was generalized by Ludwig 

Schlàfli [9], a Swiss mathematician of thè 19th century (1814-1895), who 

described, in effect, thè Euler-Poincaré characteristic of an n-dimensional sphere 

S", subdivided as a polytope. a combinatorial structure attributed by Coxeter to 

Reinhold Hoppe [11]. Poincaré (1854-1912) gave a definition of thè Euler- 

Poincaré characteristic for arbitrary  polyhedra, and one proves now, by 

invoking thè topological invariance of thè homology groups (see [12]) that thè 

Euler-Poincaré characteristic is a topological invariant.

1) The precise form of this duality shows how “c o r r e a ” it is to regard Sm~ 1 as </i —1>- 
dimensionai, rather than n-dimensional.

2) In fact, s, =  2 (n — i — l).
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On thè other hand, there will be no straightforward generalization to higher 

dimensions of Descartes’ formula for thè total angular defect of a polyhedron 

homeomorphic to S 2, since this defect ceases in higher dimensions to be a 

topological invanant. However it remains, under suitable restrictions on thè 

cellular structure, a combinatoria! invariant in a certain strict sense and thus 

independent of thè underlying geometry of thè polyhedron.
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