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The Tragedy of Grassmann 

I. G R A S S M A N N ' S LIFE 

In Ihc whole gallery of prominent mathematicians who, since the time of the 

Greeks, have left their mark on science, Hermann Grassmann certainly 

stands out as the most exceptional in many respects. When compared with 

o ther mathematicians, his career is an uninterrupted succession of oddit ies: 

unusual were his studies; unusual his mathematical style; highly unusual 

his own belated realization of his powers as a mathematic ian; unusual and 

unfortunate the total lack of understanding of his ideas, not only dur ing 

his lifetime but long after his death ; deplorable the neglect which compelled 

him to remain all his life professor in a high-school ("Gymnasiallehrer") 

when far lesser men occupied University posit ions; and the shroud of 

ignorance and uncertainty still surrounds his life and works in the minds of 

most mathematicians of our time, even when they put his original ideas to 

daily use. 

Against this succession of failures should be pitted all (he gifts which he 

had received from nature : his indomitable patience and energy, his incredible 

capacity for work of all kinds and at top speed, his encyclopaedic curiosity 

and ability to become proficient in any subject of his choice, and of course, 

last but not least, the startling originality of his mathematical ideas. One is 

tempted to repeat for him the fairy story which A. Weil recently imagined 

regarding Grassmann's younger contemporary Eisenstcin,t in which, after 

bénéficient fairies have bestowed on the cradle of the newborn infant all 

the gifls in their possession, a malevolent witch nullifies everything; and 

t A. Weil, BêtlL Amer. Math. Soc. 82 (1976), 658. 
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even if Grassmann's fairly long life gives him some advantage over Eisenstcin 
(he died at 68), the fate of his ideas among contemporaries and posterity 
has been incomparably worse.! 

Hermann Grassmann was born in 1809 in Stettin (East Prussia), the third 
of the 12 children of Justus Grassmann, who was professor at the Gymnasium 
of that city. It is important here to put some emphasis on what were the duties 
of a Gymnasium professor in Germany at that t ime, and in fact all through 
Grassmann 's lifetime: he was supposed to lecture on all subjects, from 
religion to biology through latin, mathematics, physics and chemistry, and 
at all levels, at a rate of 18 to 30 hours a week; and of course there were a 
lot of additional duties such as examinations, administrative work, etc. 
Hermann naturally was a pupil in his father's school, where soon he developed 
a lifelong interest in philology, and a desire to become a Lutheran minister; 
he therefore went to Berlin after his school years, to study theology and 
philology for 6 semesters at the University. Back in Stettin in 1830, he 
immediately started a career as professor, at first in an institution different 
from his father's school. Despite a few at tempts to obtain a University 
position, after he had published his main mathematical papers, he was to 
remain "Gymnasiallehrer" all his life, in various schools of Stettin (except 
for a short period in Berlin in 1835), finally succeeding his father after the 
lattcr 's death in 1852. 

For a long time he clung to his idea of becoming a minister, submitting 
himself to several aptitude tests until a round 1840, when his awakening 
interest in mathematics led him to abandon the idea altogether. He married 
rather late in life, but had 11 children, of whom 7 survived him, and m spile 
of his many-sided interests and duties, he managed to be a devoted father 
and family man; many evenings in his home were spent in reading aloud 
and musical activities, for music was one of his permanent interests: he 
directed a chorale in his school, and went as far as harmonizing folk songs, 
of which he was very fond. But music was only a small item in the fantastic 
range of his activities: among his publications arc papers on the theory of 
colors, on the theory of sound, on a new hcliostat of his conception, plus a 
reading primer and a book on elementary ar i thmetic ; and one wonders how 
he found time to regularly attend the meetings of his Freemason lodge, or, 
for some years, to be quite active in a society founded for the purpose of 
bringing the Gospel to the Chinese! And of course we have left aside the two 
interests which dominated his life after 1840: mathematics, and (after he 
had become disappointed over the poor reception of his ideas) philology, 

t How potent (he curse was can be judged by iwo recent facts: Grassmann's name is not 
mentioned in the recent Japanese Encyclopedic Dictionary of Mathentatics; and the editors 
of the monumental Dictionary of Scientific Biography, which often devotes several pages to 
nonentities, apparently forgot to include Grassmann's name, until somebody made them 
aware of their blunder, which they had to repair in a Supplement to the Dictionary! 



- 3 -

GRASSMANN 

especially Sanskrit and Indo-European languages, in which he rapidly became 
an expert and attained a recognition which had been refused to his mathe­
matical works. 

II. T H E G R E A T IDEAS 

The invention of cartesian coordinates had brought about great progress in 
Analysis, Mechanics and Geometry itself during the eighteenth century. 
But at the end of that period, more and more people deplored the long (and 
mostly awkward) computat ions often needed to prove by the method of 
coordinates (which was given the name "analytic geometry" at the end of 
the century) geometrical results of a very simple nature. But a return to the 
t radi t ional "euciidean" methods was not very appealing either to the 
contemporar ies , due to the necessity of considering many different cases in a 
problem, according to the respective positions of the geometric objects one 
was considering: it was for instance unpleasant to have to write in different 
ways the relation between the segments having extremities at three points 
A, By C on a line, according to the position of C relatively to the segment 
AB. There was therefore, around 1800, a general dissatisfaction with Geometry 
as it was then practiced, and a longing for some "third way" which could 
deal directly with geometric objects without recourse to irrelevant "co­
o rd ina tes" , but would also be free from the euclidean shackles. 

These general trends were to lead to two different developments: on one 
hand the invention of complex projective geometry, with the enormous 
simplification and elegance it brought to "synthet ic" geometry, and which 
aroused general enthusiasm during the whole nineteenth century; on the 
other hand the conception of vectors, first in the plane and ordinary space, 
and then in n dimensions, which later would give rise to our linear algebra, 
but had much less immediate success. Gauss of course had been familiar 
with the concept of vector in the plane ever since he had used the geometric 
representation of complex numbers around 1796, but he published nothing 
on the subject until 1831; in 1832, Bellavitis independently arrived at the 
same concept , and Möbius had been using an equivalent notion, adapted to 
affine geometry in 2 and 3 dimensions, since 1827; but nothing else appeared 
on the subject until 1843. 

Grassmann had not learnt much mathematics beyond the high-school 
curriculum when, after his return from Berlin in 1830, he began to take 
interest in Geometry, in connection with the examinations he had to take to 
improve his position as teacher. He soon came to feel the same dissatisfaction 
about its methods, although it is unlikely that he was much influenced by 
o thers ; he did not become aware of the existence of Möbius's Barycentric 
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Calculus until around 1841, and only read Bcllavitis and Gauss much later; 
it is therefore very likely that he came to the concept of vector entirely by 
himself around 1832. During the next few years he does not seem to have 
tried to develop this idea, being occupied by his study of theology and a new 
interest in cristallography. What brought him back to mathematics was an 
examination which he had to prepare in 1839 in order to obtain a promotion 
as "Haup t l eh rc r " in a new school. He had to submit a paper on the theory of 
tides, for which he went to Laplace's 4 4 Mécanique celeste", and from there 
was led back to Lagrange's "Mécanique analyt ique", where he realized that 
his calculus of vectors greatly simplified the exposition. This was the spark 
which determined him to deepen and develop his ideas into a complete 
system, and in less than 2 years he had finished the manuscript of Die 
Auulelmungslehre, which was published in 1844. 

This first edition has been reprinted in Grassmann 's Complete Mathe­
matical Works (GJ, published with many notes and comments by F. Engcl 
and E. Study from 1894 to 1911, but unfortunately there has been no recent 
detailed study or evaluation of that extraordinary book, which certainly 
would deserve a monograph. With our streamlined linear and multilinear 
algebra of today, it is not too hard to understand precisely what notions 
Grassmann had in mind, but even for a modern mathematician the book-
makes heavy reading. The main reason is that, even by the standards of the 
time, it was not a book of mathematics; there arc no definitions in the usual 
sense of the word, and very few genuine proofs. What Grassmann docs is to 
describe his vision of new objects, in a manner quite similar to Ricmann's 
famous papers on Riemann surfaces and //-dimensional multiplicities 10 
years later, but in a language still more abstract. 

The vision certainly is impressive, especially when contrasted against the 
background of what was understood by algebra and geometry in contemporary 
mathematics ; very few people were familiar with the concept of vector, and 
that was limited to 3 dimensions, the only operations on vectors being 
addi t ion and multiplication by a scalar. And here, all at once, one was 
propelled into a new world of arbitrary dimension, where besides vectors a 
whole panoply of unheard of geometric objects, the multivectors, had to be 
combined by non-commutative opera t ions! ; no wonder that even for 

t Ever since ihc beginning of the nineteenth century, non-commutativlty had become 
familiar in some contexts, such as composition of functions. It is a remarkable coincidence 
chat Hamilton's discovery of quaternions occurred precisely during the lime Gra^smann's 
book was being printed; this of course led him to consider for any integer // > 3 the set of 
al! /Muplcs of real number; as a generalization of ordinary space, but essentially from an 
algebraic point of view. But neither he nor Caytcy (who independently started at the same 
time to use some geometrical language when dealing with /Muplcs of numbers) ever came 
to the concept of an intrinsically defined vector space. Ot»e should also mention that in 1845, 
de Saint-Venant arrived independently at the idea of exterior product of vectors, but only 
in 3 dimensions. 
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mathematicians who, like Mobius, were best prepared to understand these 
generalizations, Die Ausdelmungslehre remained a book of seven seals. 

Grassmann 's father seems to have had more than a passing interest for 
the foundations of geometry; he published a textbook in which, in particular, 
he reflected on the way a segment on a line could be conceived as "genera ted" 
by a moving point, and a rectangle as "genera ted" by a moving segment, 
parallel to one side, and having one of its extremities moving on the other 
side; he considered this "genera t ion" as a "geometric product" of the two 
sides, involving more than the usual computat ion of the area as the ari thmetic 
product of their lengths ([G], l 2 , p. 507). This idea struck deep roots in 
Grassmann 's mind; the passage from a rectangle to a parallelogram, and 
then to 3 dimensions, was easy enough, but could one continue this process of 
"genera t ion"? He decided it could be done, provided one replaced the usual 
geometric " in tu i t ion" by a more abstract one, in which unspecified "generat­
ing elements" would be susceptible of "cont inuous variat ion" according to 
a certain " law", giving birth to what he called an extensive form of the first 
/eiW("Ausdehnungsgebilde erster Stufe") conceived as the set ("Gesamtheit") 
of the elements deduced from the "generat ing elements" by its variation. 
If there were p " independent laws" of variation, the set of elements deduced 
by all these different variations (combined in all possible ways) from a 
"generating element" would similarly be an extensive form of the p-th level, 
and should be considered as the product of the /> forms of the first level 
corresponding to each of the " laws" . We are clearly witnessing here what is 
probably one of the first attempts to do mathematics on objects which have 
no existence (nor even approximate "representat ives" as the objects of 
classical geometry) outside of the mind (objects "durch das Denken 
gewordenen* as Grassmann says, or "Gedankend inge" as Hankel will say 
20 years later). 

Grassmann repeatedly insists (e.g. (G], I , , p . 46) on the fact that classical 
geometry merely gives examples of his "new science" for dimensions O , 
but that it really is irrelevant to its development. Nevertheless, it is clear 
that he was guided by geometric intuition when he defined algebraic opera­
tions on his "AusdehnungsgriVsse" (to which we shall from now on give their 
modern name of p-vecfors and which we will write in modern notation). 
For instance, when he studies the exterior product a A h of two vectors, 
he imposes on it the distributive law a A (bx + b2) = a A bx +a A b2 which 
he justifies by the diagram of parallelograms (Figure 1) for which he writes 
(abfe) + (efdc) = (abdc), showing what he had in mind by addition of 
bivectors ([G], I , , p. 84). Similarly, the relation (a + b) A bx = a A b u 

when the vectors b and bx are colinear, is pictured by another diagram of 
parallelograms (Figure 2). From these two relations, he deduces ([G], I , , 
p , 87) that b A bx = 0 for colinear vectors, and then, using distributivity. 
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he concludes from (a + 6) A (a + b) = 0 the fundamental anticommutativity 
b A a = —a A b. 

Such is the starting point from which Grassmann endeavors to develop 
simultaneously the theory of /i-dimensional vector spaces and exterior 
algebra in what we now would call an intrinsic way, without any mention of 
coordinates, in a rambling and unsystematic fashion, interspersed with many 

c d b .ZJ7 
a o 

FIGURE I FIGURE 2 

application to Geometry. Mechanics and Physics. Wc can check that he 
keeps a clear intuition of what he is trying to do, as for instance when he 
writes for the first t ime the relation 

dim K + dim W = dim ( K n W/) + dim ( ^ + w ) ( 0 
(without of course using that notation) for two vector subspaces K, W of a 
vector space ([G], I , , p. 209); he also has the notion of basis for a finite 
dimensional space. But one must acknowledge that, even disregarding the 
vagueness of definitions and proofs, what wc have in this first edition is a 
bare embryo of the exterior algebra of today. In sharp contrast with Hamilton 
the algebrais t , ! Grassmann is primarily interested in //-dimensional geometry, 
and not in algebra: the only p-vectors which he really studies are the "pure*' 
or "decomposab le" ones, exterior products of p linearly independent vectors, 
spanning a /?-dimcnsional vector subspacc in an //-dimensional vector space; 
these subspaces are clearly the objects he wants to deal with, to which the 
decomposable ^-vectors " u p to a scalar factor*' should correspond as 
algebraic objects, just as vectors " u p to a scalar factor" correspond to 
1-dimcnsional subspaces. He realizes of course that, just as vectors, />-vectors 
must be added, and he knows that for 2 < p ^ n~2f the sum of two 
decomposable p-vectors needs not be decomposable; but he dismisses the 
difficulty by saying that in these cases the concept of addit ion is "purely 
formal" ([G], I , , p . 108), and he does not even bother to compute the 
number of linearly independent /^-vectors for arbitrary n and p\ 

Fur thermore , the way in which Grassmann presents the applications of his 
"new science" smacks a little bit of "sales talk". As Engcl honestly points out, 

t It is quite symptomatic that Hamilton, who spent 20 years of his life looking for 
applications of his quaternions to all kinds of problems, published lots of papers dealing 
with applications of quaternions to '•geometry", but by that he always meant geometry in 
3 dimensions, not in 4 dimensions [H]! 
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they really are only simplifications of notations, which certainly are valuable, 
but do not bring genuinely new results. For instance, Grassmann realizes 
that a system of n linear equat ions in n unknowns can be written as a single 
equation between vectors 

. r l 7 > , + * 2 / > 2 + • • . +*mPn = Po (2) 

where the .v, are the unknown scalars and the pj are vectors; by multiplying 
on both sides by the ( / / - I)-vector />, A . . . A f>} A . . . A />„, he gets the 
formulas 

Xj(P\ A pz A . . . A / > „ ) = / > , A . . . A A PQ A pj+x A . . . A / > „ (3) 

for I < j < nt which are of course the Cramer formulas, written in a much 
more pleasant form.f At the end of the nineteenth century, not much more 
could be credited to exterior algebra, and Engel concluded his biography on 
a melancholy note, relegating Grassmann to the rank of unheeded prophet 
of what was then the fashion among mathematicians (and has remained as 
popular with present day physicists), the horrible "Vector analysis", which we 
now see as a complete perversion of Grassmanrfs best ideas.• It is only in 
our time that Grassmann ' s faith in the value of his ideas has been completely 
vindicated by genuine applications, which have made exterior algebra an 
indispensable tool of modern mathematics in ways he could not have 
foreseen: first of all E. Car tan ' s calculus of differential forms, which is now 
the basis of Differential geometry and of the theory of Lie groups; and 
second the definition of the Grassmannians as projective algebraic varieties, 
and the realization that their algebraic and topological structures hold the 
key to many results of differential topology and algebraic geometry.§ 

I I I . THE M I S S I N G DUALITY 

Having practically no contact with other mathematicians of his time, 
Grassmann was expecting a reception for his book quite different from the 
one he got. The only one who made some effort to understand at least some 

t In 1853, Cauchy, in a scries of Complc-rendus Notes, developed (without any geometric 
connotation) a similar symbolism, which he called "Clefs algcbriqucs". Although de Saint-
Vcnanl, in a subsequent Complc-rendus Note, observed the analogy of Grassmann's book 
with Cauchy's Notes, it is unlikely that Cauchy had ever read Grassmann. 

J It is limited to 3 dimensions, replaces bivectors by the awful "vector product" and 
trivectors by the no less awful "mixed product", notions linked to the euclulean structure 
and which have no decent algebraic properties! 

S The idea lo consider the Grassmannian for n = 4, p — 2 as a quadric hypcrsurface in 
P$(C) is due to Klein (1X72); it was extended to all Grassmannians by Scvcri in 1915. 
The first study of the topology of the Grassmannians was made by C. Ehresmann in his 
chests (1934). 



- 8 -

J. DIEUDONNÉ 

of his ideas was Möbius , ! with whom he started a correspondence which 
lasted (with long interruptions) for about 20 years. But Gauss was obviously 
repelled by a style so different from his own; and Kummer, who was called 
upon to write a report on the scientific achievements of Grassmann, was very 
unfavorably impressed by the obvious defects of Die Ausdclumngslchre: he 
clearly thought he had to deal with a man who generalized for generality's 
sake (a species which already existed at that time, although it was not so 
widespread as it is today), and he had against such people the usual reaction 
of a mathematician who knows what hard work means. 

Grassmann had planned a second volume of his Ausdclwungslchrc, but he 
did not publish it; its substance was incorporated (in a shorter form) in a 
manuscript which he sent in 1846 to the Leipzig Academy, to enter the 
competi t ion for a prize proposed on the theme of Leibniz's attempts for 
forge a "geometrical analysis" (it is likely that the theme had been suggested 
by Möbius, in order to have the prize given to Grassmann). In that paper, 
Grassmann gave a summary of the results published in his book of 1844, 
and in addition, in order to treat problems of Euclidean geometry, he 
introduced a new notion (which he had announced in the introduction to 
his book) ; this was the scalar product of two vectors which appears there for 
the first time for spaces of arbitrary dimension. \ Even more interesting arc 
Grassmann ' s attempts to define, in the same paper, an "interior product" 
of a bivector and a vector, which he was to expand later. 

After he had been made aware (by Möbius) in 1853 of Cauchy's work on 
his "clefs algébriques", Grassmann began to contemplate a new edition of 
his book, which he finally published (at his own cost) in 1862. This new 
Aiisdehmwgslelire is, at least externally, very different from the first edition. 
Belatedly realizing that he had no chance of being heard if he persisted in his 
way of writing mathematics (as Möbius had warned him), Grassmann 
reluctantly abandoned his idea of defining vector spaces and exterior algebra 
intrinsically, and starts as Hamilton (although independently) by defining 
a vector space of dimension n as the set of linear combinations of /? 
"ursprüngliche Einheiten" ex%...%em assumed to be linearly independent. 
We certainly can understand his reluctance, but we clearly see that, in the 
absence of the set theoretical language which enables us to give the intrinsic 
definitions which he vainly sought, he had no other alternative open to him. 
But where he stands quite apart of Hamilton and Caylcy is in his constant 
striving to obtain geometric notions and results independent of any choice of 

t Möbius took the trouble to write an Appendix to Grassmann's prize paper on 
Mgcon>ctrical analysis" (sec below) to make its reading easier, but he did not go beyond the 
notions of scalar product of vectors in 3-dimcnsional space. 

X In dimensions < 4 , this notion naturally derived from Hamilton's theory of quaternions, 
as the scalar part of the product of two quaternions; but it is unlikely that Grassmann read 
Hamilton until well after I860. 
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bas is : the "Austauschsatz" (exchange theorem) which one generally attributes 
to Steinitz (19J0) is stated and proved quite correctly without using determi­
nants ([G], I 2 , p. 19), from which he deduces (as we now do) the invariance 
of dimension, as well as a clear proof of relation (I) ([G], I 2 , p. 21). 

Of eourse, in Grassmann 's plan, these are only preliminaries to the bulk 
of his book, the definition and study of his various "products" . But if for a 
moment we bypass this part , we are amazed to discover that at the end of 
the book, as "appl ica t ions" of his methods, he introduces "intrinsic" con­
ceptions which have only become familiar to most mathematicians in a very 
recent past. Remember that at that time the general concept of_a mapping 
of a set into a set has not yet been formulated; but Grassmann knows how 
to define linear and multilinear mappings without using coordinates. For 
instance, he writes [ /1 a] the linear form which we would now write x*-* ix I a) 
(scalar product) ; the letter / stands for a place to be filled by a variable 
vector, and he calls that a "Li ickenausdruck". Similarly, he defines an 
endomorphism of an //-dimensional vector space E by considering a basis 
0,, . . ., am of £ , and the images A , , . . ., bH of the a/s by the endomorphism, 
which he writes as a "quo t i en t " 

0, , . . 0. 

or as a linear combination 1 * * 1 bj[l\ aj] of "Liickenausdrucke" (what we 
now write 1% i bj ® a% using the basis (0*) dual to (0,)). He also defines 
what we now write A Q for an endomorphism Qt and finally he is the first to 
show that any endomorphism of a complex vector space can be expressed 
by a triangular matrix with respect to a convenient basis ([G], I 2 , p. 256). 

A little further, we see that Grassmann already had the idea of a vector 
space whose elements would be functions, and that he writes / f o r a function, 
instead off(x) as everybody did at the t ime. t When he deals with differential 
calculus, and studies a different ia te mapping / of a finite dimensional 
vector space into itself, he considers, as we do today, the tangent mapping 

f'(x) as an endomorphism of E (whereas all his contemporaries only dealt 
with Jacobian determinants). Finally, at the end of the second Ausdehnungs-
lehre, he applies his method to the Pfaff problem of classification of differential 
forms, going beyond the results Clcbsch obtained at the same time, and arriv­
ing at a conclusion which is substantially equivalent to what is usually called 
Darboux 's theorem ((G], F 2 l p. 493). 

It is almost unbelievable that such an original work should have been 
entirely ignored by contemporary mathemat ic ians; Hankel was the first to 
"d iscover" it in 1867; after 1870, several well-known mathematicians, such 

t He tlso vehemently insists on the fact that a function can only have one value for a 
given value of the variable ([G], I l t p. 224). 
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as Klein and Lie, began to mention Grassmann, but. as Engel points out, 

ra ther from hearsay than from having really read his works. The usual 

obdura t e conservatism of most mathematicians, who will gladly wade 

through oceans of computation rather than relinquish the techniques they 

learnt at the University, is certainly to blame to a large extent: they had 

been taught to work with determinants, they would go on working with 

determinants for another 60 years! However, it must be acknowledged that 

Grassmann himself has to shoulder part of the blame; had he limited himself 

to a short exposition of his exterior product , with the applications mentioned 

above , he might have had better success. But the bulk of the second 

Ausdehmingslehrc describes at length the various "produc t s" which he thought 

necessary to introduce in addition to the exterior calculus; this is both the 

t r iumph and the failure of Grassmann, namely a lot of wonderful ideas 

rendered ineffective by lack of the necessary technique, and ending up in a 

frightful mess. 

We already have stressed the fact that Grassmann was entirely led by 

geometric insights, and that the objects he wanted to introduce in algebra 

were the vector subspaces of a finite dimensional space £. He had early 

observed that when Kand Ware two such subspaces such that K n W = {0}, 

if they are spanned by decomposable multivcctors a and b, their " join" 

V+ \V is spanned by the exterior product a A b. But what should be done 

if V c\ W * {0}, for then a A b = 0, al though K+ W still exists; and how 

can one obtain a multivector spanning K n W in a similar way? Grassmann 

never solved the first problem, but he had a bright idea for the second, at 

least in the special case in which K+ W = E. He had a clear notion of the 

extension of projective duality to //-dimensional spaces (at a time when 

everybody considered "geometry" to be limited to 3 dimensions). Suppose 

some duality has been defined in £ , and that V and W respectively cor­

respond to K a n d W by that duality; then, if V+W^ £, one has K ' n W 

= (0) , and Vc\ W corresponds by duality to V'+W. So all Grassmann 

needed was a computational device, attaching to a decomposable /?-vector 

spanning a subspacc K, a decomposable (//-/?)-vector spanning V\ Now, 

for Grassmann as for all his contemporaries (and all mathematicians until 

quite recently), "cuclidean space" R" was always conceived as equipped 

with all its structures, of which "euclidcan distance" was one (it is only for 

us, accustomed as wc are to the "dissocia t ion" of structures, that there arc 

infinitely many euclidcan structures (isomorphic but distinct) on a vector 

space). The "na tura l" duality was therefore the one which assigned to V 

the or thogonal subspace V\ and so, to a ^-vector a spanning V, Grassmann 

associated its "complement" ("Ergänzung") , written |o , and which he 

defined algebraically in the following way. Start with an orthonormal basis 

ci%. . c . of £ ; for each q with 1 < q < n% and each subset H:ix < i2 < . . . 
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< i f of q elements in {I. 2 , . . / / } , let e9l = e/, A < \ 2 A . . . A e, f l so that 

the elements eu form a basis for A £ . Take the complement H' of H in 

{I, 2 , . . /?}, similarly ordered; then eu A e„ = />(//, / / V i A e i A • • • 
A em with />( / / , / / ' ) = ± 1 ; Grassmann defined the complement as 

equal to p(ll, ll')eu\ and then \a by linearity for all ^-vectors. If now a is 
a />-vector, A a ^/-vector, and p + q ^ n, Grassmann defines the "regressive" 
product a v b as equal to | ((Jtf) A if a and A arc decomposable and 
span V and W respectively, then a v A = 0 if JJ' * £, but a v A 
spans If7 if K-f fi = £ . It is easy to see that the regressive product is 
invariant under ummodular linear transformations, but the notion of 
4 4 Erganzung" is only invariant under or thogonal transformations. 

One could also form the "inferior p roduc t " a A (|/>), a (p + n-q)-vector. 
However, for p = q = I, Grassmann wanted that product to be, not an 
/f-vector, but a number, namely the scalar product which he had earlier 
defined; this is probably the reason why he unfortunately identified //-vectors 
and scalars, thus paving himself the way for the degenerate "Vector an­
alysis" which uninspired hacks concocted later out of his and Hamilton's 
ideas! 

This is the beginning of the debacle. Faced with three different "produc ts" , 
Grassmann tries to combine them, and of course gets nowhere, except in 
very particular cases: trivial examples show that in general no properties of 
associativity or commutativity are to be expected. 

And so it was that for almost 80 years the wonderful opportunities which 
Grassmann 's exterior algebra might have opened remained unsuspected. 
When E. Cartan, around 1900, developed the calculus of differential forms, 
he very wisely only used the exterior product , to the exclusion of the other 
ones ; but as his own work was little understood until 1930, it did not do much 
to popularize Grassmann's ideas. They had to wait until a proper under­
standing of linear algebra, and in particular a reasonable theory of duality 
of vector spaces, had given them their full power. 

To conclude, it is perhaps not superfluous to summarize the main results 
of exterior algebra as we now conceive it, and to show that it fully lives up to 
the expectations which Grassmann had envisioned when he invented its 
fundamental notions. 

T o a finite dimensional vector space E over a commutative field A'f of 
dimension nt are associated two exterior algebras A £ and A £ • , over E and 
its dual £ * respectively. They are in natural duality (but are not to be identi­
fied!) by a bilinear form <z, z*> defined as follows: one has <z, z*> = 0 if 

f « 
ze A £ , *• e A £ * with p # q% and 

< * ! A x 2 A . . . A x , , xf A x j A . . . A x*> = det « x „ x * » (4) 



- 1 2 -

J . D E U D O N N £ 

for vectors xt € £ , 6 £ * and 0 < /? < n. An interior product is defined, 

/10/ between multivectors of A £ , but between a ^-vector z f e A £ and a 

0> + <7)-vector € A £* , for all /? ^ 0 and ^ > 0 ; it is a /?-vcclor r f _i w * f f 

* p 
in A £* , defined by the condition that, for any ^-vector vf € A £ , 

<t>,. -J "J+«> = <VP A z r u ^ f > ' ( 5 ) 

in other words, the mapping w*+f • - • 7 , - J of A £ * into A £ * is the 

transposed mapping of the linear mapping vp>~-+ vp A of A £ into A £ . 
In particular, for dual bases (<*„) and [ & ) of A £ a n d A £* , one has 

(6) 

' H - 1 * L = PL-HM'L-H if / / <= L 

where pL-fi.n »s the scalar factor equal to ± I such that ^ _ | / A c / f = 

PL-u.HEL- One of course defines similarly an interior product i/* - 1 r , M of a 
« + « * 

(/-vector u* € A £ * and a (/; f <?)-vcctor z ,+ f e A £, which is a /^vector in A £ . 
These notions being intrinsically defined,! what replaces Grassmann's 

" E r g a n z u n g " is a linear mapping <P:zt~> z -J e* of A £ onto A £ * (and not 

onto itself!), where e* is an /i-vcclor / 0 in A £ * , which is therefore well 

defined up to a scalar factor. If a />-vcclor z - x{ A X 2 A . . . A A * , is 

decomposable and / 0 , and V(z) is the/^-dimensional subspacc of £ spanned 

by the A / S , then <p(z) is a decomposable (/j~/?)-vcctor such that V(4>(z)) is 

the subspacc of £* orthogonal to K(r); this follows at once from (6) when one 

takes the basis (*>;) of £ such that eH = r. 
/» 

The Grusstnannian Gn,p(L) is the subset of ihc projective space P{ A E) 
p 

which is the image of the set of decomposable /^-vectors ^ 0 in A £, and is 

therefore in 1-1 correspondence with the sci of all vector subspaces of 
p 

dimension p in £. It is an algebraic submanifold of />( A £ ) ; to prove this, one 

has to write down the necessary and sufficient conditions which must be 

satisfied by the coordinates of a /?-vcctor z = Zu^ue/t (summation over 

t The most important interior products correspond to q ~ \% because for x € EI he map­
ping x -J a*, written i(x) or /„ is an unliderwation of degree - I of (he graded algebra 
A furlhcrn>orc, one has /(x) n i(.r) = 0. and any interior product •> : - J H* can 

always be written as linear combination of products I Y . V , ) * i " ( . V | ) " . . . ° i(.vq). tn the v*ork 
of E. Cartan. these operators appear as "derivations"; for a />-form F - f. dux A du2 A 

. . . A iiupy ^fl^uk is the (/>-- D-form / dux A . . . A ¿ / / 4 A . . . A <////,. The algebraists of 
the nineteenth century dimly perceived that the polynomials 27« a*x* and the differential 
operators Emb*D" were in duality, and used that fact, in particular in the theory of 
invariants; this was their closest approach to the fact that a vector space and its dual 
consist of different objects. 
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the subsets H of the set { 1 , 2 , . . n } ) in order that z be decomposable 

(or 0), and show that these relations are polynomial equations between the 
Cii- This is a problem which Grassmann only tackled (for n and p arbi t raryt) 
in the last year of his life, in a fairly complicated way ([G], I I , f pp. 283-294); 
Engel and Study gave simpler methods in their comments included in Grass-
mann's complete works, and Study's solution can be presented in the follow-

p 
ing way. In general, for any />-vcctor zpe A £ , there is a smallest vector 

p 
subspace M(zp) c TTsuch that zp€ A M(zp); Study's remark is that M(zp) is 

p-i 
the subspace generated by the vectors , - J zp% as x runs through A £ • . 
T o prove this, choose a basis of £ containing a basis of M(zp)\ using (6) 

p- T 

(with the roles of £ and E* exchanged), it is clear that for any t/*_ , e A £ * , 
one has , - J zp e M(zp). Conversely, we show that if A/' is any vector 
subspace of \f(zp), of codimension I, it is not possible that u * . , - J zpe A/' 

p - 1 

for all u}-, 6 A £ V Indeed, let x e M(zp) be such that x 4 A/', and take a 
basis of M(zp) consisting of a basis of A/' and the vector x\ then one may 

p P- i 
write zp = r^ + .v A where zpe A A/' and z^_, 6 A A/', and the defini-

p~' 

lion of >*/(;:,) implies that r * . , ^ 0. By duality, there exists j e A £ * 
such that < r ^ . j , w*-,> = X # 0, and it follows from (6) that !/*. , J : F = 
+ > L Y - K Y ' with A" ' e A/', which ends the proof. 

From this the conditions of Study expressing that : p is decomposable 
follow immediately: 

p~ I 

zp A (u*_ | - J zp) = 0 / o r a// n j . , 6 A £ $ . (7) 
Indeed, this expresses that z , A A = 0 for all xe M(zp), and this is only 
possible for a /^-vector zp when M(zp) has dimension p (take a basis of 
M(zp) and express zp in that basis). 

The same argument shows that if zp is a decomposable />-vector, z, a 
decomposable ^-vector, with p < q, the relation V{zp) a V(z^) is equivalent 
to 

z\ A - J z,) = 0 / o r *// f<;_ t e ' A £ # . (8) 

Of course, it is enough to write (7) or (8) for the ( />- l)-vectors forming a 

t For fi ~ Atp = 2, decomposable bivectors correspond to projective lines in projective 
3-dimensional space. Caylcy is probably the first to have mentioned in 1862 that systems of 
6 numbers not all 0 and satisfying 

Po\Pi* + PoiPixH PoiPu — 0 

determine projective line^ a point of view which was developed systematically by Plucker 
in 1865; but neither Cayley nor Pliicker mentioned Grassmann. 
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A O W J of A £ ^ ; one thus obtains a finite number of quadratic relations (7) 
between the coordinates of z r which define the Grassmannian as an algebraic 
variety in P,m. , and a finite number of bilinear relations (8) expressing that a 

subspace is contained in another one. 
More generally, one can express by algebraic relations the fact that the 

intersection V(zp)n K(^) has dimension ^ J ; a similar argument proves 
that this is equivalent to 

r ; A j - J zj = 0 for all i 6 A £ * . (9) 

Finally, wc may derive from this an expression for a decomposable multi-
vector spanning the sum Y(zp) + Yiz,) of two arbitrary subspaccs of £ . 
From (9) it follows that the dimension s of K ( r , ) n V(z^) is the smallest 
integer k such that the products z'n A (uk - J r , ) are not all 0 when u* runs 

through A £ • ; and then all (p+q-s)-vectors A ( H * _ J for uf e A £ • , 
are scalar multiples of a single decomposable (p+q-s)~vector # 0 spanning 
* ' U , > + ' ' ( * ; ) . 

The gist of these results is that incidence relations between vector subspaces 
of £ may be expressed by relations between coordinates of these subspaccs 
in their respective Grassmannians, which certainly was Grassmann 's 
ult imate (if unformulated) goal. 
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