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SKEW FIELDS OF NONCOMMUTATIVE RATIONAL FUNCTIONS, AFTER AMITSUR

(PRELIMINARY VERSION)

George W. BERGMAN

Séminaire SCHÜTZENBERGER-LENTIN-NIVAT
(Problèmes mathématiques
de la Théorie des automates)
Année 1969/70, nO 16, 18 p.

10 mars 1970

We give here a generalized and simplified version of Amitsur’s construction and

classification of skew fields of noncommuting rational functions [1]. We show that,
if D is a sfield (= skew field), E an oversfield with infinite center, and n

a positive integer, then the n coordinate functions on the space En, together
with the constant functions from D , generate a "sfield of almost-everywhere-
defined functions". In contrast to the situation for commutative fields, the struc-

ture of this sfield of rational functions may depend on E as well as D; but, in

a large class of cases, the family of sfields of functions so obtained is very easi-

ly classified, and contains a "maximal member", of which all other such sfields are

specializations.

Our approach leads to a kind of "noncommutative algebraic geometry".

Several conjectures and problems are also raised. Elsewhere we shall develop this

material, starting from more general concepts, and obtaining in many places stronger

results.

1. - Our construction will depend on the already known construction of a more

modest sort of "sfield of rational functions" :

Let E be a sfield, and E[t] the "polynomial ring" gotten by adjoining a com-

muting indeterminate t . E[t] will be a right (and left) Ore ring, and hence has

a sfield of fractions E(t) , elements of which can be written PQ-1 (P , Q ~ E[t],
Q ~ 0) . Further, because one can take "right greatest common divisors" in E[t] ,
each member of E(t) has an essentially unique expression in "lowest terms".

Note that any formal expression gotten from the symbol t and the elements of E

by formal operations of addition, multiplication and (multiplicative) inverse, ei-
ther reduces to a unique element of E(t) , or fails to define such an element, be-
cause at some step, one takes the inverse of an expression which corresponds to

zero in E(t) . (E. g., a + (bt - tb)-1 , for a , b ~ E , does not reduce to a

member of E(t) .)

For any element 03C4 in C(E) , the center of E , we can define a substitution homo-

morphism of E[t] to E , sending P(t) to P(03C4) . From this, we can get a
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specialization map of E(t) into E sending t to T ~ defined for all elements

(assumed written in lowest terms) such that 0 .

A non-zero element of E[t] can assume the value zero for only finitely many

elements T E by the same reasoning as for commutative polynomials. (Note
that t - T will lie in C(2it]) . ) Hence a non-zero element of E(t) can specia-

lize to 0 at only finitely many T E c(E) .

2. - Let f(t) be any expression formed from the elements of E and the sym-

bol t by addition, multiplication and inverses. Then f induces a function on a

subset of C(E) , by simple substitution and evaluation wherever possible ; p we

shall say that f is "defined" on this set of points. In particular, a necessary

condition for f to be defined at some point T e c(E) is that f reduce to an

element cp E E(t) which can be specialized to T ; if f is defined at T ~ its

value will then equal the value to which (p specializes. (But the domain of defi-
nition of f may be smaller than that of For instance, t - t is defined

on C(E) - f0*} ~ but reduces in E(t) to 0, which is defined everywhere.)

LEMMA 1. - If an expression f(t) is defined at some T E ~(E) , then it is de-

fined at all but finitely many points of C(E) .

Proof. - We use induction on the expression f . If the statement is valid for

two expressions f and g, it is clearly true for their formal sum and product.
Now suppose the formal inverse of an expression, f (t~~~ is defined at some
T E C(E) . Inductively, assume f(t) is defined except on a finite set of points

C(E) . Then its values, where it is defined, correspond to the specializations
of some (p E C(E) . Now (p must be non-zero, because f(t) is defined at t = T ;

hence it will specialize to zero only on a finite set S . Then f(t) will be

defined except on S u S2 .

3. - Now let D ~ E be skew fields, and X. y ... , X indeterminates,

thought of as representing elements of E, not necessarily central. Any formal ex-

pression ... , X ) in sums, products, and inverses of elements of D and

Xl ’ ... , X , will yield a function on some subset of which we will call

the "domain of definition of f ". We shall call f nondegenerate (on if

this set is nonempty.

Let us now assume C(E) to be infinite. (We conjecture, however, that the next
result and all its consequences hold with only E assumed infinite. They are false,
of course, if E is finite. AMITSUR raises this question at p. 358.)
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LEMMA 2. - If f and g are nondegenerate expressions, their domains of defini-

tion have some point in common. 0

Proof. - Let f be defined at p - (p , ... , Pn) E and g at

q = ( q ~ 9 ... , q~) . Writing tp + (l-t)q for

we see that f (tp + (i - t)q) and g(tp + (1 - t)q) will be expressions in t,

defined for t = 1 and t = 0 respectively. Hence each is defined for all but

finitely many values in hence both will be defined at some T e 9 from

which we get a common point of definition for f and g .

Let us write f N g , if f and g are nondegenerate expressions whose values

agree at every point where both are defined.

COROLLARY.

(a) If f and g are nondegenerate, so are f + g , fg , and, if 
, 

0 , so is

f -1 . - - 
2014’20142014 2014 2014

(b) ==&#x3E; fNh.

(c) If fNf’ and g PJ g’ y then f + g (Bj f’ +g’ , and, if f ~ 0 ,
f-1 N f ,-1 .

Proof. - Assertion (a) follows immediately from lemma 2. To show (b), suppose

h ; then (f - h) is nondegenerate, hence has a point of definition p in

common with g . Then f(p) ~ h(p) , hence, either f(p) ~ g(p) , or h(p) ;
contradiction. Assertion (c) follows from the definition, once we know that f + g ,

etc., are nondegenerate.

It follows that : 

’

THEOREM 3. - The quotient of the set of nondegenerate expressions by the equiva-
lence relation fBJ acquires a structure of skew field, under operations induced by

the formal operations + ~ . , ~ ( ) on these ex p ressions. This may also be regar-

ded as the skew f ield of functions from En to E (defined up to changes in do-
main of definition) generated by the coordinate functions and the constant func-

tions from the subsfield D .

We shall call this skew field D «1», y where X stands for X y ... ,X .
Note that, to every f E D j[X)) y we oan associate a function defined on the

En
union of the domains of definition of all expressions for f . One would like to
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know whether there is always an expression for f having this whole set for domain

of definition, a "universal" expression for the rational function f .

If D and E are fields ( E infinite), then D ((X)) will be the ordinary field
of rational functions, D(X) , independent of E. In this case, the "universal ex-

pressions" problem has an affirmative solution, given by the expression for f as

a quotient, in lowest terms, of polynomials.

4. - The above construction can be seen in a much more general context. Let us

replace En by an arbitrary set S, let us associate to each s E S a sfield E 1
s

and let F be a family of functions f, each defined on a subset S ~ and

sending each S E S f to an element of E .
By the pre-sfield of functions F generated by F, we shall mean the closure of

F u (I) under sums f + g , negatives - f , products fg , and inverses f-l ,
these being defined to have domains of definition 81 = S, S f = S, n S ,

S-f = Sf’ S = and S f -1 = I f(s) f 0) .

The sets S~ (f E F) can be taken as a basis of open sets for a topology on S .

Let us call S irreducible with respect to this topology, or with respect to the

set of functions F y if it is not a union of two proper closed subsets under this

topology. Then lemma 2 says essentially that En is irreducible with respect to

the pre-sfield of functions generated by D and the coordinate functions. By the

same argument used to deduce theorem 1 from lemma 2, we can see that, for any S

irreducible with respect to an F as above, we can form a sfield out of the

equivalence classes of nondegenerate functions in F.

If a subspace T ç S is irreducible (with respect to the relative topology,
which is the same as the topology induced on it by we obtain a specializa-

tion of ({F) S onto ~F))~, . shall rather consistently abuse our notation in

this manner, writing F for when the restricted domain is indicated else-

where. ) One easily verifies that the irreducibility of a set depends only on its

closure, and that the sfields and ( U , T ~ S , irreducible) will be

isomorphic as specializations of (F))~ if, and only if, the closures of T and

U in S are equal.

. 5. - We proved the irreducibility of En by showing, in lemma ly that the

space e(E) is irreducible (with respect to the pre-sfield generated by the cons-

tants and the identity function) if it is infinite, and then using the fact that

any two points of En are connected by an image of this space. (Incidentally,

C(E) is also closed in E , being the intersection of the domains of non-definition

of the expressions (at - ta) ~ a E E .) This argument can also be generalized,
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but we shall only sketch this generalization, without proof, since the application
we shall make in section 6 will be transparently analogous to the proof of lemma 2 :

Let us define a pre-map from the triple (S , to (T , ( S
a set, E s a sfield for each s e s, F a pre-sfield of functions on S; T ,

G similarly) to consist of a function m from a subset S to T ,

and, for every s e S , a specialization of sfields : m : E ( ) ~ E ,such
that, if g E G , the function m 

s 
. g . m (defined at s if, and only if, m is

defined at s , g is defined at m(s) , and m 
s 

is defined on g(m(s)) ) lies in
F .

Now consider such a triple (T , {Et} , G) , and suppose that, for any two points

t , t’ ~ T y there exists a pre-map m , from a triple (S , F) with irre-

ducible S y to [Et} , 2ii) , such that t , t’ E m(S) . Then T itself is

easily shown to be irreducible.

6. - Let us return to our sfields of rational functions, D ~n~ (X, 1 ~ ..... ~ X ) .~ n

The method we used to show E irreducible can also be applied to a large class

of subspaces of Let us call a subset S ç En "flat" (with respect to e(E)),
if, for all p , qe S, S also contains íp + (1 - T)q for infinitely many

T E C(E) . (Note that a closed flat subset will contain Tp + (1 - T)q for all

T ~ C(E) .) Exactly like lemma 2, we get :

LEMMA 4. - Any flat subset of En is irreducible.

Hence, the closure of any flat subset will also be irreducible. Here is an inte-

resting case of a flat set whose closure is not flat : Let D be an infinite field,

lying in the center of a noncommutative sfield E , and let us form 

The subset D2 ç E is clearly flat. D contains the "line" D x (0i , and the

closure of this line is E x fO} (for a single element of E will commute with D ,

and hence satisfy any relation with coefficients in D satisfied by the elements

of D ). So the closure of D contains E x fO} , and similarly, {OJ x E . But,
’)

if we take x and y E E which do not commute, the closure of will not con-

any points X2) = 0) + (l - r)(0 ~ y) C(E) - [0 , l}) , for

point does not satisfy X X - X X ==0 .

The key to this example is i D is dense in E (with respect to expressions
with coefficients in D ) , but D is not similarly dense in E :

Examples of flat closed subspaces of a space E~ are all the spaces defined by
n mi

families of "linear" relations, ¿ I a.. x. b.. = c (a.., b.. , C E D) . Each
1.. .. J 

1J 1. l.J l.J l.J
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such set S will be irreducible by lemma 4, and hence will yield a skew field

DS(X)&#x3E; , in indeterminates X1 , ... o , X constrained to satisfy the corresponding

equations. For example, the set x En-m will give a sfield of rational func-

tions in m central and n - m noncommuting indeterminates.

But, for most closed sets S ~ E y it is not clear how to determine whether S

is irreducible. E, g., is the set determined by the equation X ~ X - X2 = 0

irreducible for arbitrary D and E ? It would also be useful to know when a closed

set is, at least, a finite union of irreducible closed subsets (as is always true
in the commutative case !).

7. - By a polynomial in ... y X over D, we shall mean an expression

formed from these symbols and the elements of D by the operations of addition and

multiplication only. If P is such a polynomial, the set of points of En satis-

fying P = 0 , will be the domain of non-definition of the expression P y and
hence will be closed. An intersection of such a family of closed sets will be cal-

led a polynomially defined closed set. we shall now prove a weak but useful lemma

to the effect that certain closed sets are polynomially defined ; but we first need

two observations :

If S is a nonempty irreducible subset of En, and p is a point not in the

closure of S y this means that some expression f in our coordinates is note de-

fined anywhere on S, but is defined at p. Since S is irreducible, the degene-

racy of f on S cannot arise from adding or multiplying together (at some step
in the definition of S ) two nondegenerate expressions with disjoint domains of

definition on S ; hence it must result, y from inverting an expression g, y that is

nondegenerate but equals zero. Thus, there is a g that is nondegenerate on S , y

and zero at all points of S where it is defined, but is non-zero at p .

Secondly, any element of E(t) which is defined at t = 0 can be expanded as a

formal power series in t . (More generally, E(t) can be embedded in the ring

E((t)) of formal Laurent series in t , y over E .) The basic formula for taking in-
00

verses is t (a + B )-1 = a -1( 1 + Ba ~‘)~~‘ - ~ a -1( - Ba -1)n ( a = the constant term,
0

B divisible by t ). Note that the coefficients in this expression do not involve

inverses of any element 9 but the constant term a!

LEMMA 5. - If S ~ Dn is flat with respect to then its closure in En

is polynomially defined.

Proof. - Let p not lie in the closure of S . We must find a polynomial over D

in the coordinate functions, that is zero on S, but non-zero at p .
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We know that there will exist a rational expression f nondegenerate on S and

zero there, but nonzero at p (~). Let q be a point of S where f is defined.

For any x e consider the expression f( ( I - t)q + tx) . This will reduce to a

well-defined member of E(t) , y because it is defined for t = 0 . If x e S y this

expression must reduce to zero in E(t) , because of the flatness of S , while for

x = p , it will be nonzero, because it is (defined and) nonzero at t = 1 .

Now, in obtaining a formal power series expansion from the expression

f((l - t)q + tx) , whenever we must take the inverse of a sub-expression h(t) ,
the constant term h(O) will be non-zero, and will not involve the coordinates of

x . From this, one can deduce that the coefficients of the final expansion, consi-

dered as functions of the coordinates of x , will be polynomials. Their coeffi-

cients will come from D , because q e S c These polynomials must all be zero

on S , but at least one of them will be non-zero at p ( ).
Q. E. D.

(An example of a closed set that apparently is not polynomially defined, at least

if E is sufficiently noncommutative, is the domain of non-definition of

+ X~ + X"~)"~ . Actually, this set is not irreducible : it is the union of
the domains of non-definition of X~l , X;l , and and a fourth set : the

intersection of the domains of non-definition of (1 + X + X 

(X X-l + 1 + X X-1)-1 (X X-1 + 1)-1, which we can show is irreduci-
ble and we conjecture is not polynomially defined.)

LEMMA 6. - Let D be a sfield with infinite center y and E an over-sfield sa-

tisfying every polynomial identity in n variables with coefficients in D that

is satisfied in D. Then D (X1 , ... , ... , ~ ’ Hence, if C
201420142014 E D 

n

is any sub-sfield of D , C ... 0 , 
o-1-o C X1 , ... , Xn&#x3E;.

(1) This argument requires that we know S irreducible, but we have only proved
this when S is flat with respect to C(E) which may not lie in S(E) . But the

flatness of S with respect to C(D) implies S irreducible in and the to-

pology of Dn is just the relative topology induced from E.

Perhaps our definition of flat needs improving. The most general condition from

which we can deduce lemma 4 is : for every p , S , finite set A ~ D , and

positive integer r , there exist ... , ~r commuting with the coordinates of

p and p’ and with the members of such that Tp + ( 1 - S .

(~) The use of formal power series was not strictly necessary (we could have
shown that all coefficients in the numerator of f((l - t)q + tx) can be taken to

be polynomials). But it is more convenient to be able to take advantage of familiar
facts abt power series.
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Proof. - By lemma 5, the closure of Dn in En is polynomially defined ; 9 but

every polynomial relation holding on Dn holds on E~1 , so En is this closure9

i. e., Dn is dense in En, from which the first result followso The second state-
ment holds, because C 

En 
~(~~~ is simply the sub~sfield of D 

En 
J(X)) generated by the

coordinate functions and the constants from 0 . Alternatively, y since Dn is dense

in En with respect to the pre-sfield generated by the coordinate functions and

the constants in D ~ it will certainly be dense with respect to the smaller pre-
sfield gotten by restricting our constants to C .

8. - Following AMITSUR, we shall now attempt to classify our rational function

fields D ~X)) ~ For given base sfield D and integer n y this means that we want

En
to classify over-sfields E ~ D according to the rational identities in n varia-

bles, with coefficients in D that their elements satisfy. Lemma 6 allows us to

partially reduce this problem to that of polynomial identities.

It is known that, if a sfield (more generally, a simple ring) E is finite-

dimensional over its center, y the dimension will be of the form d2 (d &#x3E;~ 1) , and

the sfield will satisfy an identity in 2d variables with integral coefficients :

which is not satisfied by any sfield of larger dimension over its center. Hence,

the number (EI C(E) ) (an integral square or ~ ) will be an invariant of the ra-

tional identities satisfied by E over D (at least if we allow enough variables).

Another such invariant is the sub-field 

lve shall find that, when C(E) n D = ~(D) , the number (Et C(E) ) = d2 precisely

classifies the structure of D 
En 

((T)) (except for the case of n = 1 and D a

field, where is the commutative rational function field D(X,) indepen-

dent of d ). On the other hand, we have exemples, which we will not give here, of

a sfield D and over-sfields E , E’ , with (E:C(E») = (E’:e(E’») co ~ and

D n C(E) = D n such that D 

En 
(X)&#x3E; . Nonetheless, we believe that,

for (EI C(E) ) oo y a complete classification of the sfields D E~ ((X~ can be obtai-

ned with the help of Galois theory; we shall attempt to do this elsewhere. For the

case (Et G(E) ) = we conjecture that D ~X)) depends only on the field
E~

D n C(D) .



16-09

9. - Let us call an over-sfield E’ of a sfield E regular, if C(E) ç 
and let us begin our analysis of rational identities with the case (E:C(E)) = oo .

AMITSUR proves, in [2J, that a sfield E infinite-dimensional over its center

satisfies no polynomial identities with coefficients in E, except those saying
that all elements commute with elements of the center. If we combine this with

lemma 6 (taking E for "D" , any regular over-sfield E’ for "E" , and any sub-

sfield D for t’C" ) , we get :

LEMMA 7. - Let D be a sfield, E any over-sfield with infinite center and

infinite-dimensional over this center, and E’ any regular over-sfield of E.

Then, for any n ~ 0 , D .. o , X ) ~ n D E,n «Xl’.. 0 , ~ . o
Thus, the conjecture just made would follow, if we could show that any two such

E ~ and E , with n D = C(E2) n D , may be joined by a chain of ascending
and descending regular inclusions of such sfields ( ). We can do this in the case
of sfields regular over D, by means of a construction that functorially embeds an

arbitrary sfield in a regular over-sfield of the desired sort :

Given any sfield E, let us adjoin a family of commuting indeterminates u in-

dexed by the group Let us then adjoin to the sfield E(u ) an indeter-

minate v , and all rational powers thereof, v (r ~ Q) , y so that these commute

with E , but noncommute with the u’s by the formula (r=’ 

a a+r 

residue of r Call the resulting sfield EJ = E(ua ’ v~) . Elements of
the center, to commute with elements of E y must lie in to commu-

te with all they must then lie in C(E)(v ) ~ and to commute with the u ’ a s ,
they must in fact lie in C(E)(v) . This is easily seen to be the center of EJ y
and it is infinite, contains e(E) , and El is infinite-dimensional over it, as

desired.

The above construction is not the simplest possible, but it has the following

property, which we shall find of use much later s EJ is the direct limit of the

sub-sfields Ed gotten by restricting the exponent of v to the subgroup 1 d Z .
(We may also restrict u to (1 d ) /Z y if we are feeling parsimonious. In any

(3) This is, in fact, equivalent to our conjecture, for, if the conjecture is
true, such a chain will be given ~E ’n~~~~~ ~ ]jt ’n«X) 2 Et
(unless D has finite center, in which case we adjoin a commuting indeterminate t

to all the intermediate stages, to assure that the middle state has infinite cen-

ter).
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case, the direct limit is with respect to the set of positive i-ntegers, ordered by

divisibility.) lie find that -the center of E!j is the sub-fi’:31cl of 

fixed under the operation of v1/ d , which has or.der d c ’rhe field just named,
has index d in which has index (E:e(E)) in 

We conclude that (E!d:C(E!d)) = d2(E:C(E)) .
Using this construction of E! , we can prove 1

THEOREM 8. - Let D be a sfield ; then there exist regular over-sfields E s D

with infini te center, and 

integer n 1 all o£ these yield ihe same rational function sfield D X1 , ..., X 1" =~.= 
- ~= - ,--o----~---.----,---..--- 

.6 i n

Me shall call this sfield D (X1 , ... , a ):’1 ’ :» ð. , Xn can be

specialized to any elements x1 , . .0. , x of any regular over-sfield F? of D 

Proof, - Dl is a sfield satisfy.ing the conditions of the first phrase ;

given any other such sfield E, lemma 7, applied to th.e inclusions E ç Dl y
tells us that D 

’"’ 
(fl )&#x3E;~ D 

Gi ven - any regular over-sfield E ever D} we wi=-l have D’fK’5 -Z--- D p,:n ," ,""’.B 
.’ .. which

We Can SPecialize t the Point ( o o . , , + En r E’’ .,

The next two sections, which consider geometric and algebraic ramifications o£

the above theorem, are not used in subsequent sections, and may be skipped.

10. - suppose D is a sfield, and E ; L?’ two over-sfields. The coordinate
~-~-~-~

functions on the disjoint union En u (which .cake of :en to mem.bers of

E , and points of to members of E;’ ), and the constant functions from D,

will generate a pre-sfiel-d of functions, and so induce a topology 011 Ell E’n."

Then the condition Hall rational identit ’s in Jl indeterminates, holding 3n 1?

with coefficients in D , hold in E f as is seen equivalent to the

condition dense u ,. 11 shall t’ sqy ...l.1 t ..,n 

o ""J"er . En U E’n will be irreducible, 1J. ’J 8Jld. only l.!.., one 0:( En or E’n

(say- dominates the other and is i tself irreducible ; an equivalent sta-tement

is that En is irreducible, and the indeterminates of D 
En 

" can Q8 
~

over D to any n elements of E f . Dominance is easil-y see;n to be reflexive aD.d

transitive. 0 If En and E’n dominate each other o.ver D , they w’il}. be call-ed

equivalent over D e

Thus, theorem 8 can be formulated as saying that all the affine spaces for

E as in the first sentence, are equi valen"t; over D) ,; the se.t of these is 

empty, and that they dominate any En where E is =-1egyilai" D .
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If two affine spaces En and E’n are equivalent over D, their lattices of

closed subsets need not be isomorphic. (Thus, over the rational nu.mbers ,~ 9 the ra-

tional and real affine lines are equivalent, but the latter contains the closed set

(~/2~ y - which has no equivalent in the former. Q is dense in R, but does

not meet every closed subset.) However, we can form a ’°universal" space for these
considerations : Let D(X y o .. , X ) designate the C(D)-algebra freely genera-
ted over D by n indeterminates, and let Sfield-Spec DX1 , ... y X ) be a

space consisting of one representative from each isomorphism class of pairs

(E , f) : E a sfield, f a map of ... , X ) into E whose image gene-

rates E . Each element u E D(X ~ ... ,Xn) induces a function on this space,

sending (E , f) to f(u) e E ; and these generate a pre-sfield of functions. Each

space E’ ( E’ , y any regular over-sfield of E ) can be mapped naturally into

Sfield-Spec D(X) by sending the point ( x , ... to (E0 , f) , where E
is the sub-sf ield of E generated by ... , n , and f : D(X) sends

X, to x.. Any closed set of En can be seen to be the inverse image of a closed

subset of Sfield-Spec D(X) 0

Theorem 8 can be shown equivalent to the statement that Sfield-Spec D(X) is ir-

reducible 9 and for any regular E with infinite center and infinite-dimensional

over its center, the image of En in this space is dense.

If R is any ring, A any irreducible closed subspace of Sfield-Spec R (de-
fined as above) y E the associated sfield, and f the natural map of R into E , ,
then (the point of Sfield-Spec R is isomorphic to) (E, f) will be the generic

point of the set A (the unique point having A as its closure). Thus, the gene-

ric point of the whole space Sfield-Spec D(X) is the one corresponding to the

sfield D(X) .

The operation "Sfield-Spec" may be compared w i th the operation of forming the re-

duced spectrum of a commutative ring in ordinary algebraic geometry.

11. - It would be desirable to know whether every relation ( /4B )

( ) Relations holding in y or indeed, any sfield, can be expressed in two
forms : " f = 0 " or " 

g is undefined". The second form has the advantage that it
is possible to ask whether it holds for any expression g in elements of our

sfield ; g while we can say whether f = 0 only when we know f is defined (i. e. ,
only when we have verified that all subexpressions of f, whose inverse is used in
f , are not zero). It is for this reason that we used the second form, in defining
"closed sets", for instance. But we here revert to the first form, because of its
greater familiarity 0 The reader should, in any case, be aware of how the informa-
tion conveyed by the two types of "relations" is equivalent.
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holding in D~X y ... y Xn)¿’ , can be "deduced algebraically" from the existence
of the inverses involved in the expression of f .

Let us look at this question in a more general light. Suppose we wish to construct

some kind of natural enveloping sfield for a ring R . The naive approach would be

to take any non-zero non-unit a E R , and adjoin an inverse (that is, adjoin to

R an indeterminate Y, and divide out by the two-sided ideal generated by 1 - Ya
and 1 - a Y ). In the resulting ring, we again choose a non-zero non-

invertible element (if there is any) , and adjoin its inverse. We continue, by trans-

finite induction, until we get a sfield (or until our construction suddenly "degene-

rates "9 if one of the ideals we divide out by turns out to contain the element 1 J).
To avoid the latter contingency, let us nake a more sophisticated analysis :

Let us define to be the two-sided ideal 0 ; R to be the two-

sided ideal of R generated by all elements a E R such that R(a ) is "degene-

rate", i. e., satisfies 1 E and ’ generally, let us define 

recursively as the two-sided ideal of R generated by all elements a such that

1 E k. (R(a" )) . One can show (by induction on i ) that, for all i and all rings

R, k.(R) is a set of elements which can be shown, by a finite calculation, to go

to zero, under any map of R into a sfield. Let us define k(R) to be the union

of the ascending chain k (R) ~ ~...
If 1 E k(R) , the problem of mapping R into any nondegenerate sfield, clearly

has no solution. In the contrary case, it is not hard to see, from the definition

of k(R) , that, for any a ~ k(R) , the ring will also satisfy

1 i k(R(a" )) . Furrthrr ’ a direct limit of such rings will have the same property.

Hence we may repeatedly adjoin inverses of elements not in k of our ring~ until

we reach a stage where this ideal contains all noninvertible elements ; at this

point, there is nothing we can do but divide out by this ideal ; 9 the result will be

a sfield. We thus see that k(R) consists precisely of the elements that go to ze-

ro under all maps into sfield. It is not hard to show that the sfields that can be

so constructed correspond to the generic points of the maximal irreducible closed

subsets of Sfield-Spec R .

Given R with 1 ~ k(R) , we can ask the question whether sfields constructed by
this method are unique. This is clearly equivalent to asking whether Sfield-Spec R

is irreducible 9 and the answer9 we have seen, is "yes" for the R are interes-

ted in, the free C(D)-algebra over D, D(X y ... , X ) . Another question is

whether the intermediate sfields ... , a. 20141 y ... ~ all have the property
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k(R~) == 0 . If this is so, we can say that a rational expression f is zero in all

sf ields into which we can map and only if, 9 this can be deduced f rom the

existence of those inverses ... , a which it involves (for that is just

to say that it is zero in ... , a ) ). Note that, for general R , it is

also equivalent to saying that the "naive" method of constructing enveloping
sfields really works for R .

We may note that the three complicated identities given on the first page of 

can all be reduced to polynomial tautologies, by multiplying on the right or left

by elements whose inverses appear, simplifying~ and repeating the process. Hence

these identities can indeed be deduced from the existence of the inverses they in-

volve. But, whether this is generally true, we cannot say.

Another independent question of interest is whether there is any algorithm for

determining whether a given expression is zero in D(X) .

12. - We shall now consider the case of sfields E finite-dimensional over

their centers. Here, we will be able to apply the concepts of classical algebraic

geometry, considering E as an affine variety Cd2 over its center C , and ra-

tional functions on E as rational maps from C n to C .

If E is any simple ring (in particular, a sfield) of dimension d2 over

its center, it is known that there exists a finite extension field K of C(E) ,
such that K is isomorphic over K to m d (K) , the ring of d x d matri-

ces over K. To make use of this fact, we shall have to allow ourselves to make

constructions of the sort D 

E n 
in cases where E is not a sfield, e. g.,

where E is a matrix ring. The first step, of constructing a pre-sfield of func-

tions on En, and topologizing this set by using "domains of definition", goes
over unchanged (except that the domain of definition of f will be the set where

f is defined and invertible~. However, the arguments by which we concluded (for E ,

a sfield with infinite center) that En was irreducible, and that our equivalence

classes of nondegenerate functions formed a sfield (specifically : that we could
take inverses) involved the fact that, if a function was non-zero at a point, its

inverse was defined there. To get a sfield of rational functions using a more
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general ring E (over some base sfield D, as usual, it is necessary to prove in
some manner that :

(l) If two rational functions on E with coefficients in Dare nondegenerate,

they have a common point of definition, and

(2) If a rational function of this sort is non-zero at any point, it is inverti-
ble at some point.

A situation in which these conditions are immediate is if E is rational-identity-

equivalent over D to some sfield E’ , or indeed, to any ring over D for which

these conditions hold (meaning that any rational function that is nondegenerate, or
is identically zero, over one, is so as well over the other).

LEMMA 9. - Let A be a finite-dimensional algebra with unit over a field K ,

and let L, L’ be extension fields of K of infinite cardinality. Then A ~ L ,

A ~ are rational-identity-equivalent over A ; 9 hence also over any subring

DA.

Proof. - It follows immediately from elementary algebraic geometry; q we must mere-

ly note that the multiplicative inverse of a E A will be a rational function of

a over K , computable with the help of the determinant over K of the map multi-

plication-by-a.

We shall also need :

10. - Let D be any sfiel d, and d , d’ positive integers. Then the ma-

trix ring can be mapped homomorphically over D into if, and

only if, djd’ y and the map is then unique up to a D-automorphism of 

Proof. - This may be restated : D can be made if, and only

if, and then in essentially only one way. This is immediate from the theory

of modules over matrix rings.

(in our application, the D of lemma 10 will be a field.)

LEMMA 11. - Let D be a sfield of finite dimension d2 over its center, and let

d’ be any positive integer. Then, all simple regular over-rings E ~ D , with in-

finite center, and of dimension d’ 2 d2 over this center, are rational-identity-

equivalent over D .

Proof. - By lemma 9, all over-rings of the form L) (equivalently :

m t (1~~ ~~ L )y for L an infinite over-field of will be equivalent to each

other, so it will suffice to show any E equivalent over D to such a ring.
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Given E, we can choose an extension field K 0 of such that

and an extension K of such tha.t

Then, upon tensoring with K , the inclusion of D in E becomes isomorphic to a

map of md(K) into m ~ (K) ; the inclusion of D ~ K in K) is also

such a homomorphism. By lemma 10, these maps are identical up to a K-automorphism
of the range ring, hence K and K) are isomorphic over D ~ hence
E and K) are rational-identity-equivalent over D, by lemma 9.

THEOREM 12. - Given D y d’ as in lemma 11, and a positive integer n, all

rings E of the class described permit construction of a sfield D ... , X ))y

and all these sfields are equal ; this sfield will be called ... , 

Proof. - Since all the rings referred to are rational-identity-equivalent, to

prove the first statement, it suffices to give one example which is a sfield : Dld
(see note (3) is such. 

CL

13. - It remains to determine, for given D (finite-dimensional over its cen-

ter) and n, whether all the sfields ... y X ))L ( d ranging over multi-

ples of (D:C(D)) and ~ ) are distinct, and which are specializations of which.

We shall begin with the first question.

If D is a field and n == 1 y D((X ))- y for any d , will be commutative ; it is

easy to see that it will thus be the rational-function field D(X ) ~ independent
of d . In all other cases y we shall show that is of dimension d2 over

its center, so that they are all distinct.

will be of dimension ~ d~ over its center, because, we recall, this is

equivalent to a certain polynomial ... , y ) being identically zero in

this sfield, which will be true, because it is so in the rings E from which the

sfield was constructed. (We define P~ - 0.) What we must prove, then, is that

P d t is not identically zero in for d’  d . (Note that this is obvious,
i f n ~ 2d’ .)

13. - Let K be an algebraically closed field, d a positive integer, and

ex any noncentral element of md (K) . Then there exists p e md (K) such that o~

and 13 generate as a K-algebra.
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Proof. - We can assume a in Jordan canonical form. Let ø be the matrix which

cyclically permutes the elements of our basis.

If a has more than one eigenvalue, the subalgebra it generates will contain a

projection onto a non-zero proper sub-space of a diagonal matrix y ~ with

some zeroes, and some ones on the diagonal. If there is only one eigenvalue, we can

get a nilpotent matrix, having d - 1 or fewer ones just above the diagonal, zeroes

elsewhere, and, multiplying by B, we get a y of the same sort as before. Conju-

gating y by various powers of 03B2, and multiplying together the results, we can

get a matrix with only a single diagonal entry 
" 1 ~. Multiplying this on the right

and on the left by all combinations of powers of S, we get the whole K-basis

LEMMA 14. - Let K be an infinite field, E a central simple K-algebra of di-

mension d2  and a a noncentral element of E. Then there exist p E E , and

polynomials Y) , ... , ,Y) K such that

Proof. - Straightforward, from lemma 13 and methods we have used before.

THEOREM 15. -Let D be a sfield, d a multiple of (DIC(D)) 9 or ~ , and n

a positive integer. Then, if either D is noncommutative or n&#x3E; ly D(X~~...~X~~
is of dimension d over its center.

Proof. - First, assume D finite-dimensional over its center ; (DI C(D) ) = 

and d  00 .

If D is noncommutative, its center will be an infinite field K . Let 

Then a will also be a noncentral element of E = Choose B and

f , ... , ’ f in lemma 14. Then the function

will be non-zero at the point (p , 0 , ... , 0) E hence non-zero.

So is not identically zero on 

Q. E. D.

If n&#x3E; 1 , we choose a, 6 E and ... , f~_~ as lemma

14, and look at X2) , ... , x~) ) at (a , 7 , 0 , o . o ) ,

and get the same result.

If D is still finite-dimensional over its center, but d = ~ , we note that

will not satisfy any equation P d = 0 (d  ex» , because it can be speciali-
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zed to a D~X))-, ~ d’ &#x3E; d , which does not satisfy this equation.

If D is infinite-dimensional over its center, the result is trivial p

14. -THEOREM 16. -Let D be a sfield of dimension d2 over its center,

let e , y e’ and n be positive integers, and suppose d &#x3E; 1 or n &#x3E; 1 . Then, a

necessary condition for there to exist a specialization of 800 , , in-
to 00. , y X ))d’ (respecting D and the X. ) is that  be &#x3E;e’ ; and a

sufficient condition is that e be divisible by e’ .

Proof. - The necessity of the first condition is clear s in the contrary case, we

have just constructed a polynomial in X , y that goes to 0 in the first sfield,

but not in the second. To see the sufficiency of the second condition, let E and

E’ be regular over-rings of D , having infinite centers y and with

Tensoring with appropriate base extensions, D, E and E’ become 

and where the maps of the first matrix ring into the other two can be

taken to be those induced by writing m (K) (resp. m~(K) ) as 

( resp. it is clear that, if e is divisible by e’ , we can

similarly embed m ,(K) in m (K) , hence every rational identity satisfied by
the latter ring over is also satisfied by the former. Hence, in particular,

every rational identity satisfied by E over D is satisfied by E’ .

Q. E. D.

AMITSUR claims, y in effect, that the first condition is not only necessary

but sufficient. However, his argument is based on theorem 1 and the proof

of this theorem uses maps of matrix rings which do not preserve the identity ele-

ment. Hence that theorem must be interpreted as referring only to polynomial rela-

tions not involving the unit, and in particular cannot be applied to those relations

by which the inverse of an element is defined.

It can be deduced from theorem 1 of [3]~ or, more directly, from the fact that

m a (K) embeds in ~(K) as a ring without unit whenever a ~ b , y that, in the si-

tuation of the above theorem, e &#x3E; e’ implies that all polynomi al identities hol-

ding in E with coefficients in D hold in E’ as well. It might appear that we

could extend this to rational relations with the help of lemma 5, using D! e for

the D of that lemma, and Dd , (which contains D! , ) for the E. Unfortunate-
ee e

ly, the polynomials to which the lemma refers would then have coefficients in D: ;
and De , r (as a sub-sfield of E ~ 9 in general, does not satisfy all such polyno-

mials that Dl does.
e
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It would be interesting to study the structure of (d2 = (D: (D))) .
Is it pure transcendental over (D) ?
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