SÉMINAIRE LELONG. ANALYSE

DENISE HUET

Perturbation singulière d'opérateurs elliptiques

Séminaire Lelong. Analyse, tome 2 (1958-1959), exp. nº 13, p. 1-7 http://www.numdam.org/item?id=SL 1958-1959 2 A9 0>

© Séminaire Lelong. Analyse (Secrétariat mathématique, Paris), 1958-1959, tous droits réservés.

L'accès aux archives de la collection « Séminaire Lelong. Analyse » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Faculté des Sciences de Paris

-:-:-:-

13-01

Séminaire d'ANALYSE (P. IELONG)

mars 1959

Année 1958/59

PERTURBATION SINGULIÈRE D'OPERATEURS ELLIPTIQUES

par Mlle Denise HUET

Position intuitive du problème. - Etant donnés un ouvert Ω de R^n , et 2 opérateurs aux dérivées partielles A et B, avec ordre de A > ordre de B, soit u_{ς} la solution d'un problème aux limites sur Ω , de

(1)
$$(\xi \hat{A} + B)u_{\xi} = f$$
, $\xi > 0$,

f, fonction donnée.

<u>Problème</u>. - Que fait u_{ξ} quand $\xi \to 0$? En particulier, converge-t-il, pour une certaine topologie, vers la solution u d'un problème aux limites sur Ω de

$$(2) Bu = f ?$$

Connue ordre de A est > ordre de B, lorsqu'on passe de (1) à (2), on "perd" des conditions aux limites.

L'utilisation de la methode de resolution des problèmes aux limites de Lions permet de resoudre ce problème (ainsi d'ailleurs que d'autres problèmes) pour des opérateurs "elliptiques".

1. Méthode de résolution des problèmes aux limites de Lions.

On se donne un espace de Hilbert H, dont on note le produit scalaire par $(\mathbf{u}$, $\mathbf{v})$ et la norme par $|\mathbf{u}|$.

On prend ensuite un autre espace de Hilbert V avec

(3) $V \subset H$ et V dense dans H.

Soit a(u, v) une forme sesqui-linéaire continue sur V.

Espace N et opérateur A attachés à a(u , v) sur V. - L'espace N est l'espace

des $u \in V$ tels quel $v \longrightarrow a(u , v)$ soit continue sur V muni de la topologie induite par H . Comme V est dense dans H , il existe alors $Au \in H$ tel que

$$a(u, v) = (Au, v)$$
 pour tout $v \in V$

Ceci définit A comme application linéaire de N dans H; on munit N de la topologie la moins fine rendant continues : $u \longrightarrow u$ de N dans V et $u \longrightarrow Au$ de N dans H.

Soit f donnée dans H .

Problème 1. - Existe-t-il $u \in N$, tel que Au = f?

Problème 2. - Existe-t-il $u \in V$ tel que a(u, v) = (Au, v) pour tout $v \in V$.

On a alors:

PROPOSITION 1. - Les problèmes 1 et 2 sont équivalents (voir la démonstration par exemple dans LIONS [9], p. 22).

Formes elliptiques sur V... a(u,v) est dite elliptique sur V, s'il existe $\alpha > 0$ tel que Re[a(u, u)] $\beta \alpha ||u||_V^2$ pour tout u ϵ V.

Si on décompose $a(u, u) = a_1(u, v) + i a_2(u, v)$, en partie hermitienne et anti-hermitienne, dire que $a_1(u, v)$ est elliptique revient à dire que $a_1(u, v)$ définit sur V un produit scalaire équivalent à $(u, v)_V$.

On a le théorème suivant.

THÉORÈME 1. - Si a(u, v) est elliptique sur V, Λ est un isomorphisme topologique de N sur H (pour la démonstration, voir LIONS [7], p. 15).

Alors les problèmes 1 et 2 admettent une solution unique.

Cas particuliers importants.

1º pour les equations aux dérivées partielles $\bigcap(\Omega) \subset V \subset H$, $\bigcap(\Omega)$ dense dans H.

2° pour les systèmes $(\mathfrak{O}(\Omega))^{\mathcal{V}} \subset \mathbb{V} \subset \mathbb{H} \subset (\mathfrak{O}(\Omega))^{\mathcal{V}}$.

C'est la condition u 6 N qui donne les conditions aux limites.

2. Perturbation singulière d'opérateurs elliptiques. Théorème de convergence. Exemples simples.

On prend maintenant 2 espaces de Hilbert V et W avec

(4) VCWCH, V dense dans H.

Puis $a(u \ , \ v)$, forme sesqui-linéaire continue sur V et $b(u \ , \ v)$ continue sur W , avec

 H_1 : b(u, v) est elliptique sur W

 H_2 : ξ a(u, v) + b(u, v) = b_{\xi}(u, v) est elliptique sur V quand $\xi \longrightarrow 0$. Soient N_{\xi} (resp. N_{\xi}) et B_{\xi} (resp. B) l'espace et l'opérateur attachés à b_{\xi}(u, v) (resp. b(u, v)) sur V (resp. V_(W) adhérence de V dans W muni de la topologie induite par W).

Soit f donneé dans H.

Soit u & la solution dans V de

(5) $\xi a(u_{\xi}, v) + b(u_{\xi}, v) = (f, v)$ pour tout $v \in V$, $\xi \longrightarrow 0$ (ou, ce qui est équivalent, de $B_{\xi} u_{\xi} = f$, $u_{\xi} \in N_{\xi}$).

Soit u la solution dans $\overline{V}(W)$ de

(6) $b(u, v) = (f, v) \text{ pour tout } v \in \overline{V}_{(W)} \text{ (ou ce qui est équivalent de } Bu = f, u \in \overline{N}_B)$

THEORÈME 2. - Lorsque $\{--\}$ 0, $u_{\xi} \longrightarrow u$ dans W, $\{\frac{1}{2}u_{\xi} \longrightarrow 0 \text{ dans } V$.

Résumé de la démonstration. - Il résulte de H_1 et H_2 , que u_ξ est borné dans W et que $\{2, u_\xi \}$ est borné dans $\{2,$

Alors de toute suite, on peut extraire une sous-suite u_{ξ_n} telle que $u_{\xi_n} \to W$ dans W faible, et $\xi_n = 0$ dans V. Par suite W vérifie

$$b(w, v) = (f, v)$$
 pour tout $v \in \overline{V}(W)$

On montre alors que $u_\xi \longrightarrow w$ dans V fort (donc $w \in \overline{V}(W)$ et w = u) et que $\xi \overline{Z} u_\xi \longrightarrow 0$ dans V .

Exemples d'application aux équations aux dérivées partielles. - La condition $V \subset W$ entraîne ordre de B_{ξ} > ordre de B . Nous prenons $H = L^{2}(\Omega)$.

Prenons

$$W = H^{1}(\Omega)$$
; $b|u$, $v) = \sum_{i=0}^{\infty} \left(\frac{\partial u}{\partial x_{i}}, \frac{\partial v}{\partial x_{i}}\right)_{0} + (u, v)_{0}$

((u, v) désigne le produit scalaire dans $L^2(\Omega)$), alors $B = -\Delta + 1$.

b(u, v) est bien elliptique sur $H^1(\Omega)$.

Nous prendrons pour V des sous-espaces V_i de \mathcal{V} : espace des $u \in H^1(\Omega)$, avec $\Omega u \in L^2(\Omega)$ muni de

$$(||\mathbf{u}||_{H^1}^2 + |\Delta \mathbf{u}|_0^2)^{\frac{1}{2}}$$

avec $a(u, v) = (\Delta u, \Delta v)_0$ qui définit $A = \Delta^2$.

Pour tout $\{>0\}$,

$$\{(\Delta u, \Delta v)_0 + \sum (\frac{\partial u}{\partial x_i}, \frac{\partial v}{\partial x_i})_0 + (u, v)_0\}$$

est elliptique sur 🥻 .

A chaque $V_{\bf i}$ correspond $N_{\bf \xi}^{\bf i}$ et $N_{\bf B}^{\bf i}$ dans ${\bf V}_{\bf i}(W)$. Soit ${\bf u}_{\bf \xi}^{\bf i}$ (resp. ${\bf u}^{\bf i}$) la solution de

$$(\xi \Delta^2 - \Delta + 1) u_{\xi}^{i} = f , u_{\xi}^{i} \in N_{\xi}^{i}$$

(resp. $(-\Delta + 1) u^{i} = f ; u^{i} \in N_{B}^{i}$).

Exemple 1. - La frontière Γ de Ω est régulière $\overline{V}_1 = \mathcal{V}$ donc $V_{1(W)} = H^1(\Omega)$.

Pour interpréter les conditions aux limites satisfaites par u^i_ξ et u^i , nous utilisons la formule de Green :

$$((\xi \Delta^2 - \Delta + 1) u, v)_0 = \int_{\Gamma} \frac{\partial}{\partial v} ((\Delta u - u) \overline{v} ds - \int_{\Gamma} \xi \Delta u \frac{\partial \overline{V}}{\partial v} ds + b_{\xi} | u, v)$$

Alors u_{ξ}^1 satisfait: $\frac{\partial}{\partial v}(\xi \Delta u_{\xi}^1 - u_{\xi}^1)\Big|_{\Gamma} = 0$ et $\Delta u_{\xi}^1\Big|_{\Gamma} = 0$.

tandis que u^1 satisfait $\frac{\partial u^1}{\partial v}|_{\Gamma} = 0$

Exemple 2. - $V_2 = H_0^2(\Omega)$ alors $\overline{V}_{2(W)} = H_0^1(\Omega)$:

On a les conditions :

$$u_{\xi}^{2}|_{\Gamma} = 0 \qquad \frac{\partial u_{\xi}^{2}}{\partial v}|_{\Gamma} = 0 \quad \text{et} \quad u^{2}|_{\Gamma} = 0.$$

$$\underline{\text{Exemple 3.-}} \quad v_{3} = \begin{cases} u \in H'_{0}(\Omega) & \overline{v}_{3}(W) = H_{0}^{1}(\Omega). \end{cases}$$

Par suite $u^2 = u^3$.

De plus
$$u_{\xi}^3 |_{\Gamma} = 0$$
 et $\Delta u_{\xi}^3 |_{\Gamma} = 0$.

Remarques. - L'exemple 1 montre que les conditions aux limites pour u_{ξ} peuvent dépendre de ξ , les exemples 2 et 3, que deux familles u_{ξ}^2 et u_{ξ}^3 de problèmes aux limites distincts peuvent avoir la même limite.

3. Amélioration du théorème de convergence.

Nous prenons maintenant : $H = L^2(\Omega)$, $W = H^{m'}(\Omega)$, et

$$b(u, v) = \sum_{|p| |q| \leq m'} (b_{pq} D^q u, D^p v)_0 \text{ avec } b_{pq} \in L^{\infty}(\Omega)$$

qui définit

$$B = \sum_{|p| |q| \leq m} (-1)^{|p|} D^{p}(b_{pq} D^{q}) .$$

Nous supposons b(u , v) elliptique sur $\operatorname{H}^{m'}(\Omega)$. Puis pour V des sousespaces fermés de $\operatorname{H}^m(\Omega)$, m > m' . et

$$a(u, v) = \sum_{|p| |q| \leq m} (a_{pq} D^{q}u, D^{p}v)_{0}, \quad a_{pq} \in L^{\infty}(\Omega)$$

qui définit

$$A = \sum_{|p| |q| \leq m} (-1)^{|p|} D^{p}(q_{pq} D^{q}) .$$

Nous supposons que, lorsque $\xi \longrightarrow 0$,

$$b_{\xi}(u, v) = \{a(u, v) + b(u, v)\}$$

elliptique sur V .

Alors, d'après le théorème 2, $u_{\xi} \longrightarrow u$ dans $H^{m'}(\Omega)$ et $\xi^{\frac{1}{2}}u_{\xi} \longrightarrow 0$ dans $H^{m}(\Omega)$.

Nous allons améliorer ce théorème, en faisant des hypothèses de régularité supplémentaires sur Ω , ou sur les coefficients a pq et b pq •

1° Nous supposons Ω quelconque mais a_{pq} et b_{pq} , indéfiniment dérivables sur Ω .

Nous savons alors, d'après FRIEDRICHS [2], que pour tout ouvert borné A, avec $\overline{A} \in \Omega$, tel que $f \in H^k(A)$, alors $u_{\xi} \in H^{2m+k}(A)$ et $u \in H^{2m^{1}+k}(A)$. Dans ces conditions, nous avons :

THÉORÈME 3. - Pour tout ouvert borné A , avec $\overline{A} \subset \Omega$, pour lequel $f \in H^k(A)$, alors $u_{\varepsilon} \longrightarrow u$ dans $H^{2m'+k}(A)$, $\varepsilon^{\frac{1}{2}} u_{\varepsilon} \longrightarrow 0$ dans $H^{m+m'+k}(A)$ et $\varepsilon u_{\varepsilon} \longrightarrow 0$ dans $H^{2m+k}(A)$.

2° Ω a pour frontière Γ une variété indéfiniment différentiable de dimension n-1; a_{pq} et b_{pq} sont indéfiniment dérivables dans Ω . De plus $V=H_0^m(\Omega)$ ou $H^m(\Omega)$.

Alors d'après NIRENBERG [10], BROWDER [1], LIONS [9], on sait que si f $\in H^k(\Omega)$ alors $u_{\xi} \in H^{2m+k}(\Omega)$ et $u \in H^{2m'+k}(\Omega)$.

Dans ces conditions nous avons les résultats suivants :

THEOREME 4. - Sur toute carte locale V, $D_{\mathbf{t}}^{\mathbf{j}} u_{\xi} \xrightarrow{\mathbf{m'}} D_{\mathbf{t}}^{\mathbf{j}}(\mathbf{u})$ ($D_{\mathbf{t}}^{\mathbf{j}}$ désigne les dérivées tangentielles) dans $H^{\mathbf{m'}}(V)$ pour $|\mathbf{j}| \leq k + m'$, $\xi \stackrel{1}{\geq} D_{\mathbf{t}}^{\mathbf{j}} u_{\xi} \longrightarrow 0$ dans $H^{\mathbf{m}}(V)$ pour $|\mathbf{j}| \leq k + m'$, et $\xi D_{\mathbf{t}}^{\mathbf{j}} u_{\xi} \longrightarrow 0$ dans $H^{\mathbf{m}}(V)$ pour $|\mathbf{j}| \leq k + m$.

Mais u_{ξ} ne converge pas vers u dans $H^{2m'+k}(\Omega)$.

En effet, reprenons l'exemple 2 du paragraphe 2 . Si $u_{\xi} \longrightarrow u$ dans $H^2(\Omega)$, on aurait pour toute $f \in L^2(\Omega)$, $u \in H_0^2(\Omega)$, ce qui est absurde. (Tous ces résultats sont résumés dans D. HUET [3] et [4]).

BIBLIOGRAPHIE

- [1] BROWDER (Felix E.). On the regularity properties of solutions of elliptic differential equations, Comm. pure and appl. Math., t. 9, 1956, p. 351-361.
- [2] FRIEDRICHS (K. O.). On the differentiability of the solutions of linear elliptic differential equations, Comm. pure and appl. Math., t. 6, 1953, p. 299-326.
- [3] HUET (Mile D.). Phénomènes de perturbation singulière, C. R. Acad. Sc. Paris, t. 244, 1958, p. 1438-1440.
- [4] HUET (Mile D.). Phénomènes de perturbation singulière, C. R. Acad. Sc. Paris, t. 246, 1958, p. 2096-2098.
- [5] HUET (Mlle D.). Phénomènes de perturbation singulière, C. R. Acad. Sc. Paris, t. 247, 1958, p. 2273-2276.
- [6] HUET (Mlle D.). Phénomènes de perturbation singulière, C. R. Acad. Sc. Paris, t. 248, 1959, p. 58-60.
- [7] LIONS (Jacques-Louis). Problèmes aux limites en théorie des distributions, Acta Math., t. 94, 1955, p. 13-153 (Thèse Sc. math. Paris. 1954).
- [8] LIONS (Jacques-Louis). Sur les problèmes aux limites du type dérivée oblique, Annals of Math., Series 2, t. 64, 1956, p. 207-239.
- [9] LIONS (Jacques-Louis). On elliptic partial differential equations (Cours professé à Bombay, 1957).
- [10] NIRENBERG (Louis). Remarks on strongly elliptic partial differential equations, Comm. pure and appl. Math., t. 8, 1955, p. 641-675.