# SÉMINAIRE SCHWARTZ

# BERNARD MALGRANGE Multiplicateurs de $\mathcal{F}L^p$ (suite)

*Séminaire Schwartz*, tome 4 (1959-1960), exp. n° 3, p. 1-6 <a href="http://www.numdam.org/item?id=SLS\_1959-1960\_4\_A3\_0">http://www.numdam.org/item?id=SLS\_1959-1960\_4\_A3\_0</a>

#### © Séminaire Schwartz

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



# MULTIPLICATEURS DE FLP (suite)

#### par Bernard MALGRANGE

#### 1. Le théorème de Sobolev.

Considérons l'espace  $\mathbb{R}^n$  (n > 1) et un nombre réel  $\chi$  tel que 0 <  $\chi$  < 1. La fonction  $x \to \frac{1}{|x|} \frac{m}{(1-\chi)n}$  est localement intégrable, définit donc une distribution tempérée et on sait que  $\mathcal{F} = \frac{1}{|x|} \frac{1}{(1-\chi)n} = \frac{K}{|\xi| \chi^n}$  ( K , une constante).

THÉORÈME (SOBOLEV, [2]). - L'opérateur de convolution  $\frac{1}{x}(1-y)n$  \* est de type (p, q) dès que  $\frac{1}{p} - \frac{1}{q} = y$  et 1 \infty (i. e. lorsque 1 \frac{1}{y}.)

Deux lemmes seront utiles pour la démonstration :

(inégalité démontrée dans l'exposé numéro 1).

LEMME 2 (Marcel RIESZ). - Soient p et p' tels que  $1 \le p \le 2$  et  $\frac{1}{p} + \frac{1}{p}$ , = 1; l'application  $\phi \longrightarrow \mathcal{F} \phi$  est alors de type (p, p').

En effet, pour p = 1 et p = 2, le résultat est immédiat; le cas général résulte ensuite du théorème d'interpolation de Marcel RIESZ.

Donnons le principe de la démonstration du théorème :

a. En raisonnant comme à l'exposé nûméro 2, on montre que  $\frac{1}{|x|(1-y)n}$  \* est de type  $(1, \frac{1}{1-y})$  faible.

b. Supposons le théorème acquis pour un couple (p,q) tel que  $1 et <math>\frac{1}{p} - \frac{1}{q} = \chi$ . Par dualité, le théorème sera vrai pour le couple (q', p') où  $\frac{1}{p} + \frac{1}{p} = 1$  et  $\frac{1}{q} + \frac{1}{q} = 1$  (en effet, cette fois,  $\frac{1}{q} - \frac{1}{p} = \chi$  et  $1 < q' < \frac{1}{\chi}$ ). On a (p,q) = (q',p') si et seulement si  $p = \frac{2}{1+\chi}$ , et lorsque p croît de  $1 = \frac{2}{1+\chi}$ , q' décroît de  $\frac{1}{\chi}$  à  $\frac{2}{1+\chi}$ ; il suffit donc de démontrer le théorème

pour 
$$1 .$$

c. Démonstration du théorème dans le cas  $p = \frac{2}{1+y}$ , et donc  $q = \frac{2}{1-y}$ : il faut montrer que  $\left\|\frac{1}{|x|(1-y)n}* \psi\right\|_q \leqslant C \|\psi\|_p$ .

Puisqu'on a 1 < q' < 2 et  $\frac{1}{q} + \frac{1}{q'} = 1$ , il suffit donc (lemme 2) de démontrer que

$$\|\mathcal{F}\left[\frac{1}{|\mathbf{x}|(1-\gamma)\mathbf{n}} * \mathcal{F}\right]\|_{\mathbf{q}}, \leqslant c_1 \|\mathbf{y}\|_{\mathbf{p}} \qquad ;$$

ou encore, q' étant égal à p, que  $\|\frac{1}{|\xi|\chi^n} \mathcal{F}\psi\|_{\frac{2}{1+\gamma}} \leqslant c_2 \|\psi\|_{\frac{2}{1+\gamma}}$ ,

inégalité qui est conséquence immédiate du lemme 1, puisque 1 .

d. Résumons:

$$\frac{1}{|x|^{(1-x)n}} * \text{ est de type } (1, \frac{1}{1-x}) \text{ faible}$$

$$\text{est de type } (\frac{2}{1+x}, \frac{2}{1-x})$$

Par le théorème de Marcinkiewicz, cet opérateur est donc de type (p, q) pour 1 , ce qui achève la démonstration.

REMARQUE. - La démonstration qui précède est due à ZYGMUND [3].

## 2. Opérateurs intégraux singuliers.

Dans tout ce paragraphe, on désignera par  $\Omega$  la sphère unité de  $\mathbb{R}^n$ , et par  $\mathbb{R}^n$  une fonction définie dans  $\mathbb{R}^n$  -  $\{0\}$ , à valeurs complexes, satisfaisant aux conditions suivantes :

- 1.  $_{\mathcal{H}}$  est positivement homogène de degré n dans  $_{\mathbf{R}}^{n}$   $\left\{\mathbf{0}\right\}$  .
- 2.  $\varkappa(\omega)$  est intégrable sur la sphère  $\Omega$  .
- 3.  $\int_{\Omega} \Re(\omega) \ d\omega = 0.$

1° On se propose de définir la distribution "valeur principale de  $\mathscr{H}$ " (v. p. de  $\mathscr{H}$ ). Donnons-nous d'abord  $\varepsilon>0$ , la boule fermée  $B_{\xi}$  de centre 0 et de rayon  $\varepsilon$  et choisissons  $\mathscr{A}\in\mathscr{O}(\mathbb{R}^n)$ ,  $\mathscr{A}=1$  dans  $B_{\xi}$ .

a. Soit  $\Psi \in \mathcal{D}(\mathbb{R}^n)$  quelconque:  $\Psi - \Psi(0) \bowtie \in \mathcal{D}$  et, de plus,  $\Psi - \Psi(0) \bowtie = O(|\mathbb{x}|)$  lorsque  $\mathbb{x} \longrightarrow 0$ . On en déduit que

$$\int_{\mathbb{R}^n} \mathbf{x}(\mathbf{x}) \left[ \varphi(\mathbf{x}) - \varphi(0) \, \alpha(\mathbf{x}) \right] \, d\mathbf{x}$$

b. L'intégrale  $\begin{cases} & \chi(x) \neq (x) \text{ d}x \text{ ne dépend pas de } \xi' \text{ , lorsque} \\ & \xi' \leqslant \epsilon \text{ :cela résulte de l'hypothèse} \end{cases} \int_{\Omega} \chi(\omega) \ d\omega = 0 \text{ , et de l'homogénéité de } \chi \text{ .}$  On posera :

v. p. 
$$\int_{\mathbb{R}^n} \mathcal{H}(x) \, d(x) \, dx = \int_{|x|, \xi} \mathcal{H}(x) \, d(x) \, dx$$

c. Considérons enfin l'application

$$\psi \to \int_{\mathbb{R}^n} \Re(x) \left[ \psi(x) - \psi(0) \otimes (x) \right] dx + \psi(0) \text{ v. p. } \int_{\mathbb{R}^n} \Re(x) \otimes (x) dx$$

on démontre alors immédiatement la proposition suivante :

PROPOSITION.

- 1. & étant fixée, on définit ainsi une distribution k;
- 2. Considérons, pour  $\xi > 0$ , la distribution  $k_{\xi}$  définie par  $\langle k_{\xi}, \psi \rangle = \int_{|x| > \xi} \Re(x) \psi(x) dx$

on a 
$$k = \lim_{\epsilon \to 0} k_{\epsilon}$$
 dans  $\mathcal{J}_{\delta}$ .

3. k ne dépend donc pas du choix de 🗷.

DÉFINITION. - k s'appelle la distribution valeur principale associée à  $\mathcal{X}$ ; l'opérateur de convolution  $\psi \to k * \psi$  s'appelle opérateur intégral singulier associé à  $\mathcal{X}$ .

Dans la suite, pour  $\xi = 0$ , on posera  $k_0 = k$ .

2° Le premier résultat concernant le type des opérateurs intégraux singuliers est donné par le théorème suivant:

THÉOREME 1.(cf. [1]). - Soit p tel que 1 < p < + co, et supposons \* une fois continuement différentiable.

- 1. L'opérateur intégral singulier associé est de type (p, p).
- 2. Les opérateurs  $k_{p} * sont de type (p, p)$ .
- 3. Les opérateurs  $k_{\xi}$  \* forment, pour  $\xi$  > 0 variable, un ensemble borné dans  $\mathcal{L}(L^p$ ,  $L^p$ ) (muni de sa norme); ils convergent, lorsque  $\xi \to 0$ , vers k \* dans l'espace  $\mathcal{L}_c(L^p$ ,  $L^p$ ). (Les applications linéaires continues de  $L^p$  dans  $L^p$ , muni de la topologie de la convergence uniforme sur les compacts).

Grâce aux résultats de l'exposé numéro 2, il suffit de vérifier les propriétés suivantes :

- 1. Pour  $\xi > 0$ ,  $k_{\xi}$  est une fonction localement intégrable dans  $\mathbb{R}^{n} \{0\}$ .
- 2. Les distributions  $K_{\xi} = \mathcal{F} k_{\xi}$  forment, pour  $\xi > 0$ , une partie bornée de  $L_{\xi}^{\infty}$ .
- 3. Il existe C > 0 tel que, pour tout E > 0, et tout E > 0, la relation  $|y| \le \frac{t}{2}$  entraîne

$$\int_{|\mathbf{x}| \geq t} |\mathbf{k}_{\xi}(\mathbf{x} - \mathbf{y}) - \mathbf{k}_{\xi}(\mathbf{x})| d\mathbf{x} \leq C$$

la condition 1 est trivialement vérifiée.

Vérification de la condition 2. - Choisissons  $\beta \in \mathcal{O}$ ,  $\beta = 1$  pour  $|x| \le 2$ ,  $\beta = 0$  pour  $|x| \ge 3$ .

- a. Cas où  $\xi=0$ . k est un courant de degré 0 , homogène de degré n ; donc f k = K est homogène de degré 0 . Pour montrer que f k  $\in L_{\xi}^{\infty}(\mathbb{R}^n)$  , il suffit donc de prouver que la restriction K' de K à  $1<|\xi|<2$  est dans f concept (f k) . Pour ce faire, écrivons f k = f k + f k .
- 1.  $\beta$ k est à support compact, donc  $\mathcal{F}(\beta k)$  est analytique entière : sa restriction à  $1 < |\xi| < 2$  est bien dans L  $^{\infty}(1 < |\xi| < 2)$ .
- 2.  $(1-\beta)$  k est une fois continuement différentiable dans  $\mathbb{R}^n$ ;  $\frac{\partial}{\partial x_i}[(1-\beta)k]$  est continue, égale à  $\frac{\partial k}{\partial x_i}$  si |x|>3, donc est  $O(\frac{1}{|x|^{n+1}})$  lorsque  $|x|\to +\infty$ : on en déduit  $\frac{\partial}{\partial x_i}[(1-\beta)k]\in L^1(\mathbb{R}^n)$  et finalement

$$f_i \mathcal{F}[(1-\beta) \ k] \in L_{\xi}^{\infty}(\mathbb{R}^n)$$
, d'où le résultat.

- b. Cas où  $\xi > 0$ . Les divers  $\mathcal{F}_{k_{\xi}}$  étant déduits les uns des autres par homothétie, on peut supposer  $\xi = 1$ . Soit donc  $k_{1}$ , une fois continuement différentiable pour  $|\mathbf{x}| > 1$ . Pour prouver que  $\mathcal{F}_{k_{1}} \in L_{\xi}^{\infty}(\mathbb{R}^{n})$ , on écrit encore  $k_{1} = \beta k_{1} + (1 \beta) k_{1}$ .
- 1.  $/3k_1$  est à support compact et <u>bornée</u>, donc  $/3k_1 \in L_X^1(\underline{\mathbb{R}}^n)$  et par suite  $.\mathcal{F}/3k_1 \in L_X^{\infty}(\underline{\mathbb{R}}^n)$ .
- 2.  $(1 \beta) k_1 = (1 \beta) k \text{ car } 1 \beta = 0 \text{ si } |x| < 2$ , donc  $(1 \beta) k_1 = k \beta k$ .

On sait que  $\mathcal{F}_k \in L_{\xi}^{00}(\mathbb{R}^n)$  donc  $\mathcal{F}(\beta k) = \mathcal{F}_{\beta} * \mathcal{F}_k \in L_{\xi}^{00}(\mathbb{R}^n)$ .

Finalement  $\mathcal{F}[(1-\beta) \ k_1] = \mathcal{F}_k - \mathcal{F}(\beta k) \in L_{\xi}^{\infty}(\mathbb{R}^n)$ .

## Vérification de la condition 3. -

a. Cas où  $\xi=0$ . - Par raison d'homogénéité de k on peut supposer t=1. Soit donc |x|>1 et  $|y|<\frac{1}{2}$ , et I le segment [x,x-y]. K est une fois continuement différentiable sur I, et donc

$$|\mathcal{X}(x - y) - \mathcal{X}(x)| \le |y| \sup_{z \in T} \left| \frac{\partial \mathcal{X}}{\partial x_i}(z) \right| \le \frac{C_2}{|x|^{n+1}}$$

puisque K est homogène de degré - n . (  $C_2$  indépendant de x et y ) D'où

$$\int_{|\mathbf{x}| \ge 1} |\mathcal{X}(\mathbf{x} - \mathbf{v}) - \mathcal{X}(\mathbf{x})| \, d\mathbf{x} \le C_2 \int_{|\mathbf{x}| \ge 1} \frac{d\mathbf{x}}{|\mathbf{x}|^{n+1}} \le C$$

b. Cas où  $\xi > 0$ . - On peut, par homothétie, supposer  $\xi = 1$  (mais t quelconque!) Fixons t et y et faisons une partition de l'ensemble des x tels que |x| > t:

Soit 
$$0_1 = \{x ; |x| \ge t , |x| > 1 , |x - y| > 1 \}$$

$$0_2 = \{x ; |x| \ge t , |x| > 1 , |x - y| \le 1 \}$$

$$0_3 = \{x ; |x| \ge t , |x| \le 1 , |x - y| \ge 1 \}$$

$$0_4 = \{x ; |x| \ge t , |x| \le 1 , |x - y| \le 1 \}$$

 $-\underline{Sur} \quad 0_1 : k_1 = \mathcal{H} \quad donc \quad (cf. \ le \ cas \quad \epsilon = 0) \int_{0_1} |k_1(x - y) - k_1(x)| \, dx \leq C_1$ 

-Sur  $0_2$ : on a |x| > 1,  $|x - y| \le 1$ ,  $|y| \le \frac{t}{2}$  donc  $1 \le |x| \le 1 + \frac{t}{2}$ ; et |x| > t; donc  $0_2$  est vide si t > 2. Si  $t \le 2$ ,  $0_2$  est contenu dans  $1 \le |x| \le 2$ ; dans tous les cas

$$\int_{0_2} |k_1(x - y) - k_1(x)| dx \le \int_{1 \le x \le 2} |\chi(x)| dx \le C_2$$

-Sur  $0_3$ : par un calcul analogue à celui fait pour  $0_2$ , on trouve:  $\int_{0_3} |\mathbf{k}_1(\mathbf{x} - \mathbf{y}) - \mathbf{k}_1(\mathbf{x})| \, d\mathbf{x} \le \int_{1/2 \le |\mathbf{x}| \le 1} |\mathbf{x}(\mathbf{x})| \, d\mathbf{x} \le C_3$ 

 $-\underline{Sur} \quad O_4 : \quad k_1(x) = 0 \quad \text{et} \quad k_1(x - y) \quad \text{aussi.}$  Donc

$$\int_{O_A} |k_1(x - y) - k_1(x)| dx = 0$$

REMARQUE. - Les raisonnements précédents pourraient s'appliquer (avec des modifications de détail) si l'on supposait seulement que  $\mathcal{K}(\omega)$  vérifie une condition de Hölder d'ordre  $\overset{\checkmark}{\sim} > 0$ . Nous ne nous y attarderons pas, car nous obtiendrons ultérieurement (cf. exposé numéro 4) des résultats plus précis par une autre méthode.

#### BIBLIOGRAPHIE.

- [1] CALDERÓN (A. P.) and ZYGMUND (Antoni). On the existence of certain singular integrals, Acta Math., t. 88, 1952, p. 85-139.
- [2] SOBOLEV (S.). Ob odnog teoreme funkcionad'nogo anadiza, Mat. Sbornik (Recueil mathématique), N. S., t. 4 (46), 1938, p. 471-497.
- [3] ZYGMUND (Antoni). On a theorem of Marcinkiewicz concerning interpolation of operations, J. Math. pures et appl., Série 9, t. 35, 1956, p. 223-248.