SÉMINAIRE SCHWARTZ

L. SCHWARTZ

Suite de la démonstration (cf exposé n° 5)

Séminaire Schwartz, tome 1 (1953-1954), exp. nº 6, p. 1-5

http://www.numdam.org/item?id=SLS_1953-1954__1_A7_0

© Séminaire Schwartz

(Secrétariat mathématique, Paris), 1953-1954, tous droits réservés.

L'accès aux archives de la collection « Séminaire Schwartz » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

-:-:-:-

Exposé nº 6

Suite de la démonstration (Cf. Exposé nº 5)

E. Si u parcourt un compact de $E \otimes F$ contenu dans la semi-boule ouverte $P_0 \otimes q_0(u) < 1$, on peut supposer que λ reste sur un compact de $\ell(\rho)$ (K) contenu dans la semi-boule N_1, ρ (λ) < 1.

En effet la première semi-boule est l'image par ψ de la deuxième. Il suffit alors d'appliquer le théorème suivant : Si ξ est un espace métrique complet , R une relation d'équivalence ouverte sur ξ , Ω un ouvert de ξ , tout compact de ξ /R contenu dans l'image canonique de Ω est l'image canonique d'un compact de Ω . Prendre pour ξ l'espace $\ell^1_{(P)}(K)$, pour Ω l'ouvert $\ell^1_{(P)}(K)$, pour $\ell^1_{(P)}(K)$, pour $\ell^1_{(P)}(K)$ est bien ouverte comme relation d'équivalence définie par ξ . R est bien ouverte comme relation d'équivalence sur un E.V.T. D'autre part, d'après $\ell^1_{(P)}(K)$ semi-boule $\ell^1_{(P)}(K)$ est bien l'image par ξ de la semi-boule $\ell^1_{(P)}(K)$ est bien l'image par ξ de la semi-boule $\ell^1_{(P)}(K)$ est bien l'image par ξ de la semi-boule $\ell^1_{(P)}(K)$ est bien l'image par ξ de la semi-boule

F. Pour chaque compact H de E \otimes F , il existe deux suites $\{x_n\}$ et $\{y_n\}$ $\{x_n \in E$, $y_n \in F$) telles que pour tout $u \in H$, on ait

$$u = \sum_{n=0}^{\infty} \lambda(n) x_n \otimes y_n \quad \underline{\text{avec}} \sum_{n=0}^{\infty} |\lambda(n)| p_{\chi}(x_n) q_{\chi}(y_n) < \infty$$
(pour tout χ)

Soit $\lambda \in \mathcal{L}_{(p)}^1$ (K). Pour tout χ , l'ensemble des k tels que λ (k) $p_{\chi}(x_k)$ $q_{\chi}(y_k) \neq 0$ est dénombrable. L'ensemble des χ étant dénombrable, l'ensemble des k tels que λ (k) $p_{\chi}(x_k)$ $q_{\chi}(y_k) \neq 0$ pour au moins un χ , est dénombrable; or il contient l'ensemble N_{χ} des k tels que χ (k) χ 0, car pour tout χ il existe χ tel que χ (χ 1) χ 0.

Si λ parcourt un ensemble dénombrable \wedge , $\lambda(k)$ reste nul sauf sur un ensemble dénombrable fixe $N_0 = \bigcup_{\lambda \in \wedge} N_{\lambda}$, et ceci reste vrai si λ décrit L puisque L, compact métrisable, admet un sous-ensemble dénombrable dense \wedge . Il suffit alors d'identifier à N, ensemble des entiers $\geqslant 0$, l'ensemble N_0 des k en dehors duquel $\lambda(k)$ reste nul pour $\lambda \in L$ (ou u = H). Les mesures ρ s'identifient à des mesures sur N, et l'on a

G. Quand u varie dans H , λ varie dans un compact L de $\ell_{(\rho)}^{1}(N)$. Si H est contenu dans la semi-boule $(p_0 \otimes q_0)(u) < 1$, L est contenu dans

la semi-boule $\sum_{n=0}^{\infty} |\lambda(n)|_{p_0}(x_n) q_0(y_n) \leq 1$.

H. Lemme du type Du Bois Reymond: Il existe deux suites $\mu(n)$, $\beta(n)$ de nombres > 0 telles que

$$\begin{cases} \lim_{n \to \infty} \frac{p \cdot \chi(x_n)}{\mu(n)} = \lim_{n \to \infty} \frac{q \cdot \chi(y_n)}{y(n)} = 0 & \text{pour tout } \chi \\ \sum_{n=0}^{\infty} |\lambda(n)| \mu(n) \cdot \chi(n) < \infty \end{cases}$$

et que de plus pour $\lambda \in L$, λ reste dans un compact L' de l'espace $\ell^1(N)$ relatif à la mesure unique ℓ dont la masse au point $n \in N$ est $\ell^1(N) = \ell^1(N)$ $\ell^1(N)$.

On supposera désormais que γ parcourt N, et que p_{γ} et q_{γ} sont des suites croissantes de semi-normes. L étant compact, on peut (propriété des compacts d'un espace ℓ^1) déterminer une suite d'entiers croissants : $n_0 = 0$, n_1 , ..., n_{γ} ,... telle que pour tous les $\lambda \in L$, on ait

$$\sum_{n \geqslant n} |\lambda(n)|_{p_{\chi}}(x_n) q_{\chi}(y_n) \leq \frac{1}{8^{\frac{1}{2}}}.$$

Déterminons $\mu(n)$ et y(n) par la suite des conditions :

Pour
$$n_{\gamma} \leq n < n_{\gamma+1}$$
, on a
$$\left\{ \begin{array}{l} \mu(n) = \sup \left[p_{\gamma}(x_n) 2^{\gamma}, \xi_n \right] \\ y(n) = \sup \left[q_{\gamma}(y_n) 2^{\gamma}, \xi_n \right] \end{array} \right.$$

 $\mathcal{E}_\mathtt{n}$ étant à déterminer . Alors ;

a) Pour $\delta \geqslant \chi$ et $n_{\delta} \leqslant n < n_{\delta+1}$, on a $\frac{p_{\chi}(x_n)}{\gamma(n)} \leqslant \frac{p_{\chi}(x_n)}{p_{\delta}(x_n) 2^{\delta}} \leqslant \frac{1}{2^{\delta}}$

donc $\lim_{n\to\infty} \frac{p_{\chi}(x_n)}{\mu(n)} = 0$ et de même $\lim_{n\to\infty} \frac{q_{\chi}(y_n)}{\nu(n)} = 0$

 $\leq \sum_{\substack{n \geqslant n \\ \gamma}} |\lambda(n)| 4^{\gamma} p_{\gamma}(x_n) q_{\gamma}(y_n) + \sum_{\substack{n \geqslant n \\ \gamma}} |\lambda(n)| 2^{\gamma} p_{\gamma}(x_n) \varepsilon_n + \sum_{\substack{n \geqslant n \\ \gamma}} |\lambda(n)| \varepsilon_n^2 + \sum_{\substack{n \geqslant n \\ \gamma}} |\lambda(n)| \varepsilon_n^2$

Le premier terme est $\leqslant \frac{1}{2^{8}}$. Comme, pour tout n, $| \lambda (n) |$ reste borné pour $\lambda \in L$, on peut choisir la suite $\mathcal{E}_{n} > 0$ telle que la somme des 3 autres termes soit $\leqslant \frac{1}{2^{8}}$. On a alors :

$$\frac{\sum_{\substack{n \leq n < n \\ \forall +1}} |\lambda(n)| \mu(n) \mathcal{D}(n) \leq \frac{1}{2^{\frac{1}{N-1}}}}{\text{et} \sum_{\substack{n \geq n \\ \forall \neq 1}} |\lambda(n)| \mu(n) \mathcal{D}(n) \leq \frac{1}{2^{\frac{1}{N-2}}}$$

Comme $n_0 = 0$, λ reste dans un compact de ℓ_p^1 (N) .

c) Grâce à l'introduction des \mathcal{E}_n , on a $\mu(n) \neq 0$, $\nu(n) \neq 0$.

I. Il existe deux suites $\left\{x_{n}^{i}\right\}$, $\left\{y_{n}^{i}\right\}$ telles que $\lim_{n \to \infty} x_{n}^{i} = 0$, $\lim_{n \to \infty} y_{n}^{i} = 0$ et que pour tout $u \in H$, on ait $u = \sum_{n=0}^{\infty} \chi'(n) x_{n}^{i} \otimes y_{n}^{i}$.

Il suffit de poser $x_n' = \frac{x_n}{\mu(n)}$, $y_n' = \frac{y_n}{\nu(n)}$ $\lambda'_n = \lambda(n)\mu(n)\nu(n)$.

On a pour tout $\begin{cases} & \lim_{n \to \infty} p_{\gamma}(x_n) = \lim_{n \to \infty} \frac{p_{\gamma}(x_n)}{\gamma(n)} = 0 \text{ donc } \lim_{n \to \infty} x_n^{\prime} = 0, \text{ et} \end{cases}$ de même $\lim_{n \to \infty} y_n^{\prime} = 0.$

D'autre part $\sum_{n=0}^{\infty} |\lambda'(n)| = \sum_{n=0}^{\infty} |\lambda(n)| \mu(n) \nu(n) \le 4 < \infty$ et de plus $\sum_{n \ge n} |\lambda'(n)| \le \frac{1}{2^{N-2}}$, donc λ' reste dans un compact L' de ℓ_1 .

J. Fin de la construction.

Pour $\lambda' \in L'$, on a $\sum_{n=0}^{\infty} |\lambda'(n)| p_0(x_n) q_0(y_n) = \sum_{n=0}^{\infty} |\lambda(n)| p_0(x_n) q_0(y_n) < 1$,

donc $\leqslant 1 - \alpha < 1$. Déterminons N tel que

Posons $x_n'' = x_n''$, $y_n'' = y_n''$, $\lambda''(n) = \lambda'(n)$ pour n > N, et pour $n \le N$

$$\begin{cases} \mathbf{x''}_{n} = \frac{\mathbf{x'}_{n}}{\mathbf{p}_{0}(\mathbf{x'}_{n})} & \mathbf{y''}_{n} = \frac{\mathbf{y'}_{n}}{\mathbf{q}_{0}(\mathbf{y'}_{n})} & \lambda''_{n} = \lambda'_{n} \mathbf{p}_{0}(\mathbf{x'}_{n}) \mathbf{q}_{0}(\mathbf{y'}_{n}) \\ & \text{si} & \mathbf{p}_{0}(\mathbf{x'}_{n}) \mathbf{q}_{0}(\mathbf{y'}_{n}) \neq 0 \end{cases}$$

$$\begin{cases} \mathbf{x}^{\mathbf{n}}_{n} = \frac{\mathbf{x}^{\mathbf{n}}_{n}}{\mathbf{p}_{0}(\mathbf{x}^{\mathbf{n}}_{n})} & \mathbf{y}^{\mathbf{n}}_{n} = \frac{\mathbf{y}^{\mathbf{n}}_{n}}{\mathcal{E}} & \mathbf{p}_{0}(\mathbf{x}^{\mathbf{n}}_{n}) & \lambda^{\mathbf{n}}(\mathbf{n}) = \mathcal{E} \lambda^{\mathbf{n}}(\mathbf{n}) \\ & \text{si} & \mathbf{p}_{0}(\mathbf{x}^{\mathbf{n}}_{n}) \neq 0 & \text{et} & \mathbf{q}_{0}(\mathbf{y}^{\mathbf{n}}_{n}) = 0 \end{cases}$$

$$\begin{cases} \mathbf{x}^{\mathbf{n}}_{n} = \frac{\mathbf{x}^{\mathbf{t}}_{n}}{\xi} \mathbf{q}_{0}(\mathbf{x}^{\mathbf{t}}_{n}) & \mathbf{y}^{\mathbf{n}}_{n} = \frac{\mathbf{y}^{\mathbf{t}}_{n}}{\mathbf{q}_{0}(\mathbf{y}^{\mathbf{t}}_{n})} & \lambda^{\mathbf{n}}(\mathbf{n}) = \xi \lambda^{\mathbf{t}}(\mathbf{n}) \\ \text{si } \mathbf{p}_{0}(\mathbf{x}^{\mathbf{t}}_{n}) = 0 \text{ et } \mathbf{q}_{0}(\mathbf{y}^{\mathbf{t}}_{n}) \neq 0 \end{cases}$$

$$\begin{cases} x''_n = x'_n & y''_n = \frac{y'_n}{\xi} & \lambda''_n = \xi \lambda'_n \\ si & p_0(x'_n) = q_0(y'_n) = 0 \end{cases}$$

- a) On a encore $u = \sum_{n=0}^{\infty} \lambda''(n)x''_n \otimes y''_n$, les suites $\left\{x''_n\right\}$ et $\left\{y''_n\right\}$ étant fixes et telles que $\lim_{n \to \infty} x''_n = 0$, $\lim_{n \to \infty} y''_n =$
- b) Pour tout $n \leq N$, $\lambda''(n)$ est uniformément borné quand u parcourt $\lambda''(n)$ est uniformément borné quand u parcourt $\lambda''(n)$ de $\lambda''(n)$ de $\lambda''(n)$ de $\lambda''(n)$ est uniformément borné quand u parcourt $\lambda''(n)$ de $\lambda''(n)$ de $\lambda''(n)$ de $\lambda''(n)$ est uniformément borné quand u parcourt $\lambda''(n)$ de λ'

c) On a
$$\sum_{n=0}^{\infty} |\lambda^{\prime\prime}(n)| \leq \sum_{n=0}^{\infty} |\lambda^{\prime\prime}(n)| p_0(x^{\prime\prime}_n) q_0(y^{\prime\prime}_n) + \mathcal{E} \sum_{n=0}^{\infty} |\lambda^{\prime\prime}(n)| + \sum_{n>N}^{\infty} |\lambda^{\prime\prime}(n)| \leq (1-\alpha) + 4\mathcal{E} + \mathcal{E}$$

Si on a choisi \mathcal{E} tel que $1-\alpha+5\ell<1$, on a bien $\sum_{n=0}^{\infty}|\lambda^n(n)|<1$

Corollaires.

A. - Soit E et F deux espaces de Banach. Tout élément u de la boule unité ouverte de E F admet une décomposition de la forme

- B. Si E est un Fréchet, H un compact de E, il existe une suite $x_n \rightarrow 0$ telle que tout $u \in H$ admette une décomposition de la forme $u = \sum_{n=0}^{\infty} \lambda_n x_n$, $\lambda_n = 0$ $\lambda_n = 0$ $\lambda_n = 0$ $\lambda_n = 0$
- C. Si E est un Frédhet, tout compact H de E est contenu dans l'enveloppe convexe équilibrée fermée d'une suite tendant vers zéro.
- D. Si E et F sont deux Fréchet, tout compact de E F est contenu

de la semi-norme $N_1; \mu_{\chi}$ sur E (resp. $N_1; \nu_{\chi}$ sur F). Par suite $p_{\chi} \otimes q_{\chi}$ est la semi-norme sur $E \otimes F$ quotient de la semi-norme $N_1; \mu_{\chi} \otimes N_1; \nu_{\chi} = N_1; \rho_{\chi}$. On peut encore exprimer D. de la façon suivante :

Pour $u \in E \otimes F$, tout couple (p_0, q_0) de semi-normes sur E et F et tout $\mathcal{E} > 0$ il existe $\lambda \in 1^1_{(\rho)}$ (K) tel que $u = \sum_{n} \lambda(k) x_k \otimes y_k$ avec : $\sum_{k} |\lambda(k)| p_0(x_k) q_0(y_k) \leqslant (p_0 \otimes q_0) (u) + \mathcal{E}$

(Suite et fin de la démonstration dans l'exposé n° 6)