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Séminaire JANET 801
(Mémaniqua analytique et Mécanique céleste)
5¢ année, 196L/62, n°® 829 9 et 1O février 1962

RIGID MOTION IN A GRAVITATIONAL FIELD
by Fe As E. PIRANI and Gereth WILLIAMS.

Abstract. - Integrability conditions are constructed for Born's equations of
rigid motion in a gravitational field. It is shown that the angular velocity of
a rigid test body in vacuo must be of constant magnitude, and a new proof is
given for the Herglotz-lNoether theorem, which states that in the absence of a
gravitational field every rotating rigid motion is isometrice.

1. Introduction.

In Newtonian mechanics, a body is called rigid if the distance between every
pair of particles remains constant. How can this concept of rigidity be extended
to relativistic mechanics ? First of all, the idea of distance between particles
must be generalized from space to space-time. It seems natural in space=time to

define the distance between neighbouring perticles, at least, asspace~time inter-

val measurcd orthogomal to the world-line of one of them. Distance so defined
has a simple physical description in terms of idealized operations with light=-
signals or radar (cf. SYNGE [18]),

A gefinition of rigidity in Minkowskian space-time, based on this concept of
distance, was proposed fifty years ago, first by BORN [1] for rectilinear rigid
motion, then, independently, by HERGIOTZ [2] and by F. NOETHER [7] for general
rigid motione According to this definition :

A body is called rigid if the distance between every neighbouring pair of par~
ticles, measured orthogonal to the world line of either of them, remasins constant
along the world~line.

hs SALZMAN and TAUB [15] and, independently, SYNGE [17] suggested, one may with
exactly the same words define a rigid body in Riemannian space-time, that is to
say, in a gravitational field. The equations of rigid motion, defined in this
way, have been studied extensively by RAYNER [9], [14]. Here we work out the
conditions of integrability of these equations, and deduce some simple consee
_quences.

HERGLOTZ and NCETHER found that in the Minkowskian case the definition res-
tricts rigid moticns much more than one might have expected from Newtonian
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preconceptions. In fact, a rigid body in Minkowskian space-time has only three de=
grees of freedom = apart from special cases, the motion of the body may be fixed
completely by giving the motion of a single particle. As a result, only certain
motions are possible ; for example, along any world=line the angular velocity
"must be constant.

It has in the past been inferred from this that the definition is not after all
a reasonable one, and that a less restrictive definition should be founds In our
view, on the contrary, these restrictions of the motion msy be explained, at least
in a general way, by the argument that the application of forces to a body to
change its momentum or angular momentum must ;iistort the body, so that a body
which is required to be rigid cannot be subject to such forces. From this point
of view, severe restrictions are to be expected, end in fact it 1s then necessary
to ask why uniformly accelerated rectilinear rigid motion, which was discovered
by BORN, is not also forbiddene We suspect that this is more-or-less an accident,
connected with the principle of equivalence, but since the argument is anyhow
only a heuristic one we shall not pursue it any further.

The motion of a rigid body in a gravitational field may be studied from two
distinct points of views While its kinematical behaviour is in all cases deter-
mined by the equations of rigid motion, it may be regarded dynamimally either as
a heavy body which contributes to the gravitational field or as a test body whose
influence on the field is negligibles

If the body is regarded as a heavy body, then it is to be assumed that the kine-
matical velocity, which enters the equations of rigid motion, is the same as the
dynamical velocity, which is the timelike eigenvector of the energy-momentum ten-
sor. In meking this identification we follow that point of view of SYNGE [18]
about the physical interpretation of the energy-momentum tensor.

If the body is regarded as a test body, then there is no necessary commection
between the kinematical velocity and the energy-momentum tensor, but nevertheless
the energy-momentum tensor need not vanish, for one may consider the motion of a
rigid body in a medium as well as in vacuo. Is rigid motion through an arbitrary
medium likely to be interesting ? We consider that besides motion in vacuo, only
motion through a medium which is spacewise homogeneous, and which may therefore
have a cosmological interpretation, is likely to be of interest for test bodies.

The notation is established, and some formulze of Lie differentiation are intro-
duced, in § 2, Rigid bodies are defined in § 3 and integrability conditions for tie
equations of rigid motion derived in § 4. Various simple applications are given
in §5.
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2e Notations and formulae.

Rather than mix notations or add to the multiplicity already existing, we employ
as far as possible the Hamburg notation developed by JORDAN and his collaborators

[3]’ [6]‘
Lower case latin indices & , b, C , ses range and sum over L , 2 , 3 , 4 &
Lower case Greek indices o , B, Y y seo range and sum over 1,2 , 3 .

Round brackets denote symmetrization A(ab) =%' (Aab * 'A‘ba) s etce

Square brackets denote antisymmetrization : A[ ab] =% (Aab - Aba) y etce

The metric tensor b has signature + + + = j its inverse is ga‘b .

The Kronecker delta is 6ab =1 if a=b>»
= 0 otherwise.

i i i = s = 1l "—1/2 .
The alternating (oriented) tensor is Nabed = n[abc a ’ q1234 = { det(gabz .
Partial differentiation is denoted 60 or o 3 Ly Jo = ac Ay = 5Aab/5x .
Covariant differentiation is denoted Vc or //e s

Ae.b//c =V, bgp and Azatb//cd = (Aab//c)//d ¢
The Riemann tensor is defined by the Ricci identity
' 1
(2.) By /be] == 7 Fave A

for any vector Aa. .
The Ricci tensor is R, = = Rk and the curvature scalar is R = Rk .
ab abk 1 k

The Einstein tensor is Gab =R, =7 Rgab .
Units are chosen so that ¢ =1 and K=1 ( K is Einstein's gravitational

constant) .

A contimious medium, in particular a finite body, may be specified by giving
the equations of its world=-lines
& =2(P, s)
in terms of three parameters yp , Which distinguish the world-lines, and a fourth,
8 4 which is conveniently chosen to be proper time along each world-line.

a
The 4=velocity is u® =&, with v u, ==1.

Absolute differentiation along a world-line is denoted by D/Ds or by a dot ©;
thus
. _D _ k
Aab.-. ~ Ds Aabcoo "Aab...//ku *
A central role in the theory of rigid bodies is played by the projection ope=

rator




) b b
- — =
hy =% +u, 0 <= h, =g, +u U hba .

At any point, contraction of a tensor index with this operator effects projec=-
tion into the local rest-frame (instantaneous space) at thet point, for

b _
and for any Zy orthogonal to ub ’
b b
Z,u = 0 <=> ha Zy = %y o

One new netation which we hope will reduce clutter and give somp geometrical
insight will be used : the symbol 1 before a tensor expression denotes that
after all other indicated contractions in that expression have been carried out,
each remaining free index is to be projected with h,ab + Thus

—wP d, T, 8
+ R'abcd - ha hb hc hd qurs
while
k_.p,q, 1 k
+ Rabck u” =hy hb hc qurk u A

In the theory of rigid bodies, much simplification is achieved by the use of
Lie derivatives. Roughly speaking, the apparatus of Lie derivatives enables us
to answer the question : Given a correspondence between two regions of a manifold,
how can we compere geometric objects of the same type, defined in the two regioms ?
In the present context it helps us to identify physical quantities which are con=
served during the motion of a rigid body. The theory of Lie derivatives, and its
interpretation in terms of displacements of geometrical figures, is explained
very clearly in the books of SCHOUTEN [16] and YANO [19] ; here we collect only
the relevant formulaee.

Cdeee

The Lie derivative of an arbitrary tensor Tab over any vector field

§k is given by

(2.2) |
dooo dooc . d.o- k ono
gTa.boooc = T&bococ //h Eh + 8£//a. kaoooc + E //b Tak...c + see
c kdeeo Ckeoo
-E//k Tab... - 5d//:k'l‘a..bnoo T oeee

In particular, if s is a scalar, then
%S:SkE,k s

if 2z, is a cevariant vector, then

gzb”b//ké‘*é{//bzk ’

b



b

and if 2z~ is a contravariant vector, then

b b b k
ﬁ = -
£ = S
Tt may be shown (for example, from (2.2)) that the Iie derivative of a tensor is

a tensor of the same type, that the Lie derivative of a sum is the sum of the Lie
derivatives, and that Lie differentiation of a product obeys Leibnitz's rule.

The Lie derivative of the Riemannian connection l':b is given by

c c k
(23) grab = E'c//ab * R ok &
which together with (2.2) yields the commtation rules
c b c
(R44) (1‘;S v, - v, ? 7 =z g Top ’
where z° is any contravariant vector, and similarly
c
(2.5) (g va - va. £) =" % g I‘za.b 4
where Z, is any covariant vector. We note that
and may easily deduce that since Eab //c =0,
c _L1 ck
(2.7) Sél"ab_zg (V, L gy *+ 7 gak-vkg gab) .

It may be shown by differentiation of this equation that
v (¢} - (¢}
2 [a g l-‘et:lb g' Rad *

These results about Lie derivatives apply to differentiation over an arbitrery
vector field Ek ; in the following, nearly all Lie derivatives are over the velo-
city field uk , and to reduce the clutter we shall abbreviate by writing £ for
£

u

3¢ Equations of rigid motion.

We now give analytic form to the definition of rigid motion stated in § 1. The
short argument is to remark that distances in the local rest-frame must be pre-
served along each world-line ; these distances are determined by hab s which must
therefore be Lie~transferred along the world=lines @

(301) g hab = 0 .
To justify this argument, we carry out a rather longer derivation.

Consider two neighbouring world-lines

C e xazxa(yp,s)a.nd c! ¢ xa=xa(yﬁ+6yﬁ,s)



in a rigid body. & displasement vector &x* from
C to C! , joining points with cerresponding
values of g, is given by

oo oyP
- ’
of

and the corresponding orthogonal displacement vece
tor is

6-’- X& = ha.b 6Xb .
The orthogonal distance 6.1. £ from C to C' is
given by

2 a s b
6_L£ abéJ.x 6x..hab6x ox ’

and the demand that it remein constant along C is
simply

b
b ° . b D 6
0 ——-(6 B ) = s(hab &> ox°) = (ua W o+ u u.b) Ex &% + Zhab ox -—5("}2")-6}"3

D oy
vhich by virtue of
_é_.aé_..ga__a_
ay* %t

reduces to

0= [U(a//b) + ﬁ(a U.b)] 6}!& 6Xb

and since this must hold fir every world-line C' near to C , it follows that

(3.2) 0 = (o) * B(a Bp) =+ B(a//p)

which is just a more explicit form of (3.l)e We note thatthere are here six inde-
pendent first order non-linear partial differential equations for the u, e

In his discusaion of the kinematics of continuous media, EHLERS [6] has given
a decompositicn of u, //o for general timelike unit vector field u, 3

(303) ua//b = wab + = 3 - (la u,b

where

=h, c h‘bd Ue//a) =t Ua//o] is the angular velocity ,

wab

1 . .
= h h‘b (u(c//d) 3 eh ) = 'Lu(a//b) -3 ehab is the shear velocity,




=u? // is the expansion velocity, and

og = u =4/ fo W is the accelaration.
These definitions imply that
b b b
— — — () - 0 - —
(344) Yab) = Ten] = o‘aa =0, it =t =% u =0 .

Substitution of (3.3) into (3.2) shows immediately that necessary and sufficient
conditions for rigidity are

c, =06=0 .

ab

That is, a continuous medium is kinematically rigid if and only if its velocity
field is shear-free and expansion-free.

Consequently, for a rigid body, u a//b is completely determined by the angular
velocity and the acceleration :

(35) Y//b = Yap ~ % Y *

Occasionally it is convenient to make use of the angular velocity vector
L _abed A

(306) . : w& =7 n wcd

which points along the instantaneous axis of rotations This definition implies

that
— b _
w wb_.u,bw..o .

The folbwing easily derived formulae are useful in calculations : For an arbi-
trery medium (and in particular, for a rigid body) :

fua =0 y
(3-7) ' i‘-"ft:la. = a-a ’
f,hab =Q ub .

For a rigid body
(3.8) P = 243 yP)

. /o] (] 3 c
(3.9) fa, = -0, @ ub-wbca .—:.Lab..mbca ,
(3.10) Wy =Wy + 2ur, b]c ‘ =40, .

The simplification gained by the use of Lie derivatives may be understood, and
exploited, 1n a different way, by adapting the coordinate system to the rigid

bodye This amounts simply to taking the parameters y;3 and S 4as a new coor—
dinate system (with 8 as the new £ Yo Equations which (so far as is shown)
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*
hold only in this coordinate system will be written with = . Thus

oll a ': o “.1..‘ t - ﬁ - :k. a f.

(3ell) w 28, uw =g, W =g,=-1, Bh,=0, h= 0,
o12 e Cleea f___a___ Cdese

(3 ) Ta.b... —ax4 Tab... ¢

From (3.11) end (3.12) it follows that the equations of rigid motion (3.1) may
be written

(3.13) - hyg = 0 .

Thus in the adapted coordinate system, haﬁ depends only on the three coordinates.
yY 3 it 1s therefore possible to interpret (*) haﬁ a8 the metric of a certain
three-dimensional space \i , which is in fact the quotient space (space=time)/

(world-lines). We write
A %

for the metric tensor. Simple calculations show that the contravariant metric

A
tenser and the connection of V are given by

(3.15) g% L P
and by ~
(3.16) /f‘zﬁ ;‘: T‘lﬁ - ng[Zu(a wp)a + Uy uB GGJ

respectively, where FZL]B are some of the components of the space=time comnnection
re .
a

A
The adapted coordinate system and the quotient space V may be used te derive

covariant equations from covariant equations with rather little calculation. For
example, let z_ be a vector field orthogonal to u> whose Lie derivative aleng

a
each world-line vanishes
a
(3417) By W = o, £z, =0 .
In the adapted coordinate system, these conditions become
0 *
(3.18) Z4 0 ’ —F %q = 0 ’
ox

so that z, may be interpreted as a vector field of N o Let Y% denote the

aperator of covariant differentiation in V « A short calculation shows that
A *
However it follows immediately from (3.18) that

(*) We are indebted to C. Be RAINER for suggesting this approachs



3 A *
S — v 7 = 0 .
6x4 p o
Fron (3.12) and (3.19) this may be written
(3.20) £ vﬁ z, £o .

%*
However hz‘ = 0 , 5o thet any expression of the form 1 Ta.b... vanishes iden~
tically in the adapted coordinate system whenever one or more indices take the

value 4 o Therefore (3.20) is equivalent to

*
v =
£LV,2,=0 ’
but this is a tensor equation, and therefore valid in every coordinate system :
(3.21) £ 4L v.b Za =0 .

The deduction of (3.21) from (3.17) may also be carried out directly, but requires
more worke We shall use this easier method again in the next section.

4. Integrability conditions.

We now suppose a particular Riemannian space~time to be given, so that Bap? r :.b
and Rabc P and its derivatives are known, and seek integrability conditions for
the equations of rigid motion (3.1) or (3.2). From the point of view of the quo-
tient space, just developed, this amounts to finding the conditions which must
be satisfied in a general coordinate system in order for there to exist an adap-

ted coordinate system in which —2-h =0 .
ax4 op

We cannot solve equations (3.2) algebraically for the first (partial or cova-
riant) derivatives of the u, because there are onl” six independent equations
for twelve independent derivatives. However, if we adjoin additional variables,
namely the O and the .,
which may be solved to give the first derivatives of all these variables in terms
of the variables themselves. Integrability conditions for this larger system may
then be derived in the usual way. Let us call the variables u ., o and W,

a
the "selected variables". We first observe that equation (3.5) :

(4.1) Ya//o = Yap = % W

already gives u, //b algebraically in terms of the selected variablese. The next

. ~ X
step is to calculate %/ /e and Yab/fo * Expansion of N /fe = (ub//k u )//c
and use of the Ricei identity (2.1) quickly yields

to the u , we can then derive a set of equations

® o R k k h k
(4.2) oLl:://c2"')bc"mb1‘c""OLbO"cs"'mb Wie =Yk & Yo = Rppex ¥ U
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and in a similar way, with the help of the identity

“ab//c = 3 av//c] * * olv//e]
one finds
_ o k , k
(4.3) “av//ec =~ Yab Y * 20L[a.wb]c =Y % -~ 2u[awb:' e = * Bapok ¥ *
Equation (4+2) may also be derived by setting g8 =, z, =, in equation
(245)

The task would now be completed, but for the appearance of &b on the right
hand side of (4.2), and 6bc on the right hand sides of both (4.2) and (4.3).

It turns out that these unwanted derivatives may be eliminated with the help
of the first and second integrability conditions of (4.3) itself. Calculation of
oy //Ted] shows that the integrability conditions for (4.2) are satisfied iden=-
tically in virtue of (4+1), (4.2) and (4.3). Calculation of W . JMcd] * B the
other hand, yields after some work
(444) B30, Woq * L Rype =0 .

This equation may be derived comparatively easily in two ether ways :

(1) by projecting the identity (2.8) with hab on all indices (and replacing

£ by v');or
A *

(11) by differentiation of (3.19), which yields 6Y Vo, = 1V, (4% %) 5

end, on antisymmetrization in B, Yy
A *
(4.5) Rapys = + (3Up Yo * Fapyd)
A

(where ﬁa § is the Riemann tensor of V ), since 1z, is arbitrary at each
point of V o Equation (465) now leads to (4.4) by the argument which led from
(3.19) to (3.21). From this point of view we observe that (4.4) is equivalent to

equation (245) of [12].

We may now obtain a’ab algebraically in terms of the selected variables from

(4 +4)e Contraction of (4.4) with hb o and’ ha'd yields in turn
: b be
(4.6) | E(Bwa Wy L Rabcd h") =0
and
ab ad , be

(47) 23 w, =R, . B RT) =0 ,
whence

ab _1 ,ad . be 1 b _d
(448) wo LW, = T R Ry 4= 3 £Gqu u .
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On the ather hand, contraction of (4.4) with o™ yields

ab ab 1 ab
(4.9) W W B0 W W Ewab_..-B-w LR .

In the rest of this section, we assume that
CRR £0

and define the (positive) magnitude w of the angular velocity by
ab 2

(4.10) Wy W =24 o
Then from (4.8) and (4.9) it follows that
_ ) b.d b
(4411) fu = (6«f) [w, 26, wul - #Pe iR

and from (3.10) we may express ‘:}ab algebraically in terms of the selected va~
riables, so that equation (4.3) may now be written

(4.12) Yab//e = [~ (@.?)-1 Wy G o o & (6(3)-1 Wwe Rabpq] u,

k k
W - - -
* 2u[a blk o U * 2u[aa.“"b]c: Y % 2u[ awb] Yo =+ Bopex ¥

giving wab //c algebraically in terms of the selected varisbles. To express (442)
in similar form, it is necessary to eliminate &b » This may be done by diffe-
rentiat ing (4.4). We have seen already ((3.17), (3.21)) that
a e s

zZ, u _Eza_o implies fS.LVbza..O .
It follows from this, by application of Leibnitz's rule that (4.4) implies
(4.13) £ i (3"ab Wog ¥ LB, d) /e = 0 R
This equation, and its sequels,

€1 [.L(Bwab wcd + L Rabcd)//e]/"/f =0

£ le s Buy Yeqa * * Re.bcél)//e}//f]//g =0
and so on, seem to be hitherto unknown consequences of the equations of rigid

motion (3.1). They are aquivalent to the equations

o A * bee * 0 A A A *
oF e fapyd =00 —T Ve Ve Rupys =00 TV Ve Vo Bygyp =0y e

and SO oOne
We need
k
(4414) + wab//e A 2a[awb]e = Y %o = Bopex U ’

which follows from (4.12) and
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(4e15) L (AR a) e =t (B Pl In TS Rogrs) //e
_ p
=1 Rabcd//e oL prcd P + W L Rapcd u
P p
+wceJ'Rabpdu +wdeJ'Rabcpu .

Substitution from (4.14) and (4.15) into (4.13) yields

v k
e B .. - - -
(4416) +[3 (Za[awb]e Wb % = Ropek ¥ ) “eq * 3(A)ab(zm[c:wd]e “ea % Rcdek uk)

+ 2w [aRb]pcd u + 2W [CRd]pa-b u + R bcd//e] =0,
If this equation is contracted with n%¢ P4
solved for S?ae in the form

, it may, with the aid of (4.4) be

(4017) 2o = (12uf)~re" 4 ) P P a® e R B s 4y £G uP ol

ab

k g, k b_ 4
- E.LRbhku + 4w SS.LRkau + 2L 1L G //huu

a'b k -1 P.q 2y ~l WFs
- LR {(R) oG, w0 u - (W) £LR, )

+,L33ka o W, mpqup'uq_ 2y FEear, T .

Substitution from (4.11) and (4.17). into (4.2) now yields %/ fo algebraically
in terms of the selected variables :

_ -L h k h b
(4.18) d.b//c = (605?‘) [an ﬁthu u ..whkﬁ.LR.bchk] -u[ﬁab+ubaha +(%ha]
h k
-0 & +w W o wbhocu-Rbhkuu .
We now have u, //o ? a, //c and W b/ /e expressed algebraically in terms of
u, s db and Wop ? with coefficients which are functions of ¢ b and its deri-
vatives. Calculation of further integrability conditions will lead back to (444)

and to its derivatives, starting with (4.13).

5+ Consequences of the integrability conditions.

2« Angular velocity of a heavy body and of a test bodye - RAYNER has shown [9]
that the angular velocity of a heavy rigid body must be a constant. His result
follows easily from (4.7), which may be written in the form

(5.1) £ + 6, WP =0 .

The condition for a heavy body is simply

(5.2) Gop 0 = Py
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where p is the density. From the contractedABianchi identity Gab //b =0 it

follows that in the case of a rigid body

0= p = p/a &= (p“a)//a - (Gab ub)//a - Gab ub//a = o 2Gab “(b“a)

= - pub ab =0 ’
while from (5.1) and (5.2),
(543) E(sz -p) =0
so that
W =0 °

For a rigid test body the same result may be deduced immediately from (5.1)

be The Herglotz=Noether theoreme — Every isometric motion of space-time with

timelike generators is also a rigid motion, although the converse is not true.

This is easily seen from Killing's equations for an isometric motion

(5.4) g g&b =0 o
If now & =¢&u, , where u, W} = =1, these equations imply
(5:3) %) * o a//p) =
and contraction of this equation with ub yields
Eu, = E/a-l-E,aa::O .
Contraction with u® in turn yields
E =0
so that
-l
(5.6) % =& 5 = (1og 5)/5

“and so (5.5) becomes E,(a(aub) + u(a//b)) =0 which is precisely the set of equa~
tions of rigid motion, since & #0 «

However, it follows from (5.6) that, for an isometric motion,
(57) A/ f) =0 ,
and from the mammer of derivation it follows that this is evidently the sufficient
as well as the necessary condition that a rigid motion be isometrice Equation
(5.7) does not hald for all rigid motions, but HERGIOTZ [2] and independently
NCETHER [9], proved that :

In flat space-time, every rotating rigid motion is isometrice.

This may easily be proved as a consequence of the integrability conditions (4.4)
and (4.13), as follows 3



In flat space-time, the integrability conditions (4.4) reduce tn

Bwab wc a =0
and contraction with w*° , then with W, quickly yields
(5.8) fw . =0 .

cd
The integrability conditions for this equation, which mey also be found directly
from (4.13), are

£ (wcd//e) =0

or, from (4.3),

ﬁ(ac ©1e * Za(dwe)c) =0 .
Antisyrmetrization on 4 and e yields, with the help of (5.8), the equation
(509) wde mc =0 ’

but (4.2) implies that

and from (5¢8) and (5.9) it now follows that

“4o Yaf/p] =°

which, in view of (5.7), completes the proof.

ce Transformations preserving the equations of rigid motdon. =~ The question,

whether the Herglotz-Noether theorem holds in an arbitrary space~time, mey be
answered in the negative, in the limifed sense that trere exist non-isometric
rotating rigid congruences of (timalike) curves, representing rigid bodies moving
through media. We have not yet been able to settle the more interesting question,
whether there ore non~isometric motions of rigid heavy bodies or of rigid test
bodies in vacuo. The other question is settled by carrying out the following
transformation, which preserves the rigid property while spoiling the isometry. :

Iet v be a (unit) vector field satisfying the equations of rigid notion, and
let S, be a unit vector field everywhere orthogonal to u® (and therefore
necessarily spacelike). Then the transformation

- -l 2
Bab  Bab = Bap * Mg Up * 2M(S) = (L =X ¥ 8, 8y

ua. - ';a. (]. - x)—l/2 u&

- =
Sa %a = Sg ’

where x (<1) and y are arbitrary functions of position, is easily seen to
preserve the equations of rigid notion, but not the conditions for an isometric
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motion. Such a transformation may be carried out without annihilating the angular
velocitys Unfortunately the transformation of the Ricci tensor is in general very

conplicated.

de Non-rotation rigid bodiese. - If Wy = 0 +then the world-lines of the body
adnit a fanily of orthogonsl hypersurfaces, and further sinplification may be
achieved in the adaptation of the coordinate systen to the congruence, by taking
the hypersurfaces to be surfaces x4 = Cte , as well as choosing the world-lines
as the lines of x4 o The equations of rigid motion reduce to

Baplg =0  (*, p=1,2,3)

and the netric may be taken in the form

as® = gM(xo£ , t) dt2 + gaB(xY) ax® axP .

The motion is isonetric if and only if 844 is of the forn
g4 = T(t) gl (x) ’

in which case T(t) may be absorbed and the metric is statics A calculation, or
inspection of equation (4.3), shows that the conformal tensor must be of Petrov
type I or D , so that space-times of conformal types II 4 III and N cannot
admit non-retating rigid bodies. That this is no longer true for rotaj.:ing bodies
follows from the existence of the anti-Mach metric of OSZVATH and SCHUCEING [ 8],
which is a type N vacuum nmetric admitting a timelike isometric motion.
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