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RIGID MOTION IN A GRAVITATIONAL FIEID

F. A. E. PIRANI and Gareth WILLIAMS.

Séminaire JANET
(Méoenique analytique et Mécanique céleste)

: 5e année, 1.961/~2, n° 8-9 9 et 10 février 1962

Abstract. - Integrability conditions are constructed for Born’s équations of

rigid motion in a gravitational field. It is shown that the angular velocity of

a rigid test body in vacuo must be of constant magnitude, and a new proof is

given for the Herglotz-Noether theorem, which states that in the absence of a

gravitational field every rotating rigid motion is isometric.

1. Introduction.

In Newtonian mechanics, a body is called rigid if the distance between every
pair of particles remains constant. How can this concept of rigidity be extended

to relativistic mechanic s ? First of all, the idea of distance between particles
must be generalized from space to space-time. It seems natural in space-time to

define the distance between neighbouring particles, at least, as space-time inter-
val measured orthogonal to thé world-line of one of them. Distance so defined
bas a simple physical description in terms of idealized opérations with light-
signals or radar (cf. SYNGE [ 1 8] ) .

A définition of rigidity in Minkowskian space-time, based on this concept of

distance, was proposed fifty years ago, first by BORN [1] for rectilinear rigid
motion, then, indepéndently, by HERGLOTZ [2] and by F. NOETHER [7] for général
rigid motion. According to this définition :

A body is called rigid if the distance between every neighbouring pair of par-

ticles. measured orthogonal to the world line of e ither of them, remains constant

along thé world-line.

As SAIZMAN and TAUB [15] and, independently, SYNGE [17] suggested, one may with
exactly the same words define a rigid body in Riemannian space-time, that is to

say, in a gravitational field. The équations of rigid motion, defined in this

way, have been studied extensively by RAYNER [9], [14]. Here we work out the
conditions of integrability of these equations, and deduce somo simple conse-

quences.

HERGLOTZ and NOETHER found that in the Minkowskian case the définition res-

tricts rigid motions much more than one might have expected from Newtonian
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In fact, a rigid body in Minkowskian space--time has only three de-
grees of freedom - apart from special cases, the motion of the body may be fixed

completely by giving the motion of a single particle. As a result, only certain
motions are possible ; for example, along any world-line the angular velocity

. must be constant.

It has in the past been inferred from this that the définition is not after all

a reasonable one, and that a le s s restrictive définition should be found. In our

view, on the contrary, these restrictions of the motion may be explained, at least
in a general way, by the argument that the application of forces to a body to

change its momentum or angular momentum must distort the body, so that a body
which is required to be rigid cannot be subject to such forces. From this point
of view, sévère restrictions are to be expected, and in fact it is then necessary
to ask why uniformly accelerated rectilinear rigid motion, which was discovered

by BORN, is not also forbidden. We suspect that this is more-or-less an accident,
connected with the principle of équivalence, but since the argument is anyhaw
only a heuristic one we shall not pursue it any further.

The motion of a rigid body in a gravitational field may be studied from two

distinct points of view. While its kinematical behaviour is in all cases deter-

mined by the equations of rigid motion, it may be regarded dynaminally either as
a hea ’body which contributes to the gravitational field or as a test body whose

influence on the field is negligible.

If the body is regarded as a heavy body, then it is to be assumed that the kine-

matical velocity, which enters the équations of rigid motion, i s the same as the

dynamical velocity, which is the timelike eigenvector of the energy-momentum ten-

sor. In making this identification we follow that point cf view of SYNGE [18]
about the physical interpretation of the energy-momentum tensor.

If the body is regarded as a test body, then there is no necessary connection
between the kinematical velocity and the energy-momentum tensor, but nevertheless
the energy-momentum tensor need not vanish, f or one may consider the motion of a

rigid body in a médium as well as in vacuo. Is rigid motion through an arbitrary
médium likely to be interesting ? We consider that besides motion in vacuo only
motion through a médium which is spacewise homogeneous, and which may therefore

have a cosmological interpretation, is likely to be of interest for test bodies.

The notation is established, and some formulae of Lie differentiation are intro-

duced, in § 2. Rigid bodies are defined in § 3 and integrability conditions for thé

équations of rigid motion derived in § 4. Various simple applications are given
in § 5 .
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2. Notations and formulae.

Rather than mix notations or add to the multiplicity already existing, we employ

as far as possible the Hamburg notation developed by JORDAN and his collaborators

[3], [6].
Lower case Latin indices a , b , c , ... range and sum over 1 , 2 , 3 , 4 .
Lower case Greek indices 03B1, 03B2 , y ,.... range and sum over l" 2 , :3 .

Round dénote symmetrization : A(ab) = 1 2 (Aab -1- Aba) , etc.
Square dénote Ùab ~ ~ba~ ’ etc.
The metric tensor bas signature + + + - ; its inverse is gab.
The Kronecker delta is ô. f== 

1 if a = b

a ~ }== 0 otherwise.

The alternating (oriented) tensor 1s = 111234 = {- .-.

Partial differentiation 1s denoted Õ or / : Õ A b = 
Covariant differentiation is denoted B7 or //c :

The Riemann tensor is defined by the Ricci identity

for any vector A .
Thé Ricci tensor ils ab = - R 

k 
.. 

and thé curvature sc alar i s R = R k ..
Thé Einstein tensor is 

Units are chosen so that c==l Einstein’s gravitational

constant)~

A continuous medium, in particular a finite body, may be specified by giving

thé équations of ils worid-lines

in terms of three parameters y y which distinguish the world-lines, and a fourth,
s , which is conveniently chosen to be proper time along each world-line.

Th 4’, 1 .t - 
, a axs’ . 

a 
l

Absolute differentiation along a world-line is denoted by D/Ds or by a dot 03BF ;
thus

Ã central rôle in the theory of rigid bodies is played by the projection ope-

rator
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At any point, contraction of a tensor index with this operator effects projec-
tion into the local rest-frame (instantaneous space) at tbat point, for

and for any zb orthogonal to ub ,

One new natation which we hope will reduce clutter and give some geometrical
insight will be used : the symbol  before a tensor expression denotes that

after all other indicated contractions in that expression have been carried out,
each remaining free index is to be projected with hab. Thus

while

In the theory of rigid bodies, much simplification is achieved by the use of

Lie derivatives. Roughly speaking, the apparatus of Lie derivatives enables us

to answer the question : Given a correspondence between two régions of a manifold,
how oan we compare geometric objects of the same type, defincd in the two regions ?
In the present oontext it helps us to identify physical quantities which are con-

served during the motion of a rigid body. The theory of Lie derivatives, and its

interpretation in terms of displacements of geometrical figures, is explained

very clearly in the books of SCHOUTEN [16] and here we collect only

the relevant formulae.

The Lie derivative of an arbitrary tensor T . c ... any vector field

y is given by 
’ 

,

(2.2) .

In particular, if s is a scalar, then

if zb is a covariant vector, then
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and if z is a contravariant vector, then

It may be shown (for example, from (2.2)) that the Lie derivative of a tensor is

a tensor of the same type, that the Lie derivative of a sum is the sum of the Lie

derivatives" and that Lie differentiation of a product obeys Leibnitz’s rule.

Thé Lie derivative of thé connection Éb is given by

which together with (2.2) yields the commutation rules

where Zc is any contravariant vector, and similarly

where z b is any covariant vector. We note that

and may easily deduce that since 

It may be shown by differentiation of this équation that

Thèse results about Lie derivatives apply to differentiation over an arbitrary

vector field in the following, nearly all Lie derivatives are over ihe vélo-

city field é , and to reduce the clutter we shall abbreviate by writing £ for

f .
u
3. Equations of rigid motion.
We now g ive analytic f orm to the définition of rigid motion stated in § 1. The

short argument is to remark that distances in the local rest-frame must be pre-

served along each world-line ; thèse distances are determined by which must

theref ore be Lie-transferred along the world-lines :

To justify this argument, we carry out a rather longer dérivation.

Consider two neigbouring vorld-lines
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in a rigid body. A displaeement vector from

C to joining points with ccrresponding
values of s , isgivenby

and the corresponding orthogonal displacement vec-
tor is

The orthogonal distance from 0 to ct is

given by

and the demand that it romain constant along C is

simply

which by virtue of

reduces to

and since thix must hold for every world-line C’ near to C , it follows that

which is just a more explicit form of (3.1). vIe note that there are here six Inde-

pendent first order non-linear partial differential équations for the u .
In his discussion of the kinematics of continuous media, EHIERS [6] has given

a decoBposition of ua b for general timelike unit vector field u ;

where
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is the expansion velocity, and

aa = Ûa is the accelaration.

Thèse définitions imply that

Substitution of (3.3) into (3.2) shows immediately that necessary and sufficient

conditions for rigidity are

That is, a continuous médium is kinematically rigid if and onl if its velocity

field is shea,r~»free and expansion-free.

Consequently, for a rigid body, u a//b is completely determined by the angular

velocity and the accélération :

Occasionally it is convenient to make use of the angular velocity vector

which points along the instantaneous axis of rotation. This définition implies

that

The foIbwing easily derived formolae are useful in calculations : For an arbi-

trary medium (and in particular, for a rigid body) : 
.

For a rigid body

The simplification gained by the use of Lie derivatives may be understood, and

exploited, in a différent way, by adapting the coordinate system to the rigid

body. This amounts simply to taking the pxrameters y’ and s as a new coor- ,

dinate system (with s as the new x 4 ). Equations which (so far as is shown)
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*

hold only in this coordinate system will be vritten with = . Thus

From (3.11) and (3.12) it follows that the équations of rigid motion (3.1) may
be written

Thus in the adapted coordinate system, dépends only on the three coordinates.

y y ; it 1a therefore possible to interpret (*) as the metric of a certain

three-dimensional space  , which is in fact the quotient space (space-time)/
(world-lines). We write

for the metric tensor. Simple calculations show that the contravariant metric
A

tensor and the connection of V are given by

and by

respectively, vhere r03B303B103B2 are some of the components of the space-time connection

1B

The adapted coordinate system and the quotient space V may be used tfl dérive

covariant équations from covariant équations with rather little 
calculation. For

example, let 3a be a vector field orthogonal to ua whose Lie derivative aleng

each world-line vanishe s :

In the adapted coordinate system, thèse conditions become

~ 

A A

SO that Za, DaY be interpreted a field of V . Let B] f3 the

aperator of covariant differentiation in V . A short calculation shows that

However it follows immediately from (3.18) that

. 

(*) We are indebted to C. B. RAINER for suggesting this approach.
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From (3.12 ) and (3 rL g) this may be written

However so tha t any expression of the form JL vanishes iden-

tically in the adapted coordinate system whenever one or more indices take the

value 4 . Therefore (3.20) is équivalent to

but this is a tensor équation, and therefore valid in every coordinate system :

Thé déduction of (3.21) from (3.17) may also be carried eut directly., but requires
more work. Wé shall use this easier method again in the next section.

4_8 Integrability conditions.
We now suppose a particular Riemannian space-time to be given, so that gab, 0393cab

and Rabcd and ils derivatives are known, and integrability conditions for

the équations of rigid motion (3.1) or (3.2) . From the point of view of the quo-
tient space, just developed, this amounts to finding the conditions which must

be satisfied in a général coordinate system in order for there to exist an adap-

ted coordinate system in which 2014y hap = 0 .ôx ’

We cannot solve équations (3.2) algebraically for the first (partial or cova-

riant) derivatives of the u , because there are oniy six indépendant équations

for twelve independent derivatives. However, if va adjoin additional variables,

namely the CL and to the u . we can then dérive a set of équations
which may be solved to give the first derivatives of ail thèse variables in terms

of the variables themselves. Integrability conditions for this larger system may

derived in Let us thé variables ~a’ ’ and 

the "selected variables". We first observe that équation (3.5) :

already gives algebraically in terms of the selected variables. Thé next

step is to calculate o~~ and Expansion of a == U ) //e
and use of the Ricci identity (2.1) quickly yields
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and in a similar way, with the help of the identity

one finds

Equation (4.2) may aiso be derived by setting = u y équation

(2.5).

The task would now be completed, but for the appearance of 03B1b on the right

hand aide of (4.2), and M. on the right hand sides of both (4.2) and (4.3).

It turns out that thèse unwanted derivatives may be eliminated with the help

of the first and second integrability conditions of (4.3) itself. Calculation of

shows that the integrability conditions for (4.2) are satisfied iden-

tically in virtue of (4.1), (4.2) and (4.3). Calculation of on the

other hand, yields after some work

This equation may be derived comparatively easily in two @ther ways :

(i) ty projecting thé identity (2.8) with hab on ail indices (and replacing

03BEa by aB or

(il) ty differentiation of (3.19), which yields 03B3 Vg z03B1 = | 039403B3(|039403B2 z03B1 ,
and, on antisymmetrization in Y

(where 03B103B203B303B4 is the Riemann tensor of 1 ) ; since Zao is arbitrary at each

. point of V . Equation (4.5) now leads to (4 A) by the argument which led from

(3.19) to (3.21). From this point of view we observe that (4.4) is équivalent to
équation (2 .5) of [ 1~~.~ .

Me may now obtain ab algebraically in terns of the selected variables 
from

(4.4). Contraction of (4.4) with h- and h~ yields in turn

and

whence



8-11

On the Ather band, contraction of (4.4) with 03C9ab yields

In the rest of this section, we assume that

and define the (positive) magnitude 03C9 of the angular velocity by

Then from (4.8) and (4.9) it follows that

and from (3*10) we may express ab algebraically in terms of the selected var.

riables, so that équation (4 .3) may noW be written

giving algebraically in terms of the selected variables. To express (4.2)
in similar form, it is necessary to eliminate CL v This may be done by diffe-

renti at ing (4.4). We have seen already ((3.17), (3 .2 1 ) ) that .

It follows from this, by application of Leibnitz’ s rule that (4 .4) implies

This equation, and its sequels,

and so on, seem to be hitherto unknown consequences of thé équations of rigid
motion (3.1). They are aquivalent to the equations

and so on.

We need

which follows from (4.12) and



8-12

Substitution from (4.14) and (4.15) into (4.13) yields

If this équation is contracted with hM it may, with the aid of (4.4) be

solved for fa in the form
e

Substitution from (4.11 ) and (4.17). into (4.2) now yields algabraically
in terms of the selected variables :

We nw have ua//b , 03B1b//c and expressed algebraically in terms of

u $ 03B1b and with coefficients which are functions of gab and its deri-

vatives. Oalculation of further integrability conditions will lead back to (4.4)
and to its derivatives, starting with (4.13)~

5. Consequences of the conditions.

a. Angular velocity of a heavy body and of a RUINER bas shown [9J
that the angular velocity of a heavy rigid body must be a constant. His result

follets easily from (4 .7) , which may be written in the form

The condition for a heavy body is simply
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where p is the density. From the contracted Blanchi identité =0 it

follows that in the case of a rigid body

while from (5.1) and (5.2),

sothat

For a rigid test body the same result may be deduced immediately from (5. 1 ) .

b. The Herglotz-Noether theorem. - Every isometric motion of space-time with

timelike generators is also a rigid motion, although the converse is not 

This is easily seen fron Killing’s equations for an isometric notion

If where u ua = - 1 , these équations imply

and contraction of this équation with u b yields

Contraction with u~ in turn yields

sothat

and so (5.5) + U(a//b) = 0 which is precisely the set of equa-

tions of rigid motion, since 03BE ~ 0 . .

However, it follows from (5.6) that, for an isometric motion,

and from the manner of dérivation it follows that this is evidently the sufficient

as well as thé necessary condition that a rigid motion be isometric. Equation

(5.7) does not hala. for all rigid motions, but HERGIDTZ [2] and independontly
NCETHER [9], proved that :

Ln flat every rotating rigid motion is isometric.

This may easily be proved as a conséquence of the integrability conditions (4.4)

and (4.13), as follows :
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In flat the integrability conditions (4.4) redu~e t~

and contraction with 03C9ab , then with 03C9cd , quickly yields

The integrability conditions for this équation, which may also be found directly

from (4.13)~ are

or~ from (4.’3) ~

Antisymmetrization on d and e yields, with the help of (5.8) , the équation

but (4.2) implies that

and from (5.8) and (5.9) it now follows that

which, in view of (5.7) , complètes the proof.

c. Transformations preserving the équations of rigid motion. - The question,
whether the Herglotz-Noether theorem holds in an arbitrary space-time, may be

answered in the negative, in the limited sense that there exist non-isometric.

rotating rigid congruences of (timelike) curves, representing rigid bodies moving

through média. We have not yet been able to settle the more interesting question,
whether there are non-isometric motions of rigid heavy bodies or of rigid test

bodies in vacuo. The other question is settled by carrying out the f ollowing

transformation, which preserves the rigid property while spoiling the isometry, :

Let ua be a (unit) vector field satisfying the equations of rigid motion, and

let s a be a unit vector field everywhere orthogonal to us’ (and therefore

necessarily spacelike). Then the transformation

where x ( 1) and y are arbitrary functions of position, is easily seen to

préserve the équations of rigid motion, but not the conditions for an isometric
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motion. Such a transformation nay be carried out without annihilating the angular

velocity. Unfortunately the transformation of the Ricci tensor is in général very

complicated.

d. Non-rotation rigid bodies. - If ab = 0 then the world-lines of the body

admit a fatriily of orthogonal hypersurfaces, and further sirlplif ic ation may be

achieved in the adaptation of the coordinate systen to the congruence, by taking

the hypersurfaces to be surfaces x4 = Cte , as well a s choosing the world-lines

as the lines of x ~.  The équations of rigid motion reduce to

and the metric may be taken in the form

The motion is isorletric if and only if g44 is of the form

in which case T(t) may be absorbed and the metric is static. A calculation, or

inspection of équation (4.3) , shows that the conformal tensor must be of Petrov
type l or D , so that space-times of confonnal types II , III and N cannot

admit non-ratating rigid bodies. That this is no longer true for rotating bodies

follows from the existence of the anti-Mach metric of OSZVATH and SCHUCKING [8],
which is a type N vacuum metric admitting a timelike isometric motion.
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