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REr:RKS CONCTRUING THE CANONICAL FORMULATION
OF FIELD EQUATIONS
par C. LaNCZ0S

[Summation over repeated indices is assumed ],

1. The method of surplus varisblcs.

The field equ-tions of general relativity become hopclessly complicated if we

deviate from the simple Degrangeen L = R“» g"” , chosen by EINSTEIN in his

relativistic invcstigations. The logicelly appsaling possibility of an esction
principle with the action density

) L:%(RN”RV"’-P/bKZ)

leads to differentinl equations of the fourth order in the gwJ which in their
original form cannot be tackled successfully. Geeat simplifications are obtainéd
however, by the introduction of properly choBen surplus variables. The use of
such variables permits us to reduce an arbitrarily complicated system of field

equations to a ncemal form, comparable to the "canonical form" of the Hamiltonian

equations of dymamics, if only one single voariable is involved. This transforma=-
tion is based on two leading principles :

a. Eliminction of algebraic variables. = Ist w be one of the dynamical variables
which appears in L without its derivatives ¢

(2) A:gL(w)dt
The veriations of w gives

&J&:S%& v dt

and the variational principle %A = O yields the condition
(3)

AL _
5-5_0

Since we get no "boundary term", the condition (3) guarzontees the vanishing of
$ s without demending the vanishing of w at the limits.



8-02

If we now climin~te w from the rel-tion (3) in terms of the other voriables,
this e¢limin~tion means thot the relation which holds for thc actucl motion, is
assuned for the verlicd motion as well. Gencrally this elinination is not permitted
because it restricts the frce voariation of w in 2 way which may not satisfy the
condition thot the varistion must vanish at the two cndpoints, (or more gencrally
on the boundnry of the donmain). Since, however, this condition is not demended in

the casc of an ~lgebraic variable, the preliminary elimination of an algebraic

voriable “on the basis of the cquation (3) is always pernitted.

be The momenta as Lagrangean multiplierse = Lct D be an arbitrarily chosen

differenticl operator, operating on u . Lot the Lagrangean of the sction principle
be some function of Du « We will now replace Du by the algebraic variable w ,
considering the equation Du - w = 0 as an auxiliary condition of the given
variational problems. By this artifice we have not changed anything on the original
problem but we have now L(w) dinstcad of L(Du) , with the auxiliary condition

(4) Du~w=0

Applying the method of the lagrangear multiplier we obtain the new Lagrangean
(5) Lt = L(w) + p(Du = w)

The new L' is variationally complstely cquivalent to the original L but it

has thc added advantage that it is linear in Du , whilc the ecarlier L may

have contained Du in an arbitrarily involyved fashion. On the other hand, we

have added to u the two new variables w and p « But w is o purcly algebraic
vericble and can thus be eliminated, according to (2) ¢ this means that we solve

the equation

(6) OL' _ oL

for w and substitute the w thus obtained in L' ., The new L' is a function of
u and p but w is no longer present. The number of variables has increased to 2
but not 3.

The method described is essentially equivalent to "Ampere's trensformation ,
but has the advontage of greater flexibility. It also brings the rolc of the

momenta as Lagrangean multiplicrs in dircct cevidcnce.
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2. Lincarization of the quadratic action principle.

Consider  the action principle (1). We introduce R;, =Wy, @8 en algebraic
veriable, obtalning the new Lagrangean

' 1 ik 2, ik
'_ H -
(7) L' = mlugy v+ 8w) + P (Byy = wyy )
We olininate Wi with the help of the equation
oL! ik ik ik
o=V o+ fug " =p =0
ik
which gives
wik _ pik + 6'pgik
plk + sﬂpglk + ;6(1 r45) pglk - Plk =0
s+ Bl +45)=0
2]
6*"1+4.[5
We thus obtain
_ ik 1 ik ik ik 1, ik 2
(8) L' =p " Ry +3 P Mgy =P Wy =P Ry -5 py .t 6p)

In the new forn o? the action principle we have the double number of variables,
viz. ik and plk s but the complicated differential operator Rik appears
now in linenr form, just as in Einstein's action principls. In fact, we obtain
Einstein's linear action principle if we restrict pik by the condition

P = egt
Then our action principle becomes

L=¢R=-2¢t(1 +46))

and we are back at the action principle of Einstein's "cosmological squetions".

3+ Relations to Veyl's theory.

The linearized action principle lecads to certaoin consequences which one would
hardly recognize without:the method of the surplus variables. Teking advantage
of the vanishing givergence of the "metrical matter tensor" Rik --%-R 853 ? e
can change Pix R}k to



[pgy + 5(?11: c&:;i’ CF(;O& :Lk)]R:Lk

where (iﬁ. is an arbitrary vector of the field ( ). Integration by parts shows
that we have merely added a pure divergence which is variationally zero ; indeed
the added term becones
- ® 3 LT I, (RS 1 oo -
VE ™ dy -z RE) - S @7 -5 ReH) [ VET
0

i

Now, if we introduce the modified Py 05 2 new  pgy and perfornm the proper mathema=
tical transformations, we obtain the new Lagrangean

ik % 1, 4k . R 1 k1 =% 1 o> 2
9) L=p By =glo™ py +0p) =g Py T =50 +e) (& -5 & F)

whers Fik = épi,k - éﬁk,i is the usual "electromagnetic field strength", while

*

Rik is a "modified Riemann tensor"

(10) Ry = Ry =y y + iy E1 ) F O 20 - s ¥ R

While this result camc about by a legitimate canonical transformation, WEYL
assumed a form of geometry which is nmore general than Riemann's geonetry. WEYL
deduced the modified Rik on the basis of geometrical consideraticns. His R;k
and the present Rik differ in quantities of second order. For the special choice
G = -1 of the paramecter 6 the two kinds of Rik coincide exactly. Hence it
seems unnecessary to enlarge the Riemannian basis of geometry for the sake of the
"vector potential" since the quadratic action principle yields this quantity
automatically, as a natural consequence of the given transformation possibilities,
without any enlargement of the basic geometrical structurec. The vectorial function
déi appears herc as a "function of integration" which occurs in the solution
of the basio field equations. A closer investigation reveals that the intcrpreta—

tion of §3. as the "vector potential" is untenable and is to be replaced by
the interpretation "electrie current'.

4+ The canonical form of varictional equations.

A1] variational equations of 2 single vericble t  can be reduced to Homilton's
canonicel equations @

( )"y M dinotcs covoriint JafPorontistion.
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. OH « _ OH
(11) q .Fp- i—-.&];
which arec derived from the action principle
1 L= g -H .
(12) P 8B

We want to generalize the canonical system to the case of more than cne independcnt

veriable, in fact to thc case of an arbitrary nunber n of independent variables.

This can always be accomplished by the proper introduction of surplus veriablese
The only difference compared with the cne-dimensional casc is thot the simple
"pairing" of a; and p; variables is no longer possible. Generally we have n

independant variables X; 5 X, 5 ees Xn R

K10 o9 seey Vo ? and M nmnomenta Py » Pos oo s Dy oo The cecnonical wagran-
gean takes the form

n dependent variables

(13) L—p {{4”52_ H

where the ﬁﬁly form a system of n xm x M numerical cocfficients, determined
by the specific structure of the given vari-tional problem. The first term of L

shall be c2lled "the canonical matrix form" of the canonical Legrangean L .

The canonical equ-tions becone

/'50\ £ = OH

(14) k> Fy Sﬁ:
B F)o( ap‘u _ JH

) ST

P>/

The right side is purely algebraic in the variables . Pj « The linearizction

of the equations in the derivatives is once nore acconplished.

5« The canonical system in uniform formulatione

The discrepancy of dimensions between the \Vi and the pj can be elimineted
by including the entire set of variables (\Pi R pj) into one single set of
n +M=N varicbles €y This can be done by putting P; = Vm+j « The "phase
space" is then replaced by the single N-dimensional "configuration space" of
the uniformized varicbles ¥ ° Let us do thet first for the one-dimensional

cases We write for Py the new g=variable q thus obtaining thc single

n+i ?
system of 2n vorizbles q; 1i=1,2, «.. , 2n). Now the canonical integrand

becones
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L=qi (z’ikﬁk"H(qg& ’t)

where /2 ik is o numerical notrix. The first term is variationally aquivalent to

e "1 d - -— 1 [ ] [ ] P — l - .
9 by e T P %) =30y Ay b - 8y ) =3Py - P )y &
Since %( ﬁik - ﬁki) is anti-syunctric in i , k , we can put
| 24 ik %
with the understanding that

P4 is on anti-symetric matrix B,y = - B, o The
Homiltonian system is characterized by the matrix

-

e 1

The canonical system is now included in the single equation

s _OH
Paxln = Sq;

1

The generalizabion to partial differential equations occurs in the form

)
1 a  °X
(16) L=z ¥ pip BYSZ‘ -
( Pig = = ﬁii) + The canonical equations become
4 >
OH
(17) ﬂof giﬁ':
ip Xy~ O¢y

6+ Parturbation problems.

The cnnonical system is of porticularly great advantage if a perturbation problem

is involved. Let \fi be a solution of the canonical esquotions and let us suppose
thet we arc interested in studying a small perturbotion ¥y * L caused by
slightly different boundary conditions or the introduction of a weak external field.

- Now the "second varistion" of = compiicnted Lagrangean L can easily become 2

hopelessly complicoted differential operntors In the canonical form, however, only
the seccond derivatives of the =2lgebraic oper~tor H

are denanded. The perturbation
equations become

A Ok{"{ ,,“H

(18) fap &, =, o B
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These are a lincar first order systcn of equation with varieble coefficients

2
. o H . s
because the quantitics S o3 after substituting for . the explicit
solution in terms of the Xj » become explicit functions of the X5 ¢

7« The conscrvation laws,

In ordinary dyncmics the conservation law for the total encrgy H is a simple
consequence of the Hamiltonian system @

S_H .
“3q, Yx " opy P«

——

In the uniformized formulation

H=Fq-—49\=ﬁ‘7‘t'lq‘x A

8+ Field equationse

The analogous treatment in the realm of partial differcntial equations becomes

JH _ 3H a‘?v__ﬂ« O M 0
R SIRCTNE SR D S P s Tt

1

1 . _
(19) ='§'{b¢;>) \'P»’o\ \e'}l’i - ?‘.l,d\wv,i
o ) 1 A .
=§mz(j%?\3 ?)_ rj\\ﬂ“) —gﬂvv(‘{y\\% y,izq
Hence
O (L B0 ) b o =0
We put
(21) t; = -1 ;i +é§
wheres
1 O

(22) 6; == Yrﬁrnm
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The ccnservation laws of energy and monentun appear in the following form 3

at“
(23) 52— =0

The constructionof the tcnsor Gf‘ is exceptionelly simplec if we utilize the

cenonical scheme : "The tensor @;‘ is obtained by replacing in the canonical

matrix form the operation 5%— by 5%—". Of great importance is the following
N i

result ¢ No metter how complicated the Hamiltonian function H may be (and thus,
no metter how strongly non-linear our field equations may be), ths function H
appears solely in the scalar term H Ss? s 2ll the other terms of the tensor

t? are strictly quadratic in the canonical varicbles. This fact is fundrmental

for the dynamical evaluation of the conservation laws.

9« The graviational equations of Einstcine

. . 1 . .
The gravictionel equations Rik - E-R i = 0 of Einstein are dcrivable from
an action principle and can thus be brought into the canonical form. Here the
Lagrangezn is the scnlar Riemannian curvature, multiplied by Wgl @

0T 12he o T op e
(24) L= g gL %, tT X T axo4 + L kp ~

R

The cenonicel form is automatically provided by "Prletini's Frinciple" according
to which we cen vory the gik and the F?k indspendently in Einstein's varia-
tional principlc. We thus have 50 dynamical variables. Moreover, the given

Legrongean is already in the canonical form, without further tr-nsformations, if

we write it in the form

= (T3 -5 L _.__§§ 8 oo ik

/%

which is verintionally equivalent to the originol L . The canonical variables
are thus the quontities

ik
= Vigi g
and the "momental
A o ‘--V\—L =% 1._‘_ oS -
P ® " iecT 5 %%-T "k (f; =

One of the advantages of the canonical system is that the "rnising" and "lowering"

of subscripts is completely avoided. Ve do not encounter the 85k directly, but
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only in thec combination \ﬂéiglk o The difficult algebraic transformation which
relates the 8ix and the glk s docs not come into play at «ll.

According to the general rule, given above, we obtnin the "canonicnl momentume—
cnergy tensor' (a2lso called the "pscudo-tenso® sincc it possesscs the general

covariance properties of on arbitrary tensor only with respect to linear trons—
form-tions), in thc following form @

(26) P‘\)
_ -k k 1 k 1 ky 0 Vg
=log (o =3 oy -7 o) St

We moke use of the well-known fact that the sccond term of the Lagrangsan (25) is
equel to the first term, multiplicd by = z « Hence

2
»
1 o oY A A
L= ?p}m 'BX_' T(t +L%¢x)
and thus
1 _1
(27) —L:-g-'b(* -—-2-"b

The relation (26) can thus be written in the following alterncte form @
k1 K k 1 k1 gkaVaa
- = - —-—r
If the same tensor is constructed without the ccnonical method, we obtain ten
much more complicoted expression ()
k 1 k _ 5 =W k 3%
(29) .
I G S LI T - B

104 The symuetric conservation laws.

The cononical ensrgy-moncntum tensor t? has the grcat disadvantage that it is

not symmetric in i and k . We must demand, however, that the cnergy-nonentun

(2) The fundomentel paper of Einstsin gives cnly the first term, since he
normelized the reference system by the condition g=1, thet is T, =0
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tcnsor of physic2l action shonld be a symnetric tensor. Without this condition
even the fundamental rel~tion E = m02 , the equivalence of inerti~l mass and
energy, cennot be proved. Nor is it possible to derive a moticn law for o perticle
submerged in en extern:al field. We will now investigatc under whot conditions

the energy-momentum tensor ti can be symnetrized.

Let us assume that an arbitrary tensor bik s Jenerally not symnetric, has the
property that it can be genesrated as the divergence of a tensor of third order ¢

0 _,éé¥ikm _ 1
(30) Pig =X, © Pika,a

We will now construct the following new tensor @

Big = 20 Pireee * Praee * Pank ¥ Pros ~ Por © Bunrd),

Then

1,z 1 T
* o Pran - ‘K’xik),,o\k 2(‘}1«:9\1 ‘»‘Pmkj,),xk
0 0
b, = b,
ik ,xk ik,k

The tensor Bik is szpmetric s

Brs 7 Bk
We see that we succeeded in constructing a tensor which is syunetric and which
has the same divergence, (with respect to k), as the original tensore

-

We can prove directly that if ‘}ik%x = aPkiw , Wwe obtain

Bix = Brg = byx

Hence a symmetric tensor rem~ins unaltered by our construction. On the other hang,

if by is anti-symmetric, and correspondingly

‘%kid\ = = Pk

Wwe obtain for the substitute tensor
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(31) Bix = iuk Ai)ko«l s X

We come to the conclusion thot for the purpose of syrmctrizing an arbitrary tensor

without chenging its divergence it is sufficient if the anti-symnetric part of the
tensor is representable in the forn (50) .

The non-symmetric conservation 1-w (23) was the mere consequence of the existence
of a wariational principlc. But all the Legrangeans of the field equations of
theoretical physics have ccrtain definite invariance properties. In classical
physiecs L allows an orbitrary rotation of the coordinate axcs, without changing
its forme Special relotivity has shown that the invariaznce with respect to

three=~dimensional rotations had to be extended to invariance with rcspect to

four-dimensional rotations (Lorentz=invariance). This invariance with Pespect to
arbitrary rotations of the coordinates has the consequence thot the anti-symnmetric
part of t? canbe written in the form (30) and con thus be syunetrized.

An arbitrary infinitcsimal rotation of the coordinates Xi ney be written in
the form

(32) | Xy = & fy, KXo
where

Let the corresponding variation of s be %\fi and let us fornm the variation

of L, caused by this infinitesimal transformation 3

1 PEE 1 «
(34) L= 2% Aot 7 P (99
34

“3 P By by, g Efea - w;”v
In view of (17) we can put
1. A% 1 o "
Bl = -z o P o a t7 T (59,
1 . e
(35) t s ‘ﬁu 3}\» ‘ﬁ‘v,o* Elora

1 A
=50t Buo 240 o+ Oy Tpo



8=12

Since we have asszumed that L is an inveriant of an arbitrary orthcgonal transe—
formation, we have &L = O and thus we obtain

A% 1 -
(36) €0p fra =+ 500 Al B¥0) o
Now ?i is a "vector" of an abstract confiuration spacc but not a vector of

ordinary space. It may represent an arbitrary combinciticn of vectors, tensors,
or even "spinors" of any kind. But we can state that under all circunstances the
infinitesimal change s‘fi. of ¥ 3 under the inpact of an arbitrery infinite—
sim~1 rotation will be linear in the \?v_and also lincar in the cocfficients
fxp == ()/50\ « Hence we can put

(37) SY,=¢& ‘?,u Pik G;I:,

where the cosfficients q}% (anti-symmetric in 1 , k), are given constants which

will depend on the covarinnt chearacter of the quantities AR Substitution in
(36) gives :

ik
C

(38) 65 Fae = * 200 Acs o ) o Co P

o X
We will now abandon the nototion Gl; and replace it by Oik s with the under—
standing thot the second subscript tokes the place of the previous "contravariant®

subscript. Ip view of the fact that the coefficients Bic = = Sua of an

infinitesimal rotation can be chosen arbitrarily, we obtain from (38)

1 _ . 1 ~ L elk
We define a tensor of third order (anti-symmetric in i , k) by putting

. _ .1 % ik
(40) {Diko'\ =+t \Pf'\ fé}AvLYO“C;TV

Then the relation (39) shows that the anti-syrmetric port of 8, appears in
the form (30). Hence we can symmetrize this tensor according to (31) and obtain
in the place of the original eik the new symmetric tensor

ik kKM 1
(41) ST =8 = E(eik * eld.) + CI::LO&k + %k« i),O(

The sy metric conservation law now becones

S fald A

Ok,d

(42)
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The new (symmetric) tcnsor s g cnee more the property that it is strictly
quadratic in the cancnical varinbles, quite irrespective of the structure of the
Homiltonicn function H « The tensor S1k -L ng can be conceived as the true ener—

gy-nomentunm tensor of the given field equitions. The tensor character of st
holds solely for orthogonal transformations.

11+ The case of thc Einstein equoticns.

In the case of Einstein's gravitational equations special conditions preveil.
Here we sec that the Lagrangean (25) is an invariant not only with respect to

. ik
orthogonal but even with respect to arbitrary linear transformctions, if u is

: . . . m o,
trensformed as a contravariant tensor, while r'ik is transformed as a tensor

od third order, covariant in i , k , contravariant in n . Hence in this case

the coefficients f}ik of the infinitesimal transformation (32) need not be

restricted by the condition (33), but can be considered as arbitrarily prescribed

constants. Accordingly we will obtain not only the anti-syrmetric part of ék

i
but the full 6? expressed in the form of a divergence. In ordcr to construct

this espression, let us remember that the right side of (36) demands the

following prccedurc ¢ "Take the canonical matrix form. Roeplacce the derivative
0 f»/BX“‘ by %qa) and apply the oper-tion G/BXQK to the whole exprcssion.

This means in our case, in view of thc canonical Lagrangsan (25) i

+ V;:j ® u’w),u

Now uvl' transforms according to the following law ¢

. ¥ ®
(43) : é1ﬁl = &Qﬁ“’gr¢+uw £ wo. )
and we obtain for the right side of (36) :

*of § % o
+ it‘}w (f\w_ Y +{>Wuv )],f "“(rt” ™ ue‘y)’d\

In view of the arbitrariness of the f43 We obtain fron (36)

ot

ok
s =+ 2T u"),b(

1

(44)

% of k¥
+ 2( ril’ Vg g s,x

Let us introduce the following notation ¢
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(‘6) fe S vk <k k .o
’ "g( i‘ g t : ! + 8 t §1 f g:{)

We now define the symmetric energy-monentum tcnsor S:Lk of the grevitational
fiecld by the following rclation ¢

: ik _Lggik _ ok i, ket i ik ki
(47) §7 =58 = (13i +B T + B +B =B "Bx)

’O(

The tensor Sik is gymmetric and its divcergence vonishes

: iux
(48) - =0

X
The study of the motion of a particle in a gravitational field can be based on

this t:nsore. The covariance of this tensor is still more restricted than that
of the Einsteinian ﬁ? o Instead of arbitrary linear transfornmations only

orthogonal trangformations are at our digposal.

NOTE. - Formula (46) differs in sign frcm that obtained by Einstein in account

-~

of the different definition of p‘ adopted b& the presentt author.




