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REMARKS CONCERNING THE CANONICAL FORMULATION

OF FIELD EQUATIONS

C. LANCZOS

Faculte des Sciences de Paris

Séminaire de 
et de CELESTE

Année 1957/58 17 nai 1958

[Summation over repeated indices is assumed].

1. The method of surplus variables.

The field equations of general relativity become hopelessly complicated if we

from the simple L = R 
y g~ ~ chosen by 

EINSTEIN in his

relxtivistic investigations. The logicelly appealing possibility of an action
principle with the action density

leads to differential equations of the fourth order in which in their

original form cannot b6 tackled successfully. siraplifications are obtaindd

however, by the introduction of properly chosen surplus variables. Thc usc of
such variables perraits us to reducc ~n arbitrarily complicated system of field

equations to a normal form, comparable to the "canonical form" of the. Hamiltonian

equations of dymamics, if only one single variable is involved. This transforma-

tion is based on two leading principles :

a. Elimination of algebraic variables. - Let w be one of the dynamical variables

which app6ars in L without its derivatives :

The variations of w gives

and the variational principle SÁ = 0 yields the condition

Since we get no "boundary the condition (3) guarantees the vanishing of

b A without demanding the vanishing of w at the limits.
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If we now eliminate w from the relation (3) in terms of the other 
this elimination means that the rclation which holds for the actual motion, is

assumed for the varied motion as well. Generally this elimination is not permitted
because it restricts thc free variation of w in a way which may not satisfy the

condition that the variation must vanish at the two Gndpoints, (or more g6ncrally
on the boundary of the domain). Since, however, this condition is not demanded in
the case of an algebraic variable, the preliminary elimination of an algebraic
variable on the basis of the equation (3) is always permitted.

b. The momenta as Lagrangean multipliers. - Let D be an arbitrarily chosen
differential operator, operating on u . Let the Lagrangeüll of the action principle
b6 some function of Du . We will now replace Du by the algebraic variable w ,

consid6ring the equation Du - w = 0 as an auxiliary condition of the given
variational problem. By this artificc we have not changed anything on the original

problem but W6 have now L(w) instead of with the auxiliary condition

Applying the method of the mult-iplier w c obtain the now Lagrangean

The new L’ is variationally completely equivalent to the original L but it

has the added advantage that it is linear in Du , while the carlier L may

have conta incd Du in an arbitrarily involved fashion. On the other hand, w6

have added to u the two new variables w and p . But w is a purely algebraic
variable and can thus be eliminated, according to (a) : this means that we solve
the equation

for w and substitute the w thus obtained in L’ . The new L’ is a function of

u and p but w is no longer present. The nunb6r of variables has increased to 2

but not 3.

The method described is essentially equivalent to transformation" ,
but has the advantage of greatcr flexibility. It also brings the role of the

momenta as Lagrangean multipliers in direct evidence.
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2. Linearization of the quadratic action principle.

Consider the action principle (l) We introduce Rik as an algebraic

variable, obtaining the new Lagrangean

Me with the h61p of the equation

which gives

We thus obtain

In the new form of the action principle we have the double number of variables,
viz. gik and but the complicated differential operator appears

now in linear form, just as in Einstein’s action principle. In fact, we obtain
Einstein’s linear action principle if we restrict p by the condition

Then our action principle becomes

and we are back at the action principle of Einstein’s "cosmological equations".

3. Relations to Meyl’s theory.

The linearized action principle leads to certain consequences which one would

hardly recognize without the method of the surplus variables. Taking advantage

of the vanishing divergence of the "metrical natter tensor" gik , we

can change to
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where ~. is an arbitrary vector of the field ( ). Integration by parts shows
that we have merely added a pure divergence which is variationally zero ; indeed

the added term becomes

Now,if we introduce the modified as a new Pik and perforn the proper mathema-

tical transformations, we obtain the new Lagrangean

where Fik = 03A6i,k - 03A6k,i is thc usual "electromagnetic field strength", while

R*ik is a "modified Riemann tensor" :

While this result came about by a legitimate canonical transformation, WEYL
assumed a form of geometry which is more general than Riemann’s geometry. WEYL

deduced the modified R~k on the basis of geometrical considerations. His R...
and the present differ in quantities of second order. For the special choice

6 = - 1 of the parameter Õ the two kinds of R* coincide exactly. Hence it

seems unnecessary to enLarge the Riemannian basis of geometry for the sake of the

"vector potential" since the quadratic action principle yields this quantity

automatically, as a natural consequencc of the given transformation possibilities,
without any enlargement of the basic geometrical structure. The vectoriel function

appears here as a "function of integration" which occurs in the solution

of the basio field equations. A closer investigation reveals that the interpreta-
tion of as the "vector potential" is untenable and is to be replaced by
the interpretation "electrie curr6nt".

4. The canonical form of equations .

All variational equations of a single variable t can be reduced to 

canonical equations :

( ) ii . It déffic rentiation.
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which are derived from the action principle

We want to generalize the canonical system to the case of no re than one independent
in fact to the case of an arbitrary nunber n of independent variables .

This can always be accomplished by the proper introduction of surplus variables

The only difference compared with the one-dimensional casc is that the simple

"pairing" of ql and p, i variables is no longer possible. Generally we have n

independent variables ~I ~ X~ ~ ... ~ X , m dependent variables

03C61 , 03C62,..., 03C6m , and M momenta p1 , p2 , ... , pM . The canonical Lagran-

gean takes the form

T 7 

~

where form a system of n x n x M numerical coefficients, determined

by jh6 specific structure of the given problem. The first term of L

shall b6 celled "the canonical matrix form" of the canonical Lagrangean L.

The canonical equations become

The right side is purely algebraic . in the variables 03C6i , p.. The linearization
of the equations in the derivatives is once more accomplished.

5 . The canonical system in uniform formulation.

The discrepancy of diensions between the 03C6i and the p. can be eliminated

by including the entire set of p.) into one single set of

m + This can be clone by putting p. = The "phase

space" is then replaced by the single N-dimensional "configuration space" of

the uniformized variables 03C6 i . Let us do thet first for the one-dimensional
case. We write for p. the new q-variable q .. thus obtaining the single
system of 2n variables q. (i = 1 , 2 , ... , 2n). Now the canonical integrand
becomes
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where 03B2ik is a numerical matrix. ThE first term is variationally aquivalent to~k 
’

Since. 1 2(03B2ik - f.&#x3E;k1) is anti-symmetric in i , k , we can put

with the understanding that is an anti-symmetric matrix (3 ki = - 03B2ik . The.

Hamiltonian system is characterized by the matrix

The canonical system is now includ6d in the single equation

The generalization to partial differential equations occurs in the form

6. Perturbation problems.

Thc canonical system is of particularly great advantage if a perturbation problem
is involv6d. Let be a solution of the canonical equations and let us suppose
that we are interested in studying a small perturbation + ~ 03C6i , caused by
slightly different boundary conditions or the introduction of a weak external field.

Now the "second variation" of a complicated Lagrangean L can easily become a

hopelessly complicated differential operator. In the canonical form, however, only

the second derivatives of the algebraic operator H are demanded. The p6rturbation

equations become
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These are a linear first order system of equation with variable coefficients

because the quantities substituting for f. the explicit

solution in terms of the X. , become explicit functions of the x. 

7. The conservation laws.

In ordinary dynamics the conservation law for the total energy H is a simple

consequence of the Hamiltonian system :

In the uniformized formlation :

8. Field equations.

The analogaus treatment in the realm of partial differential equations becomes

Hence

We put

where
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The conservation laws of energy and momentum appear in the following fom I

The construction of the tensor 9. is exceptionally simple if we utilize the

canonical scheme : "The tensor 03B803B1. is obtained by replacing in the canonical

matrix form the operation ~ ~X03B1 by ~ ~Xi". Of great importance is the following
result : No matter how complicated the Hamiltonian function H may be (and thus,
no matter how strongly non-linear our field equations may the function H

appears solely in the scalar term H ~ ~ ; all the other terms of the tensor
t" are strictly quadratic in the canonical variables. This fact is fundamental
for the dynamical evaluation of the conservation laws.

9 The graviational equations of Einstein.

The graviational equations R S’T- = 0 of Einstein are derivable from

an action principle and can thus be brought into the canonical form. Here the

Lagragean is the scalar Riemannian curvature multiplied by |g| :

The canonical form is automatically provided by Principlr" according

to which we can vsry the g.. and the indGpcndently in Einstein’s varia-

tional principle. W6 thus have 50 dynamical variables. Moreover, the given

Lagrsngcan is already in the canonical form, without further transformations, if

we write it in the form

which is variationally equivalent to the original L . The canonical variables

are thus the quantities

and the "momenta"

One of the advantages of the canonical system is that the "raising" and "lowering"

of subscripts is completely avoided. We do not encounter the gik dir6ctly, but
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only in the combination |g| g . The difficult algebraic transformation which
relates the gik and the gik , does not come into play at. all.
According to the general rUlE., given above, ’W6 obtain the "canonical momentum-

energy tensor" (also called the "pscudo-tensor" since it possesses the general
covariance properties of an arbitrary tensor only with respect to linear trans-

formations), in the following form :

We make use of the well-known fact that the second term of the Lagrangean (25) is

equal to the first t6rm, multiplied by - 1 2 . Hence

and thus

The relation (26) can thus bc writt6n in the following alternate form :

If the same tensor is constructed without the canonical method, wc obtain t6n

much more complicated expression ( )

, ,

10. The symmetric conservation laws.

The canonical energy-moncntum tensor t§ has the great disadvantage that it is

not symmetric in i and k . We must demand, however, that the energy-momentum

~ ~ The fundamental paper of Einstein gives only the first since he
normalized the reference system by the condition g = 1 , that is T. 1 = 0 .
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tensor of physical action should b6 a symmetric tensor. Without this condition

even the fundamental relation E = the equivalence of inertial mass and

cannot b6 proved. Nor is it possible to derive a motion law for Q particle

submerged in external field. We will now investigate under what conditions

the energy-momentum tensor tki can be symmetrized.

Let us assume that an arbitrary tensor generally not symmetric, has the

property that it can b6 generated as the divergence of a tensor of third order :
1;~.,

We will now construct the following new tensor :

Then

The tensor Bik is symmetric :

W6 566 that wE succeeded in constructing a tensor which is symmetric and which

has the same divergence, (with respect to k), as the original tensor.

can prov6 directly that if ~-1~ = obtain

Hence a symmetric tensor remains unaltered by our construction. On the other hand,
if is anti-symmetric, and corresponidngly

we obtain for th6 substitute tensor
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We come to the conclusion that for the purpose of symmetrizing an arbitrary tensor

without changing its divergence it is sufficient if the anti-symmetric part of the
tensor is representable in the form (30), .

The non-symmetric conservation l’w (23) was the mere consequ6nce of the existence
of a variational principle . But all the Legrangeans of the field equations of

theoretical physics have certain definite invariance properties. In classical

physics L allows an arbitrary rotation of the coordinate axes~ without changing
its form. Special relativity has shown that the invariance with respect to

three-dimensional rotations had to be extended to invariance with respect to

four-dimensional rotations (Lorentz-invariance). This invariance with respect to

arbitrary rotations of the coordinates has the consequenc6 that the anti-symmetric

part of can be written in the form (30) and can thus be symmetrized.

An arbitrary infinitesimal rotation of the coordinates Xi may be writt6n in

the form

where

Let the corr6sponding variation of f, be and let us form th6 variation
1 B1

of L , caused by this infinitesimal transformation :

In view of (17) we can put
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Since we have assumed that L is an invariant of an arbitrary orthogonal trans-

formation, we have 03B4L = 0 and thus we obtain

Now 03C6i is a "vector" of an abstract configuration space but not a vector of

ordinary space. It represent an arbitrary combinaition of vectors, tensors,
or even "spinors" of any kind. But wE statE under all circumstances ths

infinitesimal change 03B403C6i of under the impact of an arbitrary infinite-

simal rotation will bE linear ir and also linear in thc coofficicnts
......~.~._..,..^ ~ ...

( « p = -» (= . Hence wE can put 
.

where the coefficients (anti-symmetric in I. , k), are given constants which
will depcnd on the covariant character of the quantities f.. Substitution in
(36 ) gives :

We will now abandon the notation and replace it by 8°k’ with the under-
standing that the second subscript takes the place of the previous "contravariant"

subscript. 1~ view of the fact that the coefficients ~.. of an

infinitesimal rotation can b6 chosen arbitrarily, we obtain from (38)

We define a tensor of third order (anti-syrmetric in i , k) by putting

Then the relation (39) shows that th6 anti-symmetric part of appears in

the form (30). Hence we can symmetrize this tcnsor according to (31) and obtain

in the place of the original Gik the new symmetric tensor

The sy metric conservation law now becomes
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The new (symmetric) tensor S has onee more the property that it is strictly
quadratic in the canonical variables, quite irrespective of the structure of th6

Hamiltonian function H. The tensor L 03B4ki can be conceived as the true ener-

gy-noinentum tensor of the given field equations. The tensor character of 81 -k
holds solely for orthogonal transformations.

11. The case of the Einstein equations.

In the case of Einstein’s gravitational equations special conditions prevails
Here W6 se.e that th6 Lagrangean (25) is an invariant not only with respect to

orthogonal but even with respect to arbitrary linear transformations~ if uik is

transformed as a contravariant tensor, while F ... is transformed as a tensor

od third order, covariant in i, k , contravariant in n . Hence in this case

th6 coefficients of the infinitesimal transformation (32) need not be
restricted by the condition (33 ), but can be considered as arbitrarily prescribed
constants. Accordingly we will obtain not only the anti-symmetric part of 9.

. k 1

but the full 6i expressed in the form of a divergence. In order to construct

this espression, let us remember that the right side of (36) demands the

following procedure : "Take the canonical matrix form. Replace the derivative
d (p by $fp and apply the operation ~/~X03B1 to the whole expression".
This means in our case, in view of the canonical Lagrangean (25) :

Now u 03BD transforms according to the following law :

and we obtain for the right side of (36) :

In view of the arbitrariness of the we obtain f ron (36) :

Let us introduce the following notation :
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He now define the symmetric energy-momentum tensor Sik of the gravitational
field by the following relation : .

The tensor is symmetric and its divergence vanishes :

The study of the motion of a particle in a gravitational field can be based on

this tensor. The cova riance of this tensor is still more restricted than that

of the Einsteinian Instead of arbitrary linear transformations only
orthogonal transformations are at our disposal.

NOTE. - Formula (46) differs in sign frcm that obtained ty Einsteim in account
of the different definition adopted by the present author.


