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INTRODUCTION

These notes are based upon a series of lectures given at the College de France in

the spring of 1970. Our aim is to survey some of the recent results related, on the

one hand, to the generalizations of the Lefschetz Fixed Point Theorem and, on the other,
to the branch of infinite dimensional topology known as the theory of compact vector

fields. The notes consist ~f two independent parts and the link between them is pro-

vided by the classical Leray-Schauder theory. In Part A we shall be concerned mainly

with the fixed point theorems for non-compact spaces, and in Part B with the infinite

dimensional cohomology theories.

Let E be an infinite dimensional, normed space. A continuous mapping f : X -3~ Y

between two subsets X and Y of E is called a compact vector field provided it is

of the form f(x) = x - F(x) , where F : X - E is a compact mapping (i.e., the clo-
sure of F(X) is a compact subset of E ). Two such fields f ~ g : X ~ Y are compactly

homotopic provided there exists a homotopy ht : X -&#x3E; Y joining f and g which is

of the form h t(x) = x - H(x, t) , where H : X x [0,1] - E is compact. Since compact

fields compose well, we have the category 6 with subsets ~f E as objects and com-

pact fields as morphisms. By the Leray-Schauder we shall understand the

subcategory af E5 generated by closed bounded subsets 0f E . This category arose

naturally in connection with the question rf solvability of the non-linear equation
x = F(x) , where F is a compact operator, and was introduced in the early thirties

by J. Schauder and J. Leray [B.11], [B.9]. Furthermore, the above authors made the

important discovery that many familiar geometrical facts of finite dimensional topo-

logy can be carried ever to infinitely many dimensions provided attention is restricted

to the above category of maps. In particular, for maps of this category, a generaliza-

tion of Brouwer’s degree (or of the equivalent notion of the fixed point index) was

established, known presently under the name of the Leray-Schauder theory, and with its

aid various applications were obtained.

For somp time, it was thought that the Leray-Schauder theory had rather loose

ties with topological fixed point theorems. This is not the cpse, however, and one of

our aims is to show that several results in the fixed point theory can be reduced to

the suitably modified and supplemented theory of the Leray-Sohauder index ~A.26~ ,
[A.15].

To be more specific, let U be an open subset of a normed (or more generally
locally convex) space E and F : U -~ E be a compact map with a compact set of fixed

points. To every such F , one can assign an integer Ind(F) , the Leray-Schauder in-
dex of F , which satisfies a number of naturally expected properties ; in particular,
when F : U -U , it is equal to the (generalized) Lefschetz number A (F) of F and,
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0 implies that F has a fixed point. Now, more generally, let X be a

space which is r-dominated by an open set U in E (for example a metric ANR), r :U~ X
and s :X~U be a pair of maps with and G : be a compact map;

then, sGr : U - U is also compact and A (G) = A (sGr) = Ind( sGr~ . Consequently, if

A(G) ~ 0 , then G has a fixed point,. The last theorem (established by the author in
(A,24~ contains several known results in topology (eg. the Lefschetz Fixed Point Theorem

for compact ANR-s) and noii:-linear functional analysis (eg. the Schauder Fixed Point The-
orem and the Birkhoff-Kellogg Theorem). As another interesting consequence of the Leray-
Schauder index, we note the well-known fixed point index theory for compact We

recall that some years ago, such a theory was deduced (by a device due to A. Deleanu
D~4]) from the fixed point index theory for convexoid spaces established (by combina~.
torial means) by J. Leray [A.37] in 1954 (see also tA.10, [A.12]).

Alongside the index function Ind we consider in Part A the related notion of the

local fixed point index ind, The local index is defined for arbitrary compact maps

of metric ANR-s and (although more restrictive than Ind ) is topologically invariant.
Its theory, however, is based on ideas other than that of the Leray-Schauder index,

which go back essentially to W. Hurewicz.

We emphasize that in the definition of the generalized Lefschetz number A(F~ and

in all the development of the fixed point theory for non-compact spaces, an essential

use is made of the notion of the generalized trace due to J. Leray J~A.39] ’ In parti-

cular, using the Leray trace, we define, following C. Bowszyc, new topological inva-

riants (the Euler-Poincaré characteristic and the Lefschetz power series of a map)
which turn out to be convenient tools for the treatment of periodic points, even in

the finite dimensional case EA.8]. 

We now give, in brief, some general idea about the results of K. G~ba and the

author [B.5] on infinite dimensional cohomologies which are to be presented in Part B.
To this end, we recall the following theorem, proved by J. Leray (with the aid of
the degree) in (8,8~ : If X and Y are two equivalent objects of the Leray-Schauder

category h, then the complements E - X and E - Y have the same number of compo-

nents. In connection with this theorem, the following problems arise :

Problem 1 : If X and Y are two equivalent (or more generally homotopically
equivalent) objects of 85 . are the homology groups H n(E - X) and H n (E - Y) isomor-

phic for each n ?

Problem 2 : If X and Y are equivalent in 55 will the fundamental groups

T (E - X) and y (E - Y) be i somorphic ?

The answer to the latter is "no" and the corresponding example shows that, from

the geometrical point of view, the Leray-Schauder category is as "rich" as the cate-

gory of compacta in 1fl. One of our aims will be to give an affirmative answer to the
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first (and more involved) problem and thus to establish the Alexander-Pontrjagin Inva-
riance in E . We note that the Leray-Schauder degree is not adequate for this purpose
and therefore a theory of an essentially algebraic character is needed. Thus, we are

lead to infinite dimensional cohomology theories. The construction of such theories

and their applicability will constitute our primary concern in the second part of this

notes.

In conclusion, I wish to thank the College de France for the opportunity to deli-

ver these lectures and to Professor Leray for his kind invitation. Looking back over

my own researches, I cannot but express my deep gratitude to K. Borsuk, J. Leray and

L. Lusternik. I have received from them, in different periods, much advice and encou-

ragement, and it is in their work that I have found especial source of ideas. My

thanks go also to K. Ggba for his help and collaboration, and to the participants of a

topological seminar in GdanSk for many useful discussions.

Andrzej Granas
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PART A

SOME RESULTS IN THE THEORY OF FIXED POINTS

In the topics of the fixed point theory which we propose to discuss in the

first part of these lectures, an essential use will be made of the generalized

theory of the trace due to J. ~3~~ o We shall begin therefore by recalling

the basic definitions and facts cf this theory.

I. THE TRACE AND THE GENERALIZED LEFSCHETZ NUMBER

In wjzzt follows all the vector spaces are taken over a fixed field K .

1. trace.

For an endomorphism cp : E - E of a finite dimensional vector space E, we

let tr cp denote the ordinary trace of (p .

We recall the following basic properties of the trace function tr :

(1.1) I Assume that in the category of finite dimensional vector spaces, the

following diagram commutes

tr cp = 

~~ .2~ spaces with
exact rows

*) For some other advances i11 fixed point theory (not related to the theory of
the generalized trace) see the article of E. Fadell (Bull. Am. Math.
S oc. Nr. 1, 1 ~70 ~ ,



A-I-2

we have = tr(p’) 

Definition. Let E = be a graded vector space. We say that E is of
CJ.

a finite type provided s (i) dim E  00 for (ii) Eq = 0 for almost

all q. If cp = {cpq} is an endomorphism of such a space (i.e., 9 : E -&#x3E; E)
q 

- 

q q q

then the (ordinary) Lefschetz number À (cp) is defined by

and the Buler-Poincare characteristic X(E) of a space E = of finite typeQ

is given by 
-

Clearly, X (E) = X (1 E) -
2. The Leray -brace Tr :

Let cp: E - E be an endomorphism of an arbitrary vector space E . Denote

by E ~ E the n-th iterate of cp and observe that the kernels

form an increasing sequence of subspaces of E .

Let us put now 
’

By definition

Clearly, y maps N(cp) into itself and, therefore, induces the endomorphism

on the factor space 

(2~1) have consequently, the kernel of the induced map

cp : E -&#x3E; E is trivial, i.e., cp is a monomorphism.

Proof. If (Ncp) , then This implies that for some n we lnve

= 0 = (x) and hence xcN((p) . Conversely, if then

cpn(x) = 0 for some n ’,’ then cpncp(x) = 0 and, hence, i.e.

x£cp-1 (Ncp).
Definition. Let (p : E -&#x3E; E be a11 endomorphism of a vector space E . We

say that cp is admissible provided the factor space E = is finite
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dimensional. For we define the (generalized) trace Tr cp of cp by

putting 
df

(2.2) If y Tr = a
TIle following properties of the generalized trace can be deduced from the

corresponding properties of the ordina:ry trace (cf. [39D*

(2.3) that in tl1e of arbitrary vector spaces the following

diagram commutes :

if cp then s o is the other and in that

case ~ 

’

(2.4) Given a conmmtative of vector spaces with exact rows

the endomorphism cp is admissible if and p" are admissible

and in tInt ca, s e

3 . The Leray 

Lot cp = be an of a graded vector space (BqI into

itself. we denote induced endomorphism on the graded vector
~ 

Q
space n = 

and [8]). We say t’znt y is a 

provided tl1e graded vector space E = is of a finite type. For such p we

define the (generalized) by putting

and the Euler-Poincaré characteristic X (cp) of (p by
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(3 .1 ) Assume tzat in the category of graded vector spaces the following

diagram 
-

cp .2r * is a endomorphism then tIle other and in 

case A (9) =A(*) -

Brooi* clearly follows from (2.3).

(3.2) Let

be a diagram of vector spaces in which the rows are exact. If both

((p) and cpt are the Leray endomorphisms on E E’ = (E[)
then so is cp" = {cp"} on Moreover, in that case, we

have

Proof. This follows from (2.4).

Among the properties of the Leray endomorphisms we note also the following

generalization of a theorem of H. Hopf (of. [28] and [9]).

Given a chain complex C = denote by H = {H} the graded homology
Q Q q

of C .

(3-3) (The Hopf Lemma). Let c = {cq} be a chain map of a complex
c = (c ,5 ’} into itself and c* == h = be the induced endomorphism onI i q q 11 q 

WeH = (Hq). If c is a Leray endomorphism, then so is c* and in that case we

have

Proof. Denote by Z and B the spaces of cycles and boundaries. We Inve

clearly the following commutative diagrams with exact rows
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Now, applying (2.4) to the above diagrams, we have for each q

and, by simple calculation, t11eorem (3.3) follows .

4. Lefschetz

Now we may pass to topological situation. To end, consider a

,~ of. pairs of topological spaces and continuous mappings and fix a

homology functor H from t11e category G to tIle category of graded vector spaces

over K. Remark i In all follows H is either tl1e singular laomology or

the Cech homology functor).

f or a topological pair (X in u H(X,A) = CH (X,A ) 3 is tl1e graded

vector slnce, H q (X,A) being q-dimensional relative homology group with

coefficients in IC. For a continuous map f o (XA) --&#x3E; (Y9B) s H(f) is tl1e

induced linear map f* == (f q } , where f : q H (X,A) -&#x3E; H (Y,B).q q q

Definition. A continuous (x ,A) -? (X,A) is called a Lefschetz map

(with respect to H ) provided f* : H(X,A) -&#x3E; H(X,A) is a Leray endomorphism. For

such r" we define Lefscl1.etz number of f by putting

and the Eulem-Poincaré characteristic x(I) of f by

The following simple and evident property is of importance ?
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(4~1) If 1;1e f and g are homotopic, tiTen their Lefschetz number

(if defined) coincide, i.e~~ A(f) = A(g). Similarly f - g tInt

’~~~~ = X~~~ ·

~4.~ ~ Assume that in of p:1irs of spaces and continuous maps.

the following commutes :

Then (i ) of the is a Lefschetz map. then so is the other

and i3n that case = A(*) ; has a fixed point if and only if
does.

Proof. The first assertion follows clearly (by applying the homology functor H
to the above diagmm) from the corresponding property of the Leray endomorphisms
(3.1). The second assertion is evident.

The following are typical instances in which the above proposition is used :

Example 1 ~ Let f ® X - X ~e a map su,ch that f(X) c K c X. Then we have the
commutative diagram

?
with the obvious contractions .

Example 2. Le’u :r : Y -~ X y be a pair of continuous mappings such

that this case X is said to be r-dominated by Y and r is

said to be an r-map (cf. [6]). In this situation, given a map cp : X - X , we

Inve the commutative diagram

*) Let f : X -&#x3E; Y be a map sucl1. B , where A c X and B C Y. By
the contractions of f to tile pair (A,B) , we understand a map s A -&#x3E; B with
the same values as f . A contraction of f to the pair ~A,Y~ is simply the
restriction of f to A . The same terminology will ~e used for maps of
pairs of spaces.



A-I-7

with Y = s cp r.

Given a continuous (X,A) -&#x3E; (X,A) we denote by fX s X -&#x3E; X and
x

fA : X - X and f. s A -&#x3E; A tiae evident contractions oz" f.

(4.3) Let I x be a If fX and f are Lefschetz

then so is the map f and. in that case

Proofs For tiie proof, write the endomorphism of the exact homology sequence
of the pair (X,A) induced by f and then apply proposition (3.2 ~ ,

Rezark : The above definitions and properties are clearly valid also in the

contra variant case, when H is the cohomology-type functor.

In what follows we shall use the following terminology.

A continu.ous mapping f s X - X is called homololically trivial with respect
to the functor H provided the induced homomorphisms

H 
q 
(X) - H 

~, 
(X) are trivial for q 2-: 1 and f# o i H 

0 (X) - - H 0 (X)

A space. X is said to be ac clic (with respect to the H) provided (i) X is

non-empty y f or all

(4.4) Let I o X - X be continuous and assume that any of the following

conditions is satisfied s

(i) is contained in an acyclic subset A X g

K and fen): X -+ X is nomologically trivial,

0 (X) = K and f lL homotopic to a constant map

Tl1en, f ls a Lefschetz map 

To 

we write tIle commutative

diagram :

with obvious contractions. Since A is acYcl--*Lc, we infer by (4.2) that f (71)
is a Lefschetz map. Moreover,
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By fumctoriality we have for all This , in view of
(2.2) implies easily that

and the proof of (i) is completed. The proof of (ii)
is similar and (ii) implies (iii).
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II. COMPACT MATS OF TEE ANR-SPACES

vie shall propose now the first application of the theory of generalized trace

by establishing’ a general fixed point theorem which on the one hand contains the

classical Lefschetz Theorem for compact ANR-s and on the other hand contains

various fixed point theorems of the non-linear functional analysis.

1. The t11eorem.

Let H be the singular homology functor with coefficients in K from the

category of topological pairs to the category of graded vector spaces. A pair

~X,A~ is said to be of a finite provided the graded vector space

is of a finite type. Clearly, every continuous seli-vnp

f : (X,A) , ~X9A~ of such a pair is a Lefcchctz map and ,#(f) coincides with the

ordinary (relative) Lefschetz number

of the map f .

In what follows we shall make use of the following (relative) version of the

Hopf-Lefschetz fixed point theorem remarked independently by ~1~~, Holsztynski and
C. Bowszyc (cf. [28] and [7J, [9]).

(1.1) Theorem f or polyhedral pa,irs) : Let (X,.A.) be a
pair of finite and £ z (X,A) -7 (X,A) be continuou,s. Then X (f) / 0

f has a fixed ,,_go,I_gt, in x:A.

The proof of (~.~) is similar to that in the absolute case (cf. C~S~~.

2. 

"B’Je denote by ANR (respectively AR) the class of metrizable absolute neigh-
bourhood retracts (resp. absolute retracts). We recall (cf. [6]) that (reap.
YE.&#x3E;R) provided for any metrizable pair (X ,A), p with A closed in X and any

continuous f : i A -&#x3E; Y, there exists an extension f s U -&#x3E; Y of f over a
o 0

neighbourhood U of A in X (resp. an extension f g X - Y of fo over X .

In what follows we shall make use of following two facts from general

topology s

(2,1) (Kuratowski [6J) : Every metrizable space is embeddable into e, Banach

S1Jace ; in -particular. 9 any topologically complete metrizable space can ’oe embedded

as a closed subset of a Banach space.

( 2 .2 ) (Arens-Eells C 1 j ) o Every metrizable s ce can be embedded as a closed
subset of a linear normed space.
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The above embedding theorems permit to give the following simple characterization

of the ANR-s (resp. topologically complete _~NR-s ~ .

(2.3) In order that (resp. it is necossary, and sufficient that Y

e r-dominated open set of a normed space (resp. by a normed space).

Proof. Let By theorem (2.2) there exists an embedding cp : r Y - E
of Y into a normed space E such that is closed in E . Take a retraction

r : U --&#x3E; cp(Y) of an open set U -:3 ~~;~Y~ . Then i U - Y is clearly an 

The converse follows from the general properties of the [5]* The proof
of the second part is similar.

By applying (2~1)~ instead of (2.2)y we obtain analogously i

(2.4) A metrizable space Y is a topologically complete ANR (resp. a topolo-

gically complete if and only if it is r-dominated by an open set in a Banach

space (resp. space).

3. Compact ~
A continuous map f : X -+ Y between topological spaces is called compact

provided it maps X into a compact subset of Y . Let X ~ Y be a homotopy

and h : X x I ~ Y be defined by ~2{ x 9 t ~ - ht(x) for x I ; then 1&#x3E;~
is said to be a compact homotopy provided the map h is compact.

We shall make use of the following :

(3.1) Theorem [4~? [26]) s Let U be an open of a
normed space E and U be a compact mapping. Then for every e &#x3E; 0

there exists a finite polyhedron K C U and a mapping f 
E: 

: X - U called an

£-approximation of 1 9 such that

f 
E 

iS homotopic to £ 
Proof . Given £ &#x3E; 0 may assume to be sufficiently ï(X)

is contained in the union of a finite number of open balls c U ( ii

( i = 1,2,...,k). Putting for XE X ,
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where

B-Ie obtain tl1.e map f (i) and (ii). Clearly 7 the values 

in a finite polyhedron KC U with vertices Yl ’Y2 , 

we make the simple but important observation 1

(3.2) Let f : be a compact nlap of a metric X and assumo tl,-nt

f uniform limi t of a sequence {fn} of maps f : X - X . If, for almostL -T .-R fl .. © , ...-.- - .. - - .- - . - - - . - .. ----- n n I 

every 11 x EX such x 1 then f a fixed point-.... n nn n - 
.. 

-&#x3E; -- .- ---- .-- &#x3E;..

Proof. Since f is compact and f uniformly, there is a subsequence
such I of 

n I such t’i-r-t

From (2) and (1) we get x 

~k 
-&#x3E; x and, hence, by continuity of f ,

Comparing (2) and (3) have f ( x ~ - x .

~.. The Fixed Point for ANR-s .

1fe consider first the following special case of our main theorem.

THEOREM I . Let f - U - U be a compact map of an open set U in a normed space

E. Then 
’

(a~ i is a map ailcl

(b) A(f) ~ 0 ti1at f a 

Proof. By applying to f the Approximation Theorem (3. 1) we get a sequence

n of finite polyhedra K C U and a sequence {f} of maps f : U -&#x3E; U such
n n n n

tl»t

(i) fn I f uniformly 

(ii) I n (U) c for every n g

(iii) f n is homotopic to f for every n .
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NO’Vl, for every 11, we iTave the commutative diagram

Since every Kn is of a fini te f’n is a Lefschetz map. Consequently, byn 
- 

n

tl1e property (I.4.2) of Lefschetz maps (see r" 
n 

is also a Lefschets

map and = A (f )for every n . Now implies that f is a Lefschetz
- n

map, and., moreover, we have

for every n .

To prove (o) assume 0 . Then, in view of (iv) we have n

for every n . Now we apply tl1e Hopf-Lefschetz Tlxeorem to -&#x3E; K for each
n n n

n and obtain a sequence ix ) of points x £U such that x = f (x ) .
n n n n n n n

Now, because of (i), we may apply (3.2). By (3.2) there exists a fixed point for
f and the proof is completed.

Now we state the main result in full generality (cf. ~2~.~ ~ . jt
THEOREM 2. Let X be an ANR and :p s X - X be a compact 

- 

Then (a) ~ is a map and

0 implies fixed point.

Proofs By (2.3) X is r-dominated by an open set U in a normed space E.
Let s e X -&#x3E; U and r t U -&#x3E; X be a pair of maps wi t11 rs = 1X. Then we have

the commutative diagram

= Clearly, the compactness implies that Consequently,
by TiTeorem 1 , y is a Lefschetz nap. From the commutativity of the above diagram
it follows, in view of (I.4.2), that is also a Lefschetz map and A(cp) = A(.)) .
Now, if A(cp)# 0, tiTen A(y)# 0 and, by Theorem 1 , 4 lns a fixed point.
From by applying we infer has a fixed point and the

proof is completed.
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5. Corollaries.

We may draw now some consequences of Theorem 2.

COROLLARY 1 Fixed T11eorem [36]) : Let X be a compact li.NR and
f : X-&#x3E;X be continuous. implies that f iias a fixed point.

COROLLARY 2. Let X be an acyclic ANR or, in particular, an 

compact map ~." o X -7 X a fixed points

COROLLARY Fixed Point Theorem [44])* Let X be a convex (not necessa-

rily closed subset of a normed or locally convex metrizable) linear space. Then

2’M C2E]act f : X -&#x3E; X a fixed point.

Proof. By a theorem of Dgundji E16], X is an AR and hence the assertion

follows from Corollary 2.

COROLLARY 4 Theorem E3]) 1 Let S = 1} be the unit

in a normed space E S - E be a compact operator satisfying

Then there exists an invariant direction for f 7 i.e~. for some 9

we In va

Proof. Let us put for each x~S ~

Then (-3~) implies that the map p : S - S is compact. Since S is clearly an

acyclic bas a fixed point, 

for some xo and the proof of our assertion is completed.

COROLLARY5. Let X be an ANR be a compact map. Assume further

that one of the following conditions holds :

(i) fen) maps X into an subset of X,(i) f X into an acyclic subset of X ;

(ii) f(n) : X -&#x3E; X is homo topic to a constant 

Then A(f) = 1 d f a fixed point. ,

Proof. This? in view of Theorem 2 9 follows from (1.4.4)
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COROLLARY 6 Let X ’~e a Banach (or more generally a Frechet)
manifold and f : X - X is defined and A(f) ~ 0

f a fixed point*).
Proof. It is known (c;z . R. Palais, Lectures on Infinite-dimensional Manifolds,

1965) that a space which is locally an ANR is an ANR. Since X is locally an

ANR, the assertion follows.

~, proof of Theorem 2.

Another method of proving Theorem 2~*) is based on a result of J. Dugundji
which characterizes metric in terms of homotopic domination by polyhedra.

We shall state a part of the DugLll1dji theorem which will be sufficient for our

purposes.

In all that follows, by polyhedron, we shall understand a simplicial complex
with tl1e weak topology [451-

Definition. Let E &#x3E; 0 and X --&#x3E; Y be a homotopy into a metric space

(Yyp) ; then is said to be an £-homotopy  e for
u u u

all XEX and If two given maps can be joined by an

then we write g and say that f is e-homotopic to g ;11 
L 

6 
0

clearly, implies y in particular, that p(f(x), g(x)) £ for all x£X.
E

Definition. Let X be a metric space and 6 &#x3E; 0 . say that ,
. 11 T I. 

1

is an e-dominating system for X provided (i) P is a polyhedron ; .

(ii) s s and r s is a pair of maps satisfying rs £ 1x;s X

dt : X -&#x3E; X is an £-deformation joining rs and 1x. If such a systemu X

exists, X is said to be by a polyhedron P.

(6.1) (J. Dugundji). Let X be a metric AM. Then for there

exis ts a ’polyhedron which £-dominates X***).
Now we turn to a proof of Theorem 2. To this end, let f o X ~ X be a compact

map of a metric ANR into itself.

For £ &#x3E; 0, take an arbitrary £-dominating system

*) 1fe remark that the method employed in [13] will be used later on in proving
fixed point theorems for multi-valued compact maps of topologically complete ANR-s

**) Of. Jaworowski and A-spaces and fixed point theorems, Fund.
1969. 

~ ~ ’ ~ ~ ’

***) J. Dugundji, 7 absolute neighbourhood retracts and local connectedness in
arbitrary metric spaces, 13 1 Q 

‘~ __ ~ " -~ _ _ _ "’ ~"
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for X . 1re :nve

(1)

and hence

Next, consider a P-&#x3E;P given = sfr ; since y is compact,
there exists a finite polyhedron Il such that c IC .

write the following commutative diagram :

in which y1 I and (" stand for the obvious contractions of * . By Lemma 1.4.2
all tlie vertical arrows represent Lefschetz maps and

Since f is homotopic to rsf y f is a Lefschetz map and

Assume that A(f) / 0 ; then, in view of (3) and (4)2 A(~t) ~ 0 and, since

K is a finite polyhedron, y1 has a fixed point, by the Hopf-Lefschetz theorem.

Consequently, by 1-4.2 and the commutativity of the diagram above cp = rsf has

a fixed point 

and in of (2) 9

for some x EX.
0

Since &#x3E; 0 Yms arbitrary, the compactness of f implies that f 1-ias a

fixed point and the proof is completed.
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III. THE FIXED INDEX

We shall encounter two approaches to the fixed point index theory for compact

maps corresponding to the two different ways of proving Theorem II.2 . First, we

consider the fixed point index in a somewhat restricted sense (the local index : ind )
and, using an approach based on the Theorem of Duguxndji, we extend to the case of

compact maps of the ANR-s the classical local index theory for finite polyhedra.

Then we turn to more general axioms and, with the aid of the Approximation Theorem,
we extend to infinite-dimensional case the fixed point theory due to A. Dold [15] .
This leads to the Lerny-Schauder index : Ind and to a version of the Leray-Schauder

theory [41J, [42] which is suitable for establishing e, relation between the

Lefschetz number and the fixed point index of a compact map.

1. The local fixed point index.

Notation : Let U be open in a space X and f: X-&#x3E; X be a map ; call

a triple provided f is fixed-point free on the boundary U of U . Given
*

a class of self-maps F, we shall denote by Y the corresponding class of all

possible triples.

Definition. Let 6 be a category of topological spaces and H a homology

(or cohomology) functor from 6 to the category of graded vector spaces. A class

~ = Y(E5) of distinguished self-maps and self-homotopies in 6 is said to be

admissible for a local fixed oint index on 6 provided :

(i) if h is invertible in 6 and f c 9 , then hfh -1 ~~ ;

(ii) every fEY is a Lefschetz map with respect to H ;

(iii) the fixed point set = f(x) = xj is compact for every

(iv) for every homotopy, X , the set U X(ht)t t t

is compact.

Example: Let E5 1 be the category of all polyhedra and 62 the category of all

metric ANR-s . Assume that Fi = F(G), i = 1, 2, consists of those self-maps and
1 1

self-homotopies in G. which are compact. Then F is an admissible class for a
I i

local f ixed point index on G (i=1,2).
1

Definition. (comp. [39J, [12]) Let at = F(G) be an admissible class and F*
the corresponding class of triples. Then, a local fixed-point index on Y is a function

ind : J* -&#x3E; K satisfying the following axioms :

I Excision~, If (X,f,U) and (X,g,U) are in ~ and f = g on U , then
ind (X,f,U) = ind 
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II (Additivity). If and U contains mutually disjoint open sets

U.(j = 1~2y...~k) such that f is fixed-point free on U - U Uj . thenJ 
j=1 J

III Fixed Points). If ind 0 , then f f ixed point in U .

IV. (Homotopy). If h t : X , X is a homotopy in Y and (x,ht,U) E::g;* for
t u

all t , then

V (Commutativity). If for two maps f : X -&#x3E; Y , g : Y -&#x3E; X in 6 the triples

(X,gf,U), are in ~* , then

VI Normalization~. For every f :X-&#x3E;X in Y

Remark : It should be noted that the commutativity implies the following property
of the local index :

VII invariance). Let h :X-&#x3E;Y be an invertible map in 5 .
Then for any 

2. The local index for compact ma s of 

We begin by stating the following classical result which goes back essentially

to H. Hopf :

(2.1) (The local index for finite polyhedra).*) Let G be the category 
finite polyhedra, H homology (or functor with rational

consist of all continuous self-ma s ~.n E5 . Then
there exists a uriique integer valued function ind : Y* -&#x3E; Z satisfying the properties
I - VI .

* cf. H. Hopf , Über die algebraische Anzahl von Fix ten, Math. Z * 29 (1929) ; for
the uniqueness and complete self-contained proof of 1,1 (in terms of cohomology)
we refer to B. O’Neill, Essential sets and fixed points. Amer. J. Math 75 (1953).
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We shall use the following property of the local index which is zx consequence of

the Commutativity Axiom :

VIII (Contraction). Let ~* and K’ c K be such that f(K) C KI .
Denote by f t : Kt - K’ the contraction of f and put U’ t = K’ n U. Then

Definition. Let P be an arbitrary polyhedron, U open in P and f : P -&#x3E; P
, , 

. 
_ ,

s, compact map which is fixed-point free on " U . The compactness of f implies that

there exists a finite polyhedron K C P such that Denote by f : K -&#x3E; K
K

the corresponding contraction and put UK = U n K .
Clearly, (K,fK,UK) is a triple. We letK K

The Contraction property of the local index for finite polyhedra implies that

ind (P,f,U) is well defined.

Theorem 1. Let E5 be the category of polyhedra and F = F(G) the class consis-

ting of all self-maps and self-homotopies in 6 that are compact. Then, the index

function defined by~ (*), satisfies all the properties
I - VI . Moreover the above function is unique.

Using properties of the weak topology and the Contraction property, Theorem 1

follows in a straightforward manner from Theorem (2 , 1 ) .

3. The local index for compact maps of the ANR-s.

Notation : Let (X, p) be a metric ANR, U open in X and f : X -&#x3E; X a
.

compact map which is fixed-point free on the boundary U of U . For c &#x3E; 0 , we let

be an e -neighbourhood of U in X and for a number 11 such that

The compactness of f implies that for 0 we have

We let
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be two dominating systems for X with constants e and et respectively ,
We have

We define

by putting

(3-1) Lemma. Assume that both e and £’ i are smaller than § . Then
2 

(i) h’ is a compact homotopy joining s’ fr’ and 
t ,

(ii) h’ is a fixed-point free on 
t 21

a compact homotopy joining sfr and (sr’)(s’fr) ;

(iv) ht is fixed-point free on 3~-’(vi)
2

Proof, (i) and (iii) are evident. To prove (ii) , suppose to the contrary
that for some 

Then, in view of (6) and (3~ , y we have

From (7) and (6) we get

and hence, in view of ( 3 ) ,

which is a contradiction because of (8) and (2) , This completes the proof of (ii)
The proof of (iv) is similar and is omitted.
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(3.2) Lemma. Let and T be two dominating systems for X with
X,£ 

20132013 

f 201320132013201320132013201320132013201320132013201320132013201320132013- 20132013

constants e and E’ smaller than 2013 . Consider the following commutative

diagram

Then

Proof. (i) and (ii) are consequences of Lemma (4.1 ) ; and the formula

Fr(r1(A)) c (iv) follows clearly by the Homotopy from (i) , (ii) and

(iii) .

To prove (iii~ , we note that since both 4l and 4F’ are compact, the

commutativity of the index in ~ implies

Next, we observe that

and

consequently, by the Excision, we get

and the proof of (iii) is completed,

Definition. Let (X,f.9U) be a triple such that X is a metric ANR and

f : X -&#x3E; X is a compact map. Take an arbitrary £ -dominating system

for X with constant £ less than d 2. Using Theorem 1,

we let

It follows from Lemma (3.2) that ind (X,f,U) is well defined.

*) If (X,f,U) and (X,g,U) are triples, we write f - g rel U to mean that f
and g can be joined by a homotopy which is fixed point free 
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Theorem 2. Let E5 be thc category of metric and F = be the class

consisting of all compact and compact self-homotories in E5 . Then the

function ind : Z defined by the formula (*) satisfies all the 

I - VI . In V it is assumed that one of the maps f or g is compact

4. Proof of Theorem III.2 .

The Normalization property was already established (see the proof of Theorem
11.2 given in section 11.6) . All the remaining properties (except the commutativity)
follow easily from the corresponding properties of the local index in Let us

prove for instance Property IV .

Property IV : Let h t : X be a compact honotopy such that 5;*
" t u

for all Take a number n satisfying

The compactness of the homotopy [ht3 implies that for some g&#x3E; 0 we have

Put &#x26; = min y9,’~~ and take an arbitrary . Then

shtr - P - P is a compact homotopy such that

Consequently,

assertion follows.

Property V : For the proof of the commutativity (which is somewhat more involved)
we shall need two lemmas.

(4.1) Lemma. Let, P -&#x3E; P be a compact map of a polyhedron 
map into a metric space Y ; assume that U is open in Y and (P~~~~(u))~S~~5~ 
There is a 8 &#x3E; 0 such that for any 6 -deformation dt : Y - Y with g  6

t 

Proof. This reduces to the case of finite polyhedra.

Consider nox the following commutative diagram
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in which X and Y are metric ANR-s and f is compact. Assume that c-p is
. 

-

fixed-point free on the boundary U of X ; this implies that -* is fixed-point
free on the boundary U of Uy - g-1 (u) We let U = r1 (U ) . xy Y x y

(4.2) Lemma. For every 6&#x3E;0 there exist T and
--7 - ..,

with c and e ’ s smaller than 6 such that the following

two conditions are satisfied :

(a) the honotopy given by
t

is fixed-point free on 

(b) the homotopy ht : P - P Kiven by

is fixed-point free on 

The proof of Lemma 4.2 is given separately in section 5 .

Now, after the above preliminaries we turn to the proof of Property V .

By Lemma 4.2 there exist dominating systems

such that the conditions (a) and (b) of Lemma 4.2 are satisfied and

Consider the following conmutative diagrams

We assert that

Indeed,

(i) and (vii) are evident in view of (*) and (**) ; (ii) holds by the
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Homotopy because, in view of Lemma 4.2 ,

(iii) is a consequence of the Commutativity of the index in (iv)
follows, by the Homotopy, because (in view of Lemma 4.2)

(vi) is a consequence of Lemma 4.1 aplied to the map p = fr : p _ Y ; (vii)
holds by the Excision of the index in 

Thus, we proved that

It follows then, by the Excision, that

and, consequently, (***) holds assuming that one of the naps f or g is compact.
The proof of the commutativity is completed.

5. Proof of Lemma 4.2 .

such that £  S and

We assert now that

’There exists 7 &#x3E; 0 , satisfying n  6 , such that for any

we have

For suppose not. Then there is a sequence

such that every homotopy
! ,

has a fixed point on and ~a ~ satisfies

Denote by a fixed point for 
n n y 

Thus, for some we have
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and hence

From this we get

This in turn implies, in view of the compactness of the homotopy fdtg and the

interval , that

which is in contradiction with ~3~ .

Next we claim that

For some with e I  6 we have for all

For suppose to the contrary that (5) is false. Then for each n = 1,2,~~ and

there is so that

and hence

Consider the sequences and put for each n
n n

From (6) and (7) we get

Now, using the compactness of f and ~8 ~ , ~ 9 ~ we obtain
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which is in contradiction with (3) . Thus (5) is proved. Now, by comparing the

statements (3) and (5) the assertion of the lemma follows.

6. MorE general axioms.

Now we shall consider a more general notion of the fixed point index.

Definition. Let f : U -&#x3E; X be a continuous map between topological spaces.

Call f admissible provided U is an open subset of X and the fixed point set of

f

is compact. A homotopy h t : U-&#x3E; X will be called admissible provided the set

= L) is compact.
~ 

I 
"

Definition (camp. [151). Let 6be a category of topological spaces in which a

class Y = 5;(E5) of admissible maps and homotopies is distinguished, By a fixed-point

index on Y we shall understand a function K which satisfies the

following conditions :

I (Excision). If Ut c:U and n f cU’ , then the restriction
is in Y and

II (Additivity). Assume that and the fixed point sets

are mutually disjoint, I Then

III (Fixed points) . If Ind f f 0, then i.e., the map f has a

fixed point.

IV Let 0~t~1 ~ be an admissible homotopy 
Then Ind (h) = Ind (h,) .

V (Multiplicativity). If and are in 5; then so is

the product map f, x f2 : U, x Y,2 and

VI (Commutativity) . Let U ex, p Ut C XI be open and assume f : U -c&#x3E; XI ,

g : U’ .~ ~ are naps in 6. If one of the composites
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is then so is the other in that case,

VII (Normalization). If U = X and f : X -:&#x3E; X is then Ind(f) = A(f) .

7 . The Fixed Point Index in Rn ,

In the following definition H is the sirlgular homology 11 over the integers

Z . Let us fix for each n an orientation 1 of the n-th sphere

Sn = ((x)) = 1} and accordingly identify H n (Sn~ ~ Z with the integers Z .

Def initian (cf [15J). Let f : U -&#x3E; Rn be an admissible map. Denote by K = nf
the f ixed point set for f and by

the map given by (i-g)(x) = x-f(x) . The fixed point index Ind f of the map f

is defined to be the image of 1 under the composite map

The following theorem was established by A. Dold [1 5]
(7 .1 ) (The Fixed Point Index in Rn) : Let G ’be the category of open subsets of

Euclidean spaces and the class of all continuous admissible maps in 6 .

Then the function f-&#x3E;Indf defined above satisfies the properties I-VII. In VII

it is assumed that f is compact.

We note that the excision and the commutativity implies the following property of

the index :

VIII (Contraction). Let U be open in and f : U .~&#x3E; be an admissible

map such that f(U) c R , Denote by f’ : Rn the contraction of f , where

U t Then Ind(f) = Ind(f) .

8. The Leray-Schauder Index.

Let U be an open subset of a normed space E and let f : U ~, E be an admissible

compact map. Take an open set v c U such that Nf c V . Then the number

~ = rex) 11 for is positive.

Let g = f IV V _&#x3E; E . From the definition of e , it follows that ;

(i) every c -approximation g : V _&#x3E; E of g is adnissible ;
£

(ii) given two e -approximations g’ , g" : V -&#x3E; E of g , there exists an
F- E

admissible finite dimensional compact homotopy ht : V &#x3E; E , 0  t  1 , such that

~0 =~ ’ ~ =~
Definition. Let f : U -&#x3E; E be an admissible compact map and g : V -&#x3E; E be an

e

£ -approximation of g = fIV as above. Denote by En a finite dimensional subspace
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of E such that and V 
n =VnEn, be the£ e n n

contraction of g , Using (7 , 1) , we define the Leray-Schauder index of f by

putting Ind(f) = 
c

It follows from (i), (ii), and the properties I , IV and VIII of the index

in Rn , that Ind(f) is well defined.

Theorem 3. Let C be the category of open subsets in linear normed spaces and

let Y be the class of all admissible maps in 6 . Assume that all adnissi-

ble homotopies are Then. defined on Y, il the Leray-Scllauder index

f -&#x3E; Ind(f) satisfies the properties I-VII. In VI it is assumed that both f and

g are compact.

Proof. Using the Approximation Theorem I.3.1,properties I-.v follow from the

corresponding properties of the index in Rn . These once proved, property VI

follows (similarly as in [15]) from I, PV and V .

Proof of property VIII : Given a compact map f : U _&#x3E; U let f : U U be an
e

e -approximation of f such that its values are in some finite dimensional subspace

En of E and let u U n E n
n

Consider the following commutative diagram in which all the arrows represent
either the obvious inclusions or the contractions of the map f :

. By the definition Ind(f) = Ind(f’ ) . By we have
s

= A(f ) and, consequently, in view of (7.1), (property Ind(f) = A(f ) .
e E E

Since f is homotopic to f , this implies that Ind(f) = A(f) .
E

9. Remarks on the non-metrizable case. First we remark that the Approximation Theorem

~ I, 3.1 ~ extends (with appropriate modifications), to the case when U is open in

locally convex topological space E .

This fact permits to extend the Leray-Schauder index to the case of locally

convex spaces and to state Theorem 3 in the following more general form

Let 6 be the category of open subsets of locally convex topological

Spaces. Let, Y = ~(6) be the class of all admissible compact and assume that

all admissible homotopies are compact. Then there exists a functi on Ind: F &#x3E; Z

(the Leray-Schauder index) satisfies the properties I-VII . In VII it is

assumed in addition that both f d g are compact.
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We remark that Theorem. 3 is not completely satisfactory (because the question
of topological invariance of the Ind f remains open). Nevertheless.. some useful

applications of the Leray-Schauder indci; can be given.

Theorem 4. Let X be a space which is r-dominated by a set U open in a locally

convex topological space E . Let r : i U -&#x3E; X nd s : i X -&#x3E; U be a corresponding pair
of maps with rs = 1 . Assume that f : X -&#x3E; X is a compact Then (i) f is a

Lefschetz map ; q (ii) is equal to the Leray-Schauder index of the map sfr ,

A(f) = Ind (sfr) ; (iii) if A(f) / 0 , then the map f has a fixed point.

Proof. (i) and (ii) follow from (Example 2) and Theorem 3
(Property VII); ~iii~ is a consequence of ~ii~~ Theorem 3 (Property III) and again
of Lemma 1.42.

Remark. Since every metrizable ANR is r-dominated by an open set in a normed

space, Theorem 4 includes as a special case Theorem II.2 ; moreover, it gives more

precise information about the Lefschetz number A(f) of a compact map f by relating

it to the Leray-Schauder index of the map sfr .

10. The fixed point index for coripact (non ANR-s .

We shall give now an application of the Leray-Schauder index to the fixed point
index theory for the compact for normal spaces. Such a theory was established

previously by combin2torial means (and in a different form) by several authors (cf.
J. Leray [371, A. Deleanu [14J, D. Bourgin [10], F. Browder [12]).

Let X be a compact ANR for normal spaces and h : X -, E’ I be 0152n embedding of

X into a locally convex space El . It can be shown that the linear span E of

the compact set h(X) in E’ is normal. It follows that X is r-doninated by a

set open in a locally convex space.

Definition (comp. [19]). Let X be a compact A1TR for normal spaces and

f : U --c, X be an admissible map. To define Ind(f) take an open set V in a locally

convex space E which r-dominates X ; let s : X -&#x3E; V , r : V -&#x3E; X be a pair of

maps with rs ~ l  . Since the composite map

is compact, its index is defined by Theorem 3’and we let

The Excision and the Commutativity of the Leray-Schauder index inply that this

definition is independent of the choices involved.

Theorem 5. Let C be the category of compact ANR-s for norlial spaces and 9
be the class of all continuous admissible naps in 6 . Then the function f &#x3E; Ind f

defined by (*) satisfies all the properties 
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IV. OTHER GENERALIZATIONS OF LEFSCHETZ FIXED POINT THEOREM

In the previous lectures it was shown how the Lefschetz Fixed Point Theorem

for compact can be extended to the case of non-compact spaces. Now we

turn to some other generalizations of the above theorem.

1. Fixed Point Theorems ,,

First, using the general properties of the Lefschetz maps and Theorem II.2,
we extend the Lefschetz Theorem to a class of compacta*) introduced by H. Nogachi
in [43] and called here the class of approximative ANR-s . Until further notice

H stands for the Cech-Vietoris homology functor with compact carriers.

Definition. Let (X9A) bo s, pair of metric spaces and 6 be a positive

number. A continuous map r i X ---&#x3E; A is called an e-re traction provided
e

for all A subspace A c X is said to be an approximative

retract of X provided for each £ &#x3E; 0 there exists an £-retraction r s X -), A.
e

(1.1) Assume that A is an approximative retract of s, space X .

Then the 3. H(A) - H(X) il1.duced by the inclusion i : A - X is a mono-

.

Definition. A compactum X is said to be an approximative ANR (resp. appro-
ximative dLR) provided for each embedding x - Y into a metric space Y , y the

set h(X) is an approximative retract of some open set U in Y (resp. an
approximative retract of Y~ .

Although not necessarily locally connected, the approximative ANR-s enjoy

many familiar properties of the AM spaces (cf ~ [43J and [20]). In particular z

(1.2) Every compact approximative is of a fini te type.

The following property of the approximative ANR-s is of importance :

(1 .3) Let i fl X - Y ap-proxamative ANR. There

exists &#x3E; 0 such g &#x3E; X ~ Y condition

implies f* = g*.

Proof. In view of we may assume without loss of generality, that Y

is contained in a Banach space P. 9 and hence there is an open set rJ in B such

that Y c U is an approximative retract of U . Let E &#x3E; 0 be a number smaller

than the distance of the compact set Y to the boundary of U

and [32]) that there exist in R~ locally connected acyclic
continua without the fixed point property. This shows that the Lefschetz fixed
point theorem cannot be extended to arbitrary compacta.
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in E. Let g : X - Y mp such trot

Denote by j : Y -7 U the inclusion and put f ~ t = jf , g’ = jg . From ~#} and

the definition of 6 we infer that for each xEX the internal tf ~ ~x~ 
where 0 ~ t1 is entirely contained in U . This implies that f I and g’
are homotopic. Consequently f’* = g’*, i-e. , j*f* = j*g* . Since j* is

by ~~ .1 ~ 8, monomorphism we get f" = 9* 
°

TBNNSM 1 (cf. [25]). Let X be an approximative compact ANR and 

be continuous. Then ~(f) ~0 implies that f has a fixed point.

Proof. We may assume, without loss of generality, that X is an approximative

retract of an open set U contained in a Banach space E . For each n = 1 q2 q , .. p
let r : U  X be a 1 - retraction from U to X. We have

n n

Let j : X -~ U be the inclusion and define for each n = 1y2~... a map

~ : U -) U by putting

Consider now for each n the diagram

and its image under the functor H in the category of graded vector spaces

In view of (2) we have

In view of ~1 ~ the identity map 1 : X - X is the uniform limit of the

sequence {rnj} of maps o X -+ X . Applying to the nap X proposition

(~ .3~, we conclude tint there exists an integer no such that 1~ = ~r n j~~ for
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all n&#x3E;no. This implies f* = (frn)* 0 j* for n &#x3E; n , and hence in viewo 
- 

n o

the H(D ) commutes for n &#x3E; no.’ 
n 

’ 

o

Applying now Proposition (1.3.1) to the diagram H(Dn) we have

Now let us assume that K(£) / 0 . shall prove that f has a fixed point.
In view of (2) and (4) each i U -7 U is a compact map with A(g)#0 for

n n

n # n .
o

Applying Theorem 11.2, we find a sequence {xn} of points in X such that

Let {xk} be a subsequence of such that

nn

In view of (1) we have

and hence, in view of (6) ,

By continuity of f , we have from (8)

In view of (5) and (2) and, therefore, in

view of ~6~ ~ we have

Comparing (9) and (10), we conclude that x = f(x) and the proof is completed.

COROLLARY. Acyclic compact approximative and in particular approximative
have the fixed point property,

2. Fixed Point for Pairs of Spaces.

Next, some generalizations of some of the proved theorems to the case of pairs
of spaces. The corresponding results due to C. Bowszyc (cf. [7’j, [9]) assure not
only the existence of, but also provide certain information about the localization
of fixed points. By H we denote the singular homology functor with coefficients
in K.
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(2.1) Let (X,-£) be a o (X,A) -&#x3E; (X,A) be a 

*) *). ’ f is a 8a:P D.1’ld 

" 

, Then t is a and

Proof. This clearly follows from Theorem 11.2 and (1.4.3).

(2.2) Let (V,V) be a pair of open subsets of a normed space E and

f : (U~V) -~ (UgV) be a compact map. Then A(f) ~ 0 implies that f has a fixed

point in U-V.

Proof. First we apply the Approximation Theorem for £ =.1. (n = 1,2,...)n

and find a sequence of finite polyhedral pairs and a sequence (fn3 of
n n n

maps f : (u7V) --&#x3E; (U,V) such that (Kn,Ln) c (U,V) for all n &#x3E; N and
n n n

Then using the Hopf-Lefschetz Theorem for the pairs of polyhedra and the

argument analogous to that in the absolute case 9 we get a sequence of points

such that for almost all n
n,

This implies, in view of (i), that

and hence, in view of the compactness of the map f, implies the existence of

a fixed point for f in U-V.

(2.3) Let (X,A) be a pair of ANR-s with A open in X and let

f : (~ ~~1 ~ -~ be a compact map. Then A(f) ~0 implies that f has a fixed

point in X-.A..

Proof. By the same argument as i11 the proof of Theorem II.2 9 this follows

from (2.2) and (1.4.2).

(2.4) Let pair of ANR-s with A closed in X and let

f : (X,A) -&#x3E; (X,-i) be a compact Then A(f)#0 implies that f 11as a

*) A map f s (X,A) -&#x3E; (Y,B) between the pairs of spaces if compact provided it

maps into a pair of compact spaces contained in (Y B) .



A-IV-5

fixed point in X-# .

Proofs In view of the compactness of the map f 9 it is sufficient to show

that for eacll E &#x3E; 0 there exists a point x such that  E .
o o o

Let e &#x3E; 0 be given. We nay assume without loss of generality that X is

a closed subset of a normed space E . Take a retraction r s U - X of an open

set U c j onto X . We may assume (by making U smaller if necessary) that

Let clearly for the pair of maps

and

we have r 0 i = 1 (X,1B.) . vle define a compact map g : (U,B) -&#x3E; (U ,B) by putting

and we let

(3) 6 = 1 where 61 = FU) &#x3E; 0 .

v~e claim noi,r that t11ere exists an open set V in E and a continu.ous map

a (U,B) -&#x3E; (V,B) such that the following four properties are satisfied a

is compact ;

(iv) gi is homotopic to g .

To this end we sl1all define four open sets U , U, 9 U2 and V satisfying
o

as follows : Since B is closed in U and A is an ANR , there exists an

extension r s U 0 --&#x3E; A of r o over an open set U 
0 

c:U ; thus U 
0 

is

defined.

Next , before defining U1, we lot a : A be given by

clearly g is a compact map aid

Now we let
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Finally, we define U2 and V arbitrarily.

Now iet x i U ~ [0, 1 ] be a real-valued function such that

We define the funct.-L on ei on U as follows :

From (4) and (8) it follows that gl is well defined and continuous.

Furthermore, i t is not difficult to check (U,B) - (U,B) and that the

conditions (i) - (iv) are satisfied.

The various inter-relations between the relevant maps may be displayed now

in the following two diagrams :

Since q is a Lefsc11etz map (by (2.1)) and ~ ~ g we conclude by (1.4.2)
that

1£ A (f) / 0 then by (2.2) there exists a fixed point for Bi. More precisely,
we have

Let us put x = r(y ) ; clearly, x does not belong to A (because
o o o

= B’.). Further, in view of (1), (2), (iii) and (3), we halve :

and consequently

The proof is completed.

The proceeding discussion is summarized in the following :
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THEOREM 2 (of - [7]). Let (X~A) be a pair of ANR-s such that A is either

closed or open _ in X and assume f : (X,A) - (X,A) is a cpmpact 

Then 2

(i) f is a Lefschetz ma-1) ;

implies that f has a fixed point in ~.

3. Some applications of the Mayer-Vietoris functor.

Notation: Let {A} be a finite family of sets (i = 1,2,...,n) and
.l.

be a map satisfying f(A) c A. i or every i = 1,2,...,n. Given a multi-index
i 1

we let

and denote by

the corresponding contraction. we denote the smallest lattice of sets

containing all the members of the family (A . ) and by the nerve of the
i i

family 
.

Definition. An ordered pair of spaces {X1 X21 is called an excisive couple

[45]) provided the excision map (x~ xl D ~ ~ -~ (x, U x, 9~ ~ induces an

isomorphism of the corresponding llomology groups. 1-fore generally, a family of

spaces (i = 1~2p...~n) is said to be excisive provided for any members X,
and of the lattice ill (AJ the couple is excisive.

. :

Clearly we have the category of excisive couples and on this category there

is defined the liayer-Vietoris functor which assigns to an excisive (Xl the

exact Mayer-Vietoris sequences

and- to a morphism f : {X1,X2} -&#x3E; (Yl "Y2 } it assign the map of corresponding
exact sequences.
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(3.1) Let A be closed in a metric space X for i = 1,2,...,n, and- :L T - - . &#x3E;.. - - - -..-M .. - - -- - -

assume for every multi-index j the set A. is an ANR. Then (i) everyj 
member X of the lattice is a11 ANR and (ii) {Ai} is the excisive

family of spaces.

(3.2) Assume that in

and is the excisive Let, f :A-~A be a continuous map such that

for all i = 1,2,...,n. If, 9 f or every mul ti-index j, ..

1 1 J J J
i s a Lefschetz map. then s o is the and we have:

Proof . We indicate tl1e induction by considering the case n = 2 . We have

the map of the Mayer-Vietoris exact sequence into itself induced by f , i.e. the

following commtative diagram with exact rows s

X be an ANR , {Ai}ni=1 a family of ANR-s such that

all A. c X are either open or closed in X and every A. is an ANR . Assume
i " " ’ - J 
further that

is a com-oact map satisfying Then

in particular, if all o are either empty or acyclic
J -’ ’ ’ - 

° 
’
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A(£) / 0 implies f has a fixed point in X-A .

(i) follows from (5 ,1 ) , (3.2) and remark that any finite family of
open sets is excisive , (ii) follows from the Buler-Poincare formula, since
A(f.) = 1 for every j ; (iii) is just the restatement of Theorem 2.

J J 
.) = I £or is s just the restatement of Theorem 2.

COROLLARY 1. Let X bean LIR and

be the disjoint union of are either all ,open or all closed and such

A is an AR. Assume further that £ i (X,A) -&#x3E; (X,A) is a conti-

YM ous (a) f(A)CA (b) x - X and all the 

f. : are compact. f bas a fixed X-A. j

Proof. Clearly f is compact. and 1’1. Hence by

Theorem 3, 1-n # 0 and our assertion follows.

COROLLARY 2 ([11]). Let X be a compact AR and U ’oe the union of n-o en sets

£g ,U2, ... ,U such that (I) U. n U. / 0 , (ii) ) eve - ix an AR, (iii) n # 2 .lB IU2 such (i) i n 0 , every U. AR, (iii) n ’ 2.

Assume furtl1.er tint f e X - U -&#x3E; X is -f :L c V. for every
i i

I = 1,2,... ,n. 

Proof. Let

It follows from the assumptions that there is a map g i (X,A) , (X,A) such that

g(x) = f(x) for all l’ie have clearly A (g) w 1-n ~ 0 and hence g(x) = x
for some = X-U. Consequently, g(x) = x .

q. Common points.

Let X 1J8 a space and be a family of maps f i X -&#x3E; X ; call 

di visible [9-1 provided for any f. there exists h£FX such that for some

(4.1) Assume that j,,x = (fl is a divisible family such tInt for any 
the fixed point set ~(f) = rex) = X3 is and compact. Ti-ion

is also 
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Proof. Lot f1,f2,...,fk£FX ; there exists an such for some
k 11

Consequently, cn(f) = n(hni) for each i = 1 2,...,k and hence the
.L

intersection

is non-empty. This shows that the family is a centered family of

compact spaces and our assertion follows.

Definition. Let (X,.L~.) be a pair of spaces and [f 3 (t # 0) a continuous

family of maps s (X~A) -~ (X.A) . depending on the parameter teR ; [ft) is

said to be a semi-flow on (XyA) provided

If for a point x¿X, =x for all then x is said to be a

fixed point for a semi-flow 

note the following evident proposition s

(4.2) Let tEe be a semi-flow. Then (i) is ho-

motopic to ft" for a (ii) the family (ftl indexed by the positive

rationals, is divisible.

THEOREM 4. Let (X,.I) be a pair of such that 1’1. is either open or

closed in X and assume that the relative Euler-Poincare characteristic x(X,A)
2f (~~) is finite and different from 0 . Let I : (X,A) -* (X,A) be a semi-

flow on (X,A) such that f. is corn-pact for each t&#x3E;0. Then (f.J has a

fixed point XEU.

Proof. We 1-ave clearly = (X, 0 for every t # 0 and hence our

assertion follows, in view of (4.1), (4.2), and the continuity of the family (fti,
from Theorem 2.

5. Vector fields on the manifolds with boundary.

Let 1.1 be a Ck-manifold with boundary 6M (k £ 2) ; for a point p£M we

let T i-) (1-1) be the tangent space to 11 at p . If p£dM then Tp (r-i) decomposes

into two closed half-spaces and such that n 

A tangent vector § is said to be outwardly (resp. inwardly) directed at a point
(resp. 

p p iJ p
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k -1

Let § = {§p}p£M oe a Ck-1-vector field on the manifold M and assume that

on any component of the boundary either (i) all § we outwardly
directed or (ii) all g P are inwardly directed . Denote by

the union of all the components 11 . of the first kind and by

the union of all components of the second kind.

We may state now the following generalization of the well-known result of

H. Hopf (of. [9]) :

THEOREM 5. If the relative Euler-Poincar4 characteristic x(M,A) is different

from then the vanishes at some point the samet,’,ae field § = {§p} vanishes at some -]20int p£M;

assertion holds when 0 .

Proof. First, by taking a tabular neighbourhood N diff A x I of A , we

enlarge M to a manifold fl e He bave = A U At and dM = B U At

Since the pair is clearly a deformation retract of we h:1Ve
A

Next, ’’Ie define the vector-field § -. (g ) on M as follows :
p

Let st = {§’p} be defined on U A’ by

we let ~ be an arbitrary I over FI . Since on N A the

field 77 is inwardly directed, it determines differentiable semi-flow

in view of (*) and Theorem 4 , there is a point p£M = M - NA such that
= p for all t ~--- 0 . For this point p , we lave g p = 9p =0 and our

first assertion follows. The second assertion follows clearly from the first by

considering the vector field n = -c; .
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V. SERIES AND THE EXISTENCE OF PERIODIC POINTS

some applications of the Leray trace to the theory of periodic points. The

corresponding results, due to C. Bowszyc [8] are expressed in tems of the Euler-
Poincare characteristic and the Lefschetz power series of a map f.

1. Algebraic 

For a field K we denote by the integral domain consisting of all formal

power series

coefficients a K(x) contains the polynominal ring the field K

and 
0*)

(1.1) A series s== E is invertible if and only if . 
-1 

--~ 

-L 
°"""’ ’ " ~ y if 

0

For an elenent s we have

(1.2) Assume 

is of the form where u,v£K[x], u / 0 and dogu  degv = K. Then

for any natural m at least one of tiTe coefficients

am I 1 ~ 

must be different fron zero.

Definition. Denote "by -. K- Ixi - IR(x) the ordinary derivation in I(x) j for

an invertible element sEX(xj we define the logarithmic dorivative D(s) of S by

~~ .3 ~ If t:1e elements are invertible. 9 then

Defini tion. Assume that a povler series s is of the form s = where
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vTe define the s* of s by putting

(1 .4) If the the conjugates, then so does their sura
and

2. The Lefschetz power series of an endomorphism.

lIe recall for an endomorphism cp : i E -+ E of a vector space E we let

cp s E -&#x3E; Ë be induced by cp on
oo

if (9 is admissible (i.e., dim m  (0) then cp is an automorphism and we denote

by the characteristic polynomial 

Since N9 = N qJ we have clearly

(2.1) ~ is admissible if and only if p’~ is admissible.

(2.2 ~ Assume that It is algebraically closed g E - E is an admissible

endomorphism. Then all the (m = dim Ë) of the characteristic

polynomial are different from zero and for any natural n we have

Proof. By the Jordan Theorem,, there exists a basis in E such that the

corresponding matrix representation for ~ has a triangular form. Consequently

and assertion follows.

Assume now that cp = is a Leray endomorphism of a graded vector space
E = {Eq}; we recall that in this case

is of a finite ty-pe, the Lefschetz number is given by
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and the Euler-Poincare characteristic ~‘~~~ by

We note that (2.1) implies

(2.3) cp i s a Leray endomorphism if and only if Çpn i s a Leray endomorphism ,
in that case ~(cp) 

(of. [8] and [2 ] ) . The series of a Leray

endomorphism cp = is an element of defined by

and the characteristic polynomial w(cp) of cp is given by

where wq is t11e characteristic polynomial of 7)q10
The fact is of basic importance [8] s

(2.4) Let be a Leray endomorphism of a graded vector space E 

into itself. 

where w is the characteristic of endomorphism cp. Consequently,
the Lefschetz power series admits a representation form

(2) = -uv;i-1

where u and v are relatively prime polynomials with deg u  deg v (u # 0).

Proof. shall indicate the proof for the case when K is algebraically closed q
to this end, denote by À Q (j = 1,2,..., din Eq) all the roots of the characteristic

qJ q
polynomial w 

q 
of 1 .

q q

We have

Taking into account (1 .3) and (1.4) and t:1e definition of w we get
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and consequently

On the other handy taking into account (1.1) and (2.1 ) , we have

and hence? in of the formula ~~‘~ p our assertion follows.

Definition Let = uv-1 be a rational representation of L(~) with

relatively prime polynomials u and v as in (2.4). We let be the degree
of the polynomial v .

(2.5) be a Leray endomorphism. Then

(ii) if and only if for some natural n ;

(iii) g = k ~ 0 then for any natural m , one of the coefficients

£L different from 0 .

We remark;: further that

(2.6) If tl1e characteristic w of the Leray endomorphism = (y q3
is respresented on the form ii = yz-1, with relatively rime polynomials y and z 2on the form w = y-el , wi th relatively 2rime polynomials y and z ,

then

where a and b are the number of different roots of the polynomials y and z

respectively

Lefschetz power series of a continuous map.

Consider a category --3 of topological spaces (or pairs of topological spaces)
and let H be a honology or cohomology functor from "5 to the category of graded
vector spaces over We recall that a continuous f s ~ -~ ~ is called a Lefschetz

map (with respect to H) provided is a Leray endomorphism.

It is easily seen taking into account (2.3))~ that s

(3.1) A map X~X is a Lefscl1etz if and only if so is an iterate f~
case
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Noii the essential part of the proceeding discussion is summarized in the following

TEEORE1.¡ 1. The Lefschetz power series L(f) f s X - X admits a "rational"

representation

L(f) = uv-1

where u and v are relatively prime polynomials with deg u  deg v . Let us put

P(f) = deg v . We have

implies P(£) / 0 j

if and only if ~~~) - 0 for some n ;

~ for any m at least one o~’ the coefficients

of the series L(r) must ’be different from zero.

In the next section we shall turn to the applications of Theorem 1 to the theory
of periodic points.

4. Lefschetz spaces. The existence of periodic points. j
Y &#x3E; Y be a continuous map ; a point y£Y is said to be a eriodic

point for f with period n provided 1‘’n(Y) - Y ·
111 order to increase the generality of our considerations it will be convenient

to introduce the following : i

Definition (comp. [13])* Let Y be an object of the category .5 . Call Y a

Lefschetz space (or a Lefschetz pair) with respect to the functor H provided every

compact map f: Y -+ Y is a Lefschetz map and A (£) / 0 implies the existence of a

fixed point y for f ; in the case of a pair Y = (X,A) we require additionally
that y  

Examples : The following types of topological spaces (resp. pairs of spaces) are
all Lefschetz spaces (resp. Lefschetz pairs) s

1 ° metric ANR-s with respect to the singular homology ;

2° compact metric approximative ANR-s with respect to the Cech-Vietoris homology ;

3° open sets locally convex spaces ;

4° retracts of Lefschetz spaces with respect to the same homology or cohomology

functor ;

5° compact for normal spaces with respect to the singular homology ;

6° convexoid spaces in the sense 81 Leray [37J with respect to the Cech cohomology ;
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7° pairs Y = (X,A) of metric such that A is either closed or open in X.

be a of a Lefschetz space ( or a pair of

spaces) such tInt the n-th of f is compact for some n . If

~(f) ~0 ~ P(f) ~0 then f has a periodic point y with a 

(in the case of a pair Y = (X 7A) we assert that 

Next we draw some consequences of Theorem 2.

COROLLkRY I . Let Y be a Lefschetz space of a finite type and be an

eventually compact such that i" o H(Y~ -~ ~3(Y~ is an isomorphism. Then

~(Y)~0 that f has a periodic point .

Proof. The fact tl1at f* is invertible implies that = x(Y) and t11uS our

assertion follows from Theorem 2.

Corollary 1 implies the following result due to F .B. Fuller [19] s

COROLLARY 2. Let Y be a compact metric ANR and fs Y -&#x3E; Y an invertible or,

more generally 9 homotopically invertible map. If the Euler-Poincare characteristic

x(Y) / 0 has a periodic point.

COROLLARY 3. Let Y be a Lefschetz space or a Lefschetz such that

Hp (Y) -- 0 for all n &#x3E; 0. Then any eventually compact map f s Y -&#x3E; Y has aH2n (Y) = 0 n 5 0. compact map I i Y - Y has a

periodic points

Proof. From the assumptions and the definition of the Euler-Poincaré characteris-

tic of a it follows that 0 and therefore our assertion is a consequence

of Theorem 2.

Corollary 3 contains as a particular case the following result due to

0. Hajek ’x

COROLLARY 4. Let Y be a compact ANR such that .- 0 for all n # 0. Then
any eventually map Y -+ Y has a periodic point.

___ - ___ _ ....................... a- ,, - _ _ , - - . -- ....----- - --

*) A map 1 a Y -&#x3E; Y is called eventually compact provided certain iterate fn of

f is compact.

**) 0. Homological fixed point theorems. I, II y III, Comment. Univ.

Carolinae 5 ( ~ °G4) g ~ ~-3~ 9 85-92 1 ~~~ 96~) ~ ~ 5~-16q..
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VI. FIXED POINTS FOR iIULTI-VAL-UED COMPACT l1APS

In 1946, S. Eilenberg and D. Montgomery [17] made the important observation

that, with the aid of an old theorem of L. Vietoris [46] several results of the

fixed-point theory for single-valued mappings could be carried over to the case of

multi-valued- acyclic i.e. , maps for which the image of every point is an

acyclic compact set. the Lefschetz Fixed Point Theorem for compact ANR-s
*)

was extended by the above-named authors to arbitrary acyclic maps.

We shall propose now an extension of the above Eilenberg-Montgomery theorem

to the case of compact multi-valued maps of non-compact ANR-s .

1. Vietoris 

In what follows only metrizable spaces will be considered. The category of

such spaces and continuous mappings will be denoted by G. By H we denote the

Cech homology functor with compact carriers and rational coefficients from the

category G to the category OL of graded vector spaces and linear maps of degree

zero ,

Definition. A continuous mapping f a X -4 Y is said to be a Vietoris map

provided the following two conditions are satisfied g

(i) f is proper, i.e., for any compact C , the counter image f-’(C) is

also compact,

(ii) the set r1 (y) is acyclic for every y6Y .

In our considerations an essential use will be made of the iallowing :

(1.1) (V=-TORIS MAPPING THEOREM). If f s X - Y is a Vie tori s map, then the

induced map 1~; e H(Y) is invertible.

*) For similar generalizations of some other topological facts see [30J, [31] and
~27 j. Ue remark that to the special class of acyclic maps consisting of those
which are convex-valued various fixed point theorems for compact operators were
extended (cf. [4J, [1SJ? g [231) as well as the basic facts of the Leray-Schauder
theory in Banach-spaces (cf. [22J, [29]). As in the single-valued case (cf. [38])
fixed point theorems for multi-valued maps prove themselves useful in many branches
of mathematics, they found, for instance? applications in the theory of games
(cf. [4]y [18]) and more recently in the ordinary differential equations (cf. [33])
and optimal control theory (cf. [34])*
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Theorem (1.1) clearly follows from the original statement of the Vietoris
lapping Theorem for compacta ( c~ . ~ 46 ~ ~ .

2. 

Let X and Y be two spaces and assume that for every point xEX a non-

empty subset y(x) of Y is given, in this case, we say tl1at q; is a multi-

from X to Y a11d we write cp : i X -* Y . In what follows, the

symbols t.~, ~~ 9 ~~ will be reserved for multi-valued mappings, the single-valued

maps will be denoted etc.

Let y : x - Y be a multi-valued map. ~~e associate withy the following

diagram of continuous mappings

in which

is the graph of p and the natural projections p and q are given by

p(x,y) = x and q(x,y) = y .

The point-to-set mapping cp extends to a set-to-set mapping by putting

for tp(A) is said to be the image of A under cp. If 

then the contraction of (p to the pair (A,B) is the multi-valued map A - B

defined by cpl(a) = yea) for each aEA o A contraction of cp to the pair (A,Y)
is simply the restriction of ~ to h .

Definition. A multi-valued mapping (p : i X ~ Y is said to be continuous

provided the graph r 
r.p 

of ’i) is closed in the product X x Y ; in other words,

the conditions x - X9 y - y, y £cp(xn) imply 
n n n n

11e note t:nt if cp = f is single-valued), then the above definition

gives the ordinary continuity of f . In what follows only continuous multi-valued

mapping will ’oe considered.

Definition. A multi-valued mapping cp , qJ: x - Y is called compact provided

the image (p(x) of X under y is contained in a compact subset of Y .

The following evident remark is of importance t

(2.1) If cp : X-&#x3E;Y is compact, then the projection p : F - X is proper

as mapping. 
~’
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Definition. Let cp : X -&#x3E; X be a multi-valued mapping. A point x is called

a fixed point for cp provided 

3, i1.cyclic 

1r!e shall recall now the sta tement of the Eilenberg-Montgomery Theorem.

Definition. Let X and Y be two spaces. A multi-valued mapping cp s X - Y

is said to be acyclic provided tne set is acyclic for every point xEX .

Assume now that X and Y are compacta and y : X - Y is an acyclic multi-

valued mapping. We observe tl1at, since for every (x) is homeomorphic

to the projection p : F 9 -+ X is a Vietoris map.

Using the Vietoris Mapping Theorem we define the linear map 9* : H(x) ~ H(Y)
~r putting = ~,~ o p~ ; ‘~~ is said to be induced by the multi-valued mapping

~. It is easily seen that = f is s.nle-valued) 9 then ~p~. _ f~ .

Let X be of a compact space of a finite type and y : X - X be an acyclic
multi-valued mapping of X into itself. We define the Lefschetz number h(cp)
of (p by putting

, , , ,

(5.1) (The Theorem). Let X be a compact ANR and
s X - X an acyolic multi-valued mapping. implies that (p has

a 

4. 

In all follows y the symbol £ : X = Y will mean that either (i) f is

a Vietoris map or (ii) f is a homeomorphism ; we remark that in either case,

the induced f* is invertible

Definition. A multi-valued mapping cp : X - Y is said to be admissible

provided either (i) p is singlo-valued is acyclic and compact.

The class of all admissible maps will be denoted by 6 .

(4.1) If a multi-valued X - Y is admissible, then the diagram

of natural -projections for (p has form

Proof. If yr = f y the assertion is evident ; if ~ is acyclic and compact,
our assertion is a consequence of (2.1), the fact tl1at (x) is homeomorphic
to y(x) for every xEX and the Vietoris iladping Theorem.
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Definition. Two admissible mappings X - Y and y : s y -&#x3E; Z are called

composable provided either (i) (p is single-valued or (ii) y is the inclusion ;
in either case, the composite ycp : s X - Z given by the assignment x -&#x3E; y(cp)(x))
is an admissible mapping from X to Z .

G is equipped a partially defined operation of composition of" 

-

ma-ps . Next vie show that the cohomology functor H i z - 0L can be extended
~ -

over 0 to a function H s f;) -&#x3E; (TL satisfying certain quasi-functorial properties;
these turn out to be sufficient for the proofs of our main results.

Definition. be an admissible map. Using (4~1) we define
the linear map

as the composite

cp,,, is said to be induced by y clearly, if ~ - ~ 9 then = f~, .

(4.2) Let and y : Y -&#x3E; Z be two composable maps in 6. Then we
have ~~ y in other words, H sends commutative triangles in 6 into
commutative triang-les in O-L

Proofs Assume first tint cp is single-valued and f . Then the

product mapping f x id : X x Z -&#x3E; Y x Z maps eX x Z into r. c Y x Z and

therefore determines the maap ryf -&#x3E; r .

Consider the following diagram

in which all unlabelled arrows represent the natural projections. From the - -

*) llG note if one of the composites (cp ’f,:, )..1. or cp3(cp2cp1) is defined, then

SO is the other and, in that case qJ3 (cr3f8)% . It is not? however, true

that the existence of both and implies that of 
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definition of fl it is clear that this diagram commutes ; consequently, the

diagram

also commutes and this shows -~ ~~f,~ .

The proof of our assertion in the case when ,@ is the inclusion is similar,

5. Homotopy and selectors.
-

Next we introduce for maps in 6 an appropriate notion of homotopy.

Definition. Two admissible mappings cp,y : X -7 Y are called homotopic

(written cp ~ y) provided there exists an admissible mapping s X x I - Y ,

where I = [0,1], such that

(5.1) Let cp,y o X -&#x3E; Y be two admissible mappings. Then cp~y implies

= y*.

Proof. Let io,i1 : X -&#x3E; X x I be two embeddings given by x - (x,0) and

x - (x,1) respectively, and x z X x I --&#x3E; Y be an admissible homotopy joining (p

and ~ . Then

From this, taking into account that (i 0)* = (xl we infer by (4.2) that
= ’~7E- .

Definition. Let ~p ~ ~ X -+ Y be two multi-valued mappings such that

r c i.e., (p(x) c y(x) for each XEX 7 in this case, we say that cp is
cp V r

a selector and indicate this by writing y 

(5.2) Let cp,y t X - Y be two admissible mappings. Then implies
cp* = #&#x3E;*, .

Proof, Assume that cp C y and note that the diagram
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with natural projections is commutative ; consequently, its inage under H

also commutes and this that ;, == ~ .

6. Multi-valued Lefschetz maps.

An admissible mapping cp : s X - X is said to be a Lefschetz map provided

cp* : H(X) -&#x3E; H(X) is a Leray endomorphism. For such (p we define the Lefschetz

number A(cp) of (p by putting A(cp) = A(,p*) -
Note that if X is a compactum of a finite type, then any admissible

X - X is a Lefschetz map and coincides with the ordinary Lefschetz

number of y -

The following two theorems are immediate consequences of (5.1) and (5.2).

(6.1) Let cp,y : i X -&#x3E; X be two homotopic admissiblz maps. cp is a

Lefschetz map. then so =A(~) .

(6.2) Let f , $ ~ X  X maps such If one of

them is a Lefschetz map 9 then so is the other and 9 in that case, A(y) = A(*)
turn now to the property of the Lefschetz maps which will be of importance

in the proof of the main theorem.

(6.3) LEHMA.. Assume that we are given the following commutative diagram of

spaces and admissible 

in which i : stands for the inclusion. Then

(i) if one of the is a Lefechetz then so is the other

and, in that case, ii (~p ) = A(y) ;

(ii) cp has a fixed does.
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Proof, The first assertion clearly follows by applying (2.1), from (I,3,1).
The second assertion is evident.

7. The Main Theorem.

The proof of our main result relies essentially on the following simple

geometrical fact 

(1. 1) If U is open in a funach space E and X c U is compact.
then there exists a compact absolute neighbourhood retract K such that

XCKCU.

Proof. Cover X by a finite number of closed balls Wi ,W2 , ... C U 9 and

denote by the convex closure of the compact set X n W.. By the Mazur Lemma

every K. is compact. From the inclusions K. c VI. c U we conclude that X is
i i 2

contained in the compact set K = U IC. c U , Now, taking into account the general
J.

properties of the ANR spaces [6], we infer that K as the union of a finite

number of compact convex sets is an absolute neighbourhood retract and thus our

assertion follows.

Before stating our main result we shall prove first the following

THEOREM 1. Let U be open in a space E and (p s U -&#x3E; U be an acyclic

compact map. Then (i) cp is a Lefschetz map9 and (ii) A (w ) / 0 implies that

q3 has a fixed point.

Proof. By assumptiong the closure (p(U) = X is compact and contained in U .

hy applying to X the proceeding lemma, 9 we find a compact absolute neighbourhood

retract Il such that cp(U) c IC c U . Consequently, we have the commutative

diagram as in (6.3)y

in which i is the inclusion, and f stand for the obvious contractions of

the Since K is a compact Al’JR 7 is defined ; consequently, by

(6.3)? ~p is a Lefschetz map and 1’1 (~.~ I~ ~ - A(~p) .
To prove (ii) assume that A(cp) .¡. 0 . Then we have and ,

hence, by the Eilenberg-Montgomery theorem, there exists a point such that

x ~ (p~(x) = ~(x).
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Now we are able to state our principal result in full generality (cf. [21]):

THEOREM 2. Let X be complete ANR X - X be a
compact acyclic multi-valued map. Then ( I ) w is a Lefschetz map and .

(ii) 1~ ~~~ - 0 implies has a fixed point.

Proofs Since X is topologically complete we may assume, without loss of

generality, X is a closed subset of a Banach space E , By assumption,
there is a retraction r : U -&#x3E; X of an open set U c E onto x . Denoting by
i : X - U the inclusion we have the commutative diagram

as in (6,~ ~ . By assumptions the multi-valued map y is compact ; consequently 7
so is the Theorem 1 implies now that ~ is a Lefschetz map.

Applying (6.3)9 we conclude that cp is also a Lefschetz map.

To prove (ii), assume 0 . AiJplying (6.3) again, we have
= A(y)# 0 . This in view of Theorem 1, implies that * has a fixed point.

pplying now (6.3) for the last time we conclude that q3 has a fixed point and

thus the proof is completed.

Remark. We know that for single-valued maps Theorem 2 is valid without

assuming X to be topologically complete 9 the question whetl1.er the same can be

proved for multi-valued maps remains open.
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PART B

INFINITE DIMENSIONAL COHOMOLOGY THEORIES

We give first a brief outline of our main results. Let E be an infinite dimen-

sional normed space the corresponding Leray-Schauder category. An "infinite

dimensional" or simple a cohomology theory H ~ on 5’1 is a sequence of contravariant

functors from the pairs in p) to the category of abelian groups together

with a sequence of natural transformations 5 : satisfying

the Homotopy, Exactness and Strong Excision axioms ; 9 the graded group ~5~~ where
S in the unit sphere in E ! is the group of coefficients of the theory.

generalized) cohomology theory on the category of finite polyhedra corres-
with the same rou of coefficients ; moreover, the

assignment H‘~ ~ H is natural with respect to maps of the theories. Thus, in par-

ticular, we have the "ordinary" cohomology Hro-*( 
., 

;G) over G , y the stable cohomotopy

E and the Hopf map from E to y Z ~ ~ .

The "ordinaz:y" pohorno is isomorphic to the (n-1 )-th singular ho-

mology group H n-1 (E-X;G) . A more general result holds in fact, and the second main

theorem may be viewed as an extension to the infinite dimensional case of the duality

theory due to G. Whitehead [14J. Next a number of consequences follow. Some ’ of them

(as the Mayer-Victoris sequence) follow evidently from the axioms alone, while others

(as the Alexander-Pontrjagin Invariance or elementary properties of the Leray-Schauder
degree) do from both the above results together. The duality combined with the Hure-

wicz Theorem in S-theory yields to the important Hopf Theorem, relating the ordinary

cohomology over Z and the stable cohornotopy on

Finally, we discuss briefly the concept.of codimension. First, we have for the ob-

jects in ") the "basic" codimension Codim defined in terms of the extension problem for

compact fields with special ranges E - En, where dim En = n. Our definition coin-

cides in the finite dimensional case with a theorem of P. Alexandroff [1J which charac-
terizes the dimension of compacta by maps into Sn . Further, we define various’cohomo-

logical codimensions ; we have, in particular, CodimZ defined in terms of the or-

dinary cohomology on 9T over Z . If the space E is complete, then Codim = Codim z’ ’ 
’ 

.-. - - 

- Z

The proof of this result uses (among others) the representability of the stable coho-

motopy on 1,7) and the Homotopy Extension Lemma ; the latter is known to be true in need-

ed generality only under the assumption of completeness 1. .,...moo _________

1) Using the Smale-Sard Theorem, K. Geba has extended recently (cf. Fund. Math. 1969) to
Banach spaces the framed cobordism theory of L. Pontrja.gin. The corresponding bordism
groups can be described equivalently as the (suitably defined) homotopy classes of cer-
tain r-proper Fredholm maps. On the other hand, they turn out to be isomorphic to the
infinite dimensional stable cohomotopy groups. Thus, the above results of K. Geba pro-
vide the .important link between the theory of compact vector fields and that of the
Fredholm maps. Due to I*Ck of tine, however, we shall not be able to give any details.
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I. TEE LERAY-SCHAUDER CATEGORY

We begin by introducing two categories of primary interest (the category of
compact vector fields and the Leray-Schauder category) and two geometrical construc-
tions of further importance (the generalized suspension and the cone functors).

the aid of the generalized suspension, some examples of geometrical interest

will be given.

~ . Remarks on the notation.

We denote by or simply by E an arbitrary but fixed infinite

dimensional linear normed space over the field R . We fix a sequence E n3
n

of direct sum decompositions of E such that

We let

denote the unit sphere in ~"~~"’~ ~ ~ ~ ~ g and we reserve the symbol four

the open set Di - 0.

Next, we let A" be the normed space consisting of all sequences x = (x~x~.~)
of ’~eal numbers such that x~ - 0 for almost all ~, with the norm 

,

The following symbols stand for subsets of 

There are inclusions and we have clearly
: 

and
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Finally, we use the following fixed notation :

Ens = the category of sets
= tIle category of based sets ;

Ab == the category of abelian groups ;
A = either Ab or Ens*;

= set of maps (- morphisms) f z A - B in a category ’3.

All otandardly used categories are denoted by script letters ; the category of

compact vector fields and its subcategories will be denoted by German letters. ~
2. 

I
An (~~) is a category z5 such that for each pair of objects

(A and B) in there is defined in the set 3(A,B) an equivalence relation -

(called homotopy) satisfying the following (compositive) property :

If 9 t11en by [f] we denote the equivalence (homology) class contain-
ing f and we be the set of such homotopy classes.

.~ subcategory will be called dense provided it has the same objects

as  , ¡¡fe say (;z~ 9~~ is an h-subcategory of an h-category (5,"’) provided

50 c: ~3 and tile relation f 2i g implies f - g for any ~" and g 

In what follows Ens and cA will be considered as h-categories with

the relation of homotopy ~ defined by s f (’.J g p f = g .

A map I 1 it - B in (G,~) is invertible (respectively h-invertible) provided

there is a map such that f = 1A and f 0 ft = ~ B (respectively
f r- 1 A and f o ft ’" 1B). In the first case, we write A - B and call the

A D

objects A and B valent. In the second case, A and B are said to be

and we 11rite B .

Examples :

1 °) Tile category T (respectively ~~~ of all topological (respectively compact,
Hausdorff) spaces and all continuous maps with the ordinary relation of homotopy.

20) Let !,I be a linear nonned space and denote by YE, full subcategory
of K whose objects are compact subsets of E contained in finite dimensional

subspaces of E, We say that a polyhedron IC c E is a geooetric subpolyl1edron of
E if K has a triangulation which is a finite union of geometric simplexes. vIe

denote the full subcategory of IL whose objects are geometric subpolyhedraE .

of E and consider KE ans PE as h-categories with the ordinary relation of

homotopy.
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30) For any concrete h-category D that will appear later we shall denote

j the corresponding category of pairs. For example, the objects of F are

pairs 0Ï topological spa,ces ; the morphisns are continuous maps
f ~ (X,A) ~ (Y,B).

il functor h r G1 -&#x3E; G2 between two h-categories is called an 11-functor

provided it sends homotopy commutative diagrams in fl into such 

Clearly if x s G1 -&#x3E; G2 is such a h-functor then

and

3. 

Let E be aii infinite dimensional normed , -- 1 B &#x3E; = I ia , £ &#x3E; 9 £y , .. o i
we shall cle110te the family of all finite £imensional linear subspaces of E.

For notatio:nal convenience we establish one-to-one correspondence a =&#x3E; Za
between Y f) ... and in the formulas to occur

we replace occasionally one sort of symbols by another.

We shall write of if and only if L 
a 
c L ; evidently, tiae relation

Cl t:J
 converts the family into a directed set (L,).

Given an element a of g we let denote the dimension of the linear

space L . A relation aB in : will be called elementary provided
Ct

d-(p ) = +1. Given an arbitrary relation a  i3 by a cl1ain 

and p we understand a finite aoa1 ... # i3 of

elements in G such that a ai+1 is elementary for each i = 
.L ...L - 1- I

is a subset of E and g we let X 
u 

= X n L . Evidently, the sub-" 

er Ci

Set flx defined by

is cofinal in j~.

If X and Y are two subsets of E and f o X -* Y is a mapping such that

f(x ) c Y 
g, 

then by f z x a --&#x3E; Y a denote tl1e contraction of f to the pair
a 0" Ot Q’ a

(X ,Y).
a a

4. Corrpact and dimensional 

In what follows compact mappings will be denoted by the capital letters F ,
G, H.
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(4. 1) Let a be a:n element of the directed set Z and E

be a into a normed space we say tl-nt F is an 

provided- F is compact and F(X) CL. If E is an a-mapping for some
cy

a it is called a finite dimensional 

We state for reference following two well-known facts o

(4.2) ximation Let U be open in E and be a

Then for 0 there exists a finite PEe U
and a dimensional F o X -+ U such 

(iii) F and FE are 
b 

. - 

(4*3) Extension of Compact Mappings). Let A be closed in s, metric

eace X and F g A - E If either (i) is complete 
F then tl1ere is, a napping X -* E 

over X and such that 

Since the convex hull of a relatively compact set in a complete E is

also relatively compact, our assertion follows at once from the Dugundji Extension

Theorem,

It is not known whether a compact mapping F o A -4 E admits a compact

extension over X g without assuming E to be complete.

5. Compact vector fields.

Notation. Given two subsets X and Y of E and a continuous mapping

f i X - Y vIe denote by the same but capital letter the mapping F r X - E defined

by

(5*1) Definition* Let X and Y be arbitrary subsets of E . 11 mapping

f s X --&#x3E; Y is said to be a compact vector field (or simply a compact field) provided
the map F is compact.

The set of all compact vector fields with domain X and range Y will be

denoted by 5(x,Y) and its elements will be denoted by the small letters 

etc.

Some simple but important properties of compact fields are summarized in the

following proposition
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~5.2 ~ Lot z X - E be a con-pact vector field. Tlaen ~~. ~ if X is closed

(respectively bounded) in so is the set I(X) j if C c E is

relatively compacta then so is 

~5.~ ~ If is a vector field of a closed set X

onto Y , tiaen f is bicontinuous and is a compact field.

~5.4~ class o~’ vector bas the following properties:

(i) if. f and g are compact fields (respectively a-fields) then so is their
gf; -

(ii) if f a compact (respectively an t11en so is 

ion. and in particular every restriction, of f;

(iii) inclusions i g A-X in particular the identities 1X : X -&#x3E; X are

a-fields for every a£G;

X-~Y ~.s a continuous between two subsets of E such that

X is compact 9 then i is a compact field if 9 in addition. X and Y are

contained in L 
a 

s a-field.
a 
- --

It follows from (5.4) that subsets of E as objects and compact vector fields

as maps for 111 a category. This category will be denoted by and called tiie

compact vector fields in E. For have a dense subcategory
of whose maps are between the subsets of E o

Clearly, if 0153  ~ is a relation then ~

Now we define a category

as the union of all categories Ga (E) for Evidently, 3 
0 
(E) is a dense

subcategory of ~(E). In what follows the maps of 0o(E) will be called finite

dimensional fields.

6. compact vector fields.

Given two subsets X and Y of E andahomotopy h t : X -Y
(0 # t !-5 ’I ) we shall denote -by :1: X x I - Y the mapping defined for (xyt)eX x I
cy = ht(x). By the capital H we shall denote the napping H s X x I - E

defined for X x I by
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~6. ~ ~ Definition, Let X and Y be two subsets of E . A family of compact
vector fields 11t: t X - Y depending on the parameter t (0  t  1) is called a

provided the rappÍ11g H s X X I - E is conpact. Two compact

vector fields are said to be compactly homotopic. provided there
exists a compact homotopy X - Y such h 0 = f , 111 ! = g .

We v1rite f ~ 6 to mean that the fields f and g are compactly homotopic.

The relation is an equivalence relation in each of the sets ,j(X,Y)
and it clearly satisfies the composi ti va property in the definition of an

h-category. Consequently, it converts the category of compact vector fields into

an 11-category ~~,^~~ , When there is no risk of misunderstanding category will

be denoted simply by J .

(6.2) Let ;.z o X - E be a compact Then (i) it X is closed (resp.
- 

u 
- - - - -- - - .. - .

bounded) in E then so is the set 11(X x it C c E is relatively 

is 0

(6.3) D4 be an in E and X -&#x3E; U 

If the inequality 

x£X, then the fields f and g are compactly 

above inequali -Gy implies that for each x£X the segment Proof. The above inequality implies that for each x£X the segment [f(x), g(x)]

joining and -(x) in E is contained in U , hence formula ,

defines a required compact homotopy between f and g.

(6.4) Let X and Y be two subsets of E and ai be an element

of the directed set 3. 11 fanily of a-fields X ’ Y is called an a-homotopy, s

provided H s X x I - E is an Two of-fields f,g : X -&#x3E; Y are called

a-homotopic if t116re is all a-homotopy ht X -7 Y such that and I&#x3E;i = 1".

Wo shall write to mean that a-fields f and g are a-fields f and
Qf

g are a-homotopic.

relation of (v-honotopy is an equivalence relation in 3 and there-

fore decomposes the above set into disjoint a-homotopy classes. If fe3 we

let I£j denote the (r-honotopy class which contains £ . The set these
i

classes will "0e denoted by IT (XvY). We note further that the relation satis-
a a

fies tiTe compositive property in the definition of an h-category and consequently
it converts " into an h-subcategory (s of (G,~).
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(~~5} Let be ~,_ Then for there

exists an X -+ E such that

Proof. clearly follows froin the Approximation 

~. The for c t fields.

Let n t a X - Y be a compact homotopy (respectively an u-homotopy) and A be

a subset of x . We let hjA = h’ denote the partial compact homotopy (respect-t, t

ively in this case 9 we shall write also h’t c: and say that ht.. t t

is an extension (respectively an a-extension) of iitt over X ,

Given a pair c E witli it clased in X and a field (respectively an
£ g -4 - U we may consider the extension problem for I y i.e. ~ the

problem of extending f over X in G (respectively in G).-L 
0:’

The important levna asserts that under some hypotheses this problem

depends only on the homotopy (respectively cohomotopy) class of a given field f,

(1. 1) Let be p, pair in E 9 A ’~e closed in

X and U an onen set in E . Let U (0 ~ t ~ 1) 
such that . If either (i) E is complete or is an

y 0 0 t 
.

there exists a honotopy (a-homotopy) h t : X -&#x3E; U such

that h’t C ht."ii t

Rcoof. Let us pu.t T = (X x 10) ) U (A x I). By the assumption, there i s a

compact 0 : T such that

and

Since T is closed in X there is 1 in view of Lemma 4*3 y a compact extension

of 15* over X x I . Putting

we may suppose that the closed set B is not empty, l’e note further that 11 and

B are evidently disjoint. Now take a real-valued function. z X - I such that

X (B ) =0 and À(~) =1 and put
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It is easily seen that h, o X -) U is a required compact honotopy. proof is

completed.

(7.2) COROLLARY. Let be E A closed in X and

fo,go : A -&#x3E; U two a-homotopic a-fields. If there exi s ts an a-extension
o o ’"’’ " 

’ 

’

f : X -&#x3E; U of f then there exists also an a-extension g of g

over X and such f are If the space E is complete,

the above is true for arbitrary fields fo and g .
For some pairs in E Lemma (7.1) and its corollary hold with-

out assuming E to be complete. It is 9 however, known whether the above lemma

is true for arbitrary-closed pairs without above additional hypothesis.

8. The generalized suspension and the cone functors.

Given a linear (closed) subspace 11 of E we let denote the

unit sphere in 11. We assume that we are given a direct sum decomposition
E w 3 N where III and N are complementary linear subspaces of E .

(8~ 1) Given a subset X of N we let 

be the union of all segments in E joining points x in X with points y in

the unit sphere Given two subsets X and Y of ~I and a mapping g X - Y

we let S1’1(X) ~ Suey) be the mapping defined for and

t ~ 1 °oy

vie say that ~~~~X~ and are the M-sus pensions of X and f respectively.

For a linear subspace N of E denote by "p(N) the category whose objects

are subsets of N and whose maps are continuous transformations between the objects. 

Note that for any two composable nappings f and g in we lave

It follows t:-.at tIle x -- SM(X), :f -7 def ine a covariant
M 1

functor to and called the M-suspension functor.

(~.2 ~ ,- 
Ins tl1e properties:

(i) if X is closed (respectively bounded) in N so is in E ;

,g f is a (respectively an a-field) then so is C . L - L

iz" t:1e (respectively f and g are compactly honotolJic

(respectively a-homotopic) then so are their M-suspensions S .(f) SM(g).(respectively a-homotopic) t,-x-,n so are their M-suspensions S 1’1 (f) M ..
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-is evident. To prove (ii), write F(x) = x - f(x) and take a

compact xe.t C c I,I such that F(X) c C . Note tint the set Cl gi ven by

is also a compact subset of N . Since for an arbitrary point z = tx + (1-t)y of

we have

it follows that is a compact field. The proof of (ii) is completed. The
proof of other assertions is similar.

~8.~ ~ Let N ~se a finite dimension and X be a compact subset of N . Let us

U = and U = i : U 0 -4 U induces an

isomorphism

of the for all n  dim 

Proof, hy assumption7 for Let us = By assumption, N = Lao for s on., o a, 0 £L. Le t us put £o = ( a"E z a &#x3E; a, 01.
0 

is a cofinal subset of £. Now, for any relation a ;5 0 in 0 
°

d,0 0

let ,

denote tl1e inclusions. Consider the corresponding direct system over £o of homo-

topy groups in (U);(i)*} and the direct )_j of homomorphisms
n 0153 iB" a ’ B.

It follows from Lemma 4.2 tl1at

is On the other hand, if n  din N-1, tl1en, by finite dimensional

argumenty it is clear that

is an isomorphism and our assertion follows.

(8 .4) Def on. Let y’ 0e a fixed point in SI/1. We define the cone

functor C s~(N) ~p(E) by putting for XdN

and

with 11 9 Y = z .



B-I-10

(8.5) The cone iunctor C has the following properties :

(~) if: X is closed (resp. N so is C(X) in E ;

(ii) 1£ f a compact field (rasp. a-field) then so is Ci ;

if tl1e fields (resp, a-fields) î are compactly hcmo’topic (resp.
then so are Of and Cg .

9. 

Denote by 3&#x3E;(E) or simply the h-subcategory of is (E)
generated by closed bounded subsets of E , §(E) will be called the 

category corresponding to the linear space E.

In what fol lows, the category h being of primary interest, we shall be con-

cerned with such geometrical properties of its objects that remain invariant under

the equivalences or homotopy equivalences in

all that follows the objects of the Leray-Schauder category ~(E)
will be simply called the o’sects.

(9,I ) There, exist two eQuivalent objects X1 and X2 such that 

and 

Let E = M 3 N be the direct sum decomposition such that

dim N ::: 3. Let Y~ be the unit interval in N and Y2 c N be the Ar tin-Fox

example (cf. [1 J) i.e. the set homeomorphic to Y~ with 0, let

£ i Y1 ~ Y2 denote the corresponding homeomorphism. 

Now we let -

Clearly, g by (8.2),

is an invertible compact field and thus the objects X1 and X2 are equivalent

in ;J(I1). On t:1e otl1er hand and n~ -- 0 .

The proof is completed.

It can be shown tta-t all the homology groups H and H (E-Xg )
q q

vanish. By taking, instead 9 the Alexander horned sphere in 1’J and by

repeating the above construction, one obtains two equivalent objects X1 and )["2
in such that
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II. CONTINUOUS FLINCTflRS

In what follows our basic constructions depends largely on the continuity prop-

erty- of the functors under consideration. This chapter is devoted to the above prop-

erty and its mien result can be briefly stated as follows : every continuous functor

defined on tl1e subcategory ho of h admits the unique extension over 0 . Through-
out the chapter X 0 stands for a contravariant functor from £)0 to the category . A.

1, families and the carriers .

Notation. 8) o being dense we let for X in t 0

and f or a in -)0 we denote by

the map ~,n A induced by f ~

~ 1.1 ~ Definition. Let Y be an objects A family fykj of objects indexed by
a directed set N is said to i~e ar~ approximative family for Y provided

(i) Y n c Y k f or any relation in N ,

In case N =s (1,2~.~) such a family will be refered to as an approximating
sequence for Y . 

We note the following evident proposition : 

(1.2) Let Y be an object and a be an arbitrary element 

(yk)k,eN so is the family 

I

for Y ~
Let Y be an object and an approximating family for Y . Denote by

the corresponding inclusions , all of them being finite dimensional fields.

It is not difficult to see that the objects À(Yk) together with the maps

i~ given for every relation k = n in N form a direct system 
A over N and the family of mapsiC

is a direct family of maps in A .
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Consequently, we have the direct limit map in A

(1.3) Definition* We slnll say that a functor ~j0 --,, A is continuous

provided for every object Y and an approximating family for Y , the

map LiQ (j*j is invertible in the category A .
k "

Given a pair of objects (X,,A) let j. s A - X be the corresponding inclusion.

In the following definition we assume that X0 is a functor froin 
o 

to the

category of abelian groups.

(1.4) Definition. Let li be an object, x be a point in A and a non-

trivial element of %(A). An object = Y contained in A and containing x

is called a carrier of (with respect to x) provided i£~(1) / 0 . A carrier

S x (g) of the elenent S is said to be essential (with respect to x) provided for

any object X c S (~) containing x we have = 0 .

The following lemma expresses an important property of continuous functors :

(1 .5) Let A be an object and xcA If the functor X 
0 

: 0 -+ Ab is

continuous, then for any non-trivial element § of X (A) there exists at least

one essential carrier with respect to the point x .

Proof. For an element § / 0 consider tl1e set 
x 

of all carriers S A
x x 

partially ordered downward by inclusion. If is a totally ordered

subset of then the intersection Y == A Y. is a non-empty object and 

is an approximating family for Y . From the continuity of the functor Xo we

infer that Y is a carrier and thus lias a lower bound By the

Zorn Lemma, the set 
x 

contains a minimal element which is a required essential

carrier for 0160 .

2. Approximating systems.

Notation. For an object Y and a natural numoer k we let

To a sequence we assign the enlarged sequence by putting

.We begin with a proposition concerning approximating sequences.

(2.1) Let {Xk} and {Yl{:1 be two approximating sequences for X and Y

respectively and X1 -&#x3E; E be a con-pact field. Then
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(i) is an approximating sequence for X UY y

(it) (%) is an sequence for x ;

(iii) f(Xk) is an approximating sequence for 

Proofs Properties (i) and (ii) are evident. In order to establish (iii) it is
sufficient to prove the inclusion

Let y c 11 f(Xk); we lnve wl1ere and thus y = xkk k k k k
Since F is compact we may assume without loss of generality that lim x, = x .

m k= co

Consequently y y -- lim f(xk) = f(x). Since x c rl this completes the proof, 4
k= co k=1

~2 ~2 ~ Definition. Let X and Y be two objects and let f : X ~ Y be a

compaet field, A {Yk,fk} of objects Yk, fk : X -&#x3E; YiC -K. K j&#x26;

is said to be an for provided

(i) (Yl is an approximating sequence for Y ; j
in .:J -&#x3E; Yk is the inclusion, 

’

L 
in ., 0 w11ere i o Yn--&#x3E; Yl is the inclusion (k n).

(2.3) Let f s be a compact field. Then. for there is an

ak-field fk : X -&#x3E; Yk, where Y. such that-&#x3E; Yk, 9 such 

for all xcX

moreover, is system for f .
k k 

In foll ows any system as in Proposition (2.3) will be called ah k

Standard approximating system for f o

We note also the following evident proposition s

(2.4) Let be an approximating syste m for a field f : X --+ Y and-- h k .--. -W ’- .- ..&#x3E; ...- ...- U - 
. 

’ a .-. - .- - ’ - -. -- .- - . - - . ’-..." -U--.-t... -

00 an approximating sequence for y such timt for each k we k ‘ lc k.

Denote by Y the corresponding inclusion and put fk. 
is ag£%i an for f .

In what follows ;ie assume that ho; o -A is a continuous h-functor from oo ’"o o

to A .

Let X and Y 1)e two objects and 1 o X - Y be a compact vector field. Let

?oe an arbitrary system for f ,
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In of tl1e definition of an approximating system to an h-commutative
diagram in B

corresponds the commutative diagram in A

Consequently (,-ki is a direct sequence of maps and therefore

(2.5) systems for f as in

denote the corresponding inclusions. Then

we have

Proof. Since for each Ie the diagram

is commutative it follows tInt its image under ho in A is also

commutative.
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oy considering the corresponding commutative diagram in the category of direct
systems of objects in A and applying to it the direct limit functor we obtain
the following commutative diagram

This in vieii of the continuity p implies our assertion.

(2.6) Let be two -systems for a field f - x - Yk k 2 {Yk,fk}
with the same sequence {Yk}. Consider the enlarged sequence W k denote

k k 

by ik : Y -&#x3E; Wk, lk : Yk -&#x3E; Wk the corresponding inclusions and put 

T 1-u-, n are a in approximating for f

and we lnve :

Proof. In view of the definition of an approximating system, the fields

are compactly homotopic for every k . Let be a

corresponding compact homotopy joining f k and fk. In view of the Approximation
Lemma there exists an ak-homotopy ht(k): X - E such that

k t

~ 
Clearly for each point and consequently

h(k) may be viewed as X -&#x3E;W Assuming without loss ofi t may ’,oe viewed as an 
t 

. x -4 Wk . Assuming without loss ofgenerality tInt f1 and ?. K are we evidently have gk =k ic k A. 0
~ and therefore

This implies g~ == g~ for each k y and the proof is completed.

(2.7) Assume that and are two aroitrarily given approxinat-
ing systems for a field x - Y . Denote by jk g : y -4 Yk t ik : Y - Yk tj-

inclusions. 4) Then we 1-zve
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Proof. Let us put for every positive integer k

In view of (2.1), {Wk} is an approximating sequence for Y . Denote by

the corresponding inclusions and define the fields

by putting

Note that and are both approxinnting systems for f . It is

clear tliat pairs and satisfy the,pg k k k k I {Yk,fk}
assumptions of (2-5). Now, our assertion follows from (2.6).

3. The Extension Theorem for continuous functors.

(3.1) Definition. Given a compact Y , let be an

approximatin g system for f and let. Y -&#x3E; Ylt, be the inclusion. We define

the induced map:

by the following formula s

(3.2) The definition of f-3E- does not depend on the choice of an approximating

system {Yk,fk} for f.

Proof, This clearly is a reformulation o~ ~ 2 .7 ~ .

(5 .3 ) Define the function B i A by putting for X 

and for a compact field f in : 1,

t 0 then ho (f) = h(f). In other is an extension of

the functor x 
.... o o 

°

This follows from the definition (3.1) by taking for f an approximating
system with and f =f f or all k = 1 ,2,... 

’
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(3.5) h is an h-functor from the Leray-Schauder category D to the 

A 0 In other irords, the induced map f- satisfies following two properties :

(a) if the fields f are compactly homotopic,

(b) for ’hfo fields f’ and g we have (gf)* = f* . g*.

(a) : that the fields X -* Y are compactly

homotopic and denote by X - Y (0  t1 ) a compact homotopy such that" u 

By the Lemma there exists an ak-homotopy
satisfying

Let us put f, (k) and g, (1-,) for every k It is easily
(k)k 0 /.B k 3 and {Y(k),gk} are approximating systems for f and g

respectively. Since for every k the ak-fields fk,gk : X-;- y (k) are homotopic

in Do, it follows 
0 -&#x3E; K -) K"

Consequently y we .mve f7{- = and the proof is completed.

Proof of property (b). (Special case t for finite dimensional g). Given two

compact fields fl i X --&#x3E; Y and g r Y - Z, assume that g is an ao-field and
let B1e shall prove tInt g~ .

Take a standard approximating system for f ; Lemma. 1.4.3 implies

that there exists an ao-field E such that g is the contraction of

g to tiTe pair (Y , Z ) .

Let us put for every k = 1 ~22

By ~~ · ~ ~ both W and Uk are approxirJating sequences for Z . Now consider

the following diagram

in which ik and j1, are the inclusions, q is defined by
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and

Since for every k both Îk and gk are finite dimensional we may apply to
the fields

the functor ho and therefore we have

consequently 9

and thus

Further, it is clear that and are approximating systems
for 11 and a respectively. Therefore, it follows from the last formula and

Definition (3. 1) 11* = f* o ~-~ and the proof is completed.

Proof of the pro-perty (b) neral case Let f : X - Y and g : Y - Z be

two compact fields and let 11 = gf .

Let {Z(k),hk) and be two standard approximating systems for h
1C 

and g , respectively. From the inequalities

it that for every k the fields -) Z(k) are homotopic

This implies, in view of property (a)y that ~ = (~ ~)~ . Since each 6k
is dimensional we oy tl1e proved special case of property (b) ,

and thus we obtain

-- ia

This implies = g* and proof is completed.

We 1101’1 summarize the proceeding discussion in the following

(3.6) be a continuous contravariant h-functor. Then- 0 "’0 -----.

X 
0 

can be extended to an h-functor X : G -&#x3E; A.
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Proof. Li view of (3.4) and (3.5) it is sufficient to prove only the uniqueness
of all extension. But in view of the definition of an approximating,-, systems,
follows clearly from tl1e The proof is completed.
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III. THE FUNCTOR 

Now given a cohomology theory H* on the category K E 1. we shall construct for

every n a contravariant from the Leray-Schaud.er category .fJ to

category of abelian groups. First, we define a functor on to * Then,0 0

using tl1e continuity of H* on I) and an algebraic lemm on double

limits", ’Bfle show that the functor is continuous and get a unique extension0
T,oo-n oo-nof H over

1. Preliminaries on the Mayer-Vietoris 

Notation. VIe denote by b any of tlie following h-categories :

D = the Leray-Schauder category on E ;

t11e full subcategory of ~J genera ted ~oy the compact subsets of finite

subspaces of E i

In what follows, by a triad in b we shall understand an ordered triple
T = of objects in b such = X¡ and, by a 1

between the triads ’a map f’ : X -+ Y in b wich carries X. into Y. for
i i

.

Let b2 be the h-category of pairs in b and b2 -&#x3E; bd be the cova-

riant functor defined by

(1 .1 ) on b ~,s a sequence of

contravariant h-functors

together with a sequence of natural transfoisations

satisfying) the following conditions :

(a) (Strong Excision). If is a triad in 6 and k s 

is the inclusion, then #(lc) : F,~(X,B) -- n B) for all n .

(b) I~’ (Xfi) is a pair in b and

are the inclusion maps, then the cohomology sequence

of (X,A) is exact.
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(c) Given an approximating family of ob jects in ù for

Y = f 1 Y, we have an isomorphism for each n 1

where ik : Yl -&#x3E; Yk, (k  l) stands for the inclusion.

Convention. Cohomology theories are denoted by

where and play the role of and 6 in Definition (1.1).

If = is a cohomology theory on D, , then the graded ou

Hoo-n(S), where S is the unit sphere in E is called the group of coefficients

of the theory 

The aim of this and the next chapter is to show that any cohomology theory on

gives rise to a geometrically meaningful cohomology theory on ~~~ . The rest of

this section is devoted to general remarks on the Mayer-Vietoris homomorphism which

are applicable both for cohomology theories on KE and on

Let H« be a cohomology theory on Given a triad 7Xa) in b with

A = Xi n denote by

the corresponding inclusions.

Definition. The cohomology sequence of a triad with

A is the sequence of abelian groups

in wihich g and y are given by 
.

and Mayer-Vietoris homomorphism defined by

where 1: is the isomorphism induced by the excision (X2 ,A) -&#x3E; (X,X1). We shall

often drop superscript n on un, when there is no danger of confusion.
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Definition. The cohomology sequence of a triple B = A c X with inclusions

is the sequence of abelian groups

in which the coboundary ’ homomorphism is defined as the composite

By purely argument we deduce from the axioms :

(1 .2) The, of a triad is exact. y:
f : is a pap of one triad into another, then f duces a

sequence of the second triad into that of the

first,

(1.3) The cohomology sequence of a triple a s exact. 1! f: (X,A,B) -&#x3E; 
two triples then f induces a homomorphism of the cohomo-

the second into that of-the first.

Let To = and T1 = be two triads. Then, T is a sub-
triad of T, written T c T, provided ACX and A. c X. for i = 1,2; To
is said to be a proper subtriad of T , written T 0 ~ T, provided 
for i = 1,2.

If then clearly T c T and A = A1 n A = A n where
o 0 0 1 2 0

Xo = X1 il Xa ’1 moreover, the inclusions 
,

are excisions.

Definition, Given (A 9’1~ I~2 ) Cc (X 9yl X2 ) we define the relative Mayer-Viotoris

homomorphism

by

where

is the coboundary homomorphism of the triple A2 )
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and

is the inclusion.

The following proposition is an immediate consequence of the definitions
involved :

(1.4) To a commutative diagram of triads

diap;rt3Jn of abelian groups

2. Orietation in E .

We begin by defining an orientation in L . To this end, consider the set of

all linear isomorphisms from L to the euclidean space of dimension
ry

(we recall that == La
Call linear isomorphisms l1 ,l2 : L - Rd(a) equivalent, l1 ~ 2u

provided ~ the determinant of the corresponding matrix is

positive. With respect to this equivalence relation, the set of linear isomorphisms
from L to R~" ~ decomposes into exactly two equivalence classes. An arbitrary
choice w of one of these classes will be called an orientation in L .

Of 0153

Let us choose now for each a£D an orientation u in L and call the
a a

family (w = {wa} to be an orientation Ln E .

Given an elementary relation  p in Z there exists 2 EW
or a P P

such that = z (x) for all 

lIe let

Clearly, the definition of L~ and L- depends only on the orientations of

LQ and L. 
p 0

p a
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As a consequence 9 given an object X and an elementary relation a  p in

!X’ the orientations of L and L determine the triad where
"" -1 P p p 0

and such that

(2.1) Let X and Y objects, f r X  Y be an ro-field and let q  Q
be an elementary relation * ~Y  i . Then and

f i X -&#x3E; YB induces a also denoted by f. of the triad (X ;X+,X-), into
0 p B + _ p 

20132013201320132013201320132013201320132013201320132013201320132013 201320132013201320132013

(YB ; Y+B,Y-B). 
P B t3 P -

p B p

3. group 

Let H* = H q 18 q 1 be a cohomology theory on and X be an arbitrarily-
given object of the Leray-Schauder category Now starting with H*, we shall

define for an integer n the group 

First, we fix an orientation u = in the space E . Next, for any relation

13 i11 ~X we define a homomorphism

as follows L f =~ ? we let be the identity.  13 is elementary,

we let the Mayer-Vietoris homomorphism of the triad (X with
_j_ - aB P P p

XB n XB = Xa.
In order to extend this definition to an arbitrary relation r/  B in Sy we

shall need the following lemma :

(3.1) L©"iI",ii. Let X  o be a relation in rx such that

d-(Q ) == d(,~1) -i- 2. Assume gj  y  f3 and i  y  i3 are two different chains

.:’ 

The proof of Lemma 3.1 is given in section 7 .

(3.2) Let -  p oe an arbitrary relation in g and let
a = Cl! 0 a1  . *   ak+1 = p be a clnin of elementary relations joining a

and B. We define

as the composition of the corresponding Mayer-Vietoris homomorphisms.

It follows from Lemma (3.1) that the definition of (n) does not depend on
aB

the choice of the chain a1,...,a1- joining a 
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Consider the abelian together the homomorphisms
/ x rv - f 1. / I

(n)given for each relation a  0 The familyQfd X "

indexed will be called the cohomology system of X corresponding
to the theory IP( and the orientation w in E .

is a direct system of abelian groups over
- - x

Proof, This follows clearly from Lemma (3.1).

(3-4) Definition. For an object X we define an abelian group

to be the direct limit over fX of the (ro-n)th cohomology system of X .

Me note that the group depends only up to an isomorphism, on

the orientation in E used for its definition. In fact, suppose that (w j and
a

17’,l are -hro orientations in E. These determine two direct systems of abelian
14

groups respectively. For each 

defiiie

Since ~:~ ~ is clearly an isomorphism of the above direct systems, it follows that

the corresponding limit groups are isomorphic.

4. Definition, of f7* for finite dimensional field f .

(4.1) Let X and Y be two objects and let f~ X - Y where

~. for cv  1-&#x3E; such that Ci  ex  p ? the

commutes

Proofs If C1  j3 is elementary 7 this follows from (1.2). Our assertion for an

arbitrary relation follows then from the definition of the homomorphism
. (n) "

AaB.

~4.~ ~ implies induces a map
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from the cohomolosy system of Y into that of the object X .

(4.2) Definition. Given a finite dimensional field f ~ X - Y we define the

induced homomorphism

to be the direct limit over £X of the 
X a

(4,3) induced homomorphism f* satisfies following properties :

(a) if 1 is the identity on X , then 1* is, the identity on 

~’~~ for any two composable finite dimensional fields f and ~; we have

(c) the finite dimensional fields f are homotopic in Do then

f* = 

Proof. clearly follows from (1 .4) and the definition 
up

lie summarize the preceeding discussion in the following :

(4-4) X - for and f -4 f* for 
- 0 - -"0

define a contravariant h-functor from the h-category ,2l) to thedefine a -) 
category of abelian group.

5. 

Given a directed set denote by the same letter the -

category as objects the elements of s and as maps relations y. S in

. For a small category :., , denote by (£pb) the category of covariant functors

from ?, to b , i.e. the category of direct systems of objects of b over ~, .

By Lira: (;:9í)) -)) we shall denote "direct limit" functor, i.e. the left-

adjoint to tl16 constant fuxictor from ’i, to (::,1; ) .

Let ~3~ [k,;"m,...] and £ == be two directed sets. Denote by

-Z x corresponding product category.

Given a clixect system of Abelian groups

let us p-ut
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For any relations k  we have the commutative diagram

Clearly, each double system of Abelian groups indexed by v x X together
with the maps {i I , {Ak J, (sa tisfying the natural functorial properties), mAY
be identified with a functor We shall write simply n = .}.

CY

We shall make use of the following algebraic lemma on interchanging double

limit.

(5.1) IiEHM&#x26;.. For any double direct system of Abelian groups K = 

indexed by 2 x N we have a natural isomorphism

between the limit more precisely, af

is a map between double direct of Abelian groups, then the following

diagram commutes :
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6. Continuity of the functor .....&#x3E; .  .. - .. ---- 0

Now -vie are prepared to show that the functor lf-n is continuous. To this end.. - 

0

take an object Y and be an approximating family for Y . Denote by

the corresponding inclusions and consider the direct system of abelian groups

{Hoo-n(Yk), i*kl} over ./0, together with the direct of homomorphisms
:tbslJ

(6.1) THEOREM The map

is an In other words 9 the functor is continuous.
0 0

Proofs For an arbitrary element a in £y and let us put

and denote by

the corresponding inclusions.

Now, for any relations and c~ ~ ~ in ~ and Ily respectively, consider

the following diagram

It follows from Definition (3.2) that the above diagram is commutative. Consequently, 3
the groups Hd(O!)-"(Yk) , together with the homomorphisms (3*.’~, )* and tk, 9

ry ~ cy$

determine a double direct system of abelian groups over ,Px Zy which we denote

simply by

Let n = {Ha(a)-n(Ya);.} be the system of Y. shall treat
cy

n as a double direc t system over Cy.
Now let us consider the double family of homomorphisms {j*ka}. Taking into

account the various commutativity relations between the inclusions y it follows from

Definition (3.2) is a map from K to ¡¡.
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In vie’" of the continuity of the cohomology the map

Ljp is an isomorphism for each a£LY, and therefore so is the mapJi :LB.Ct .1.

I Consequently, in view of Lemma ~5 . ~ ~ the map

is also an isomorphism and the proof of the theorem is completed.

Now, Theorem (6. 1 ) 9 in view of Theorem (11..3.6), gives us the final result of
this chapter :

(6.2) THEOREM. The functor extends uniquely from D over D to an

h-functor Hoo-n : h-&#x3E;Ab.

7. Consecutive pairs of triads and Proof of Lemma (3. 1 ) .

The following symbols denote the subsets of 

The proof of Lemma (3.1 ) will be preceded by a preliminary discussion about the
triads. assume in this section that is a cohomology theory on

the category By a triad- we understand an additive triad in IL .
For a triad T = we let -T = (X;~ ~X1) and denote by 6n(T) , or

simply by the I’fayer-Vietoris homomorphism s

of the triad T . We note that

Let To = and T = be two triads. A pair (T o ,T) is a

consecutive pair of triads, written 9 provided = Y = XQ 
we say in tills case that (T ,T) starts at Y1 n Y2 and ends at Xl o

observe tl1at, if is a, consecutive pair of triads, then we may form

the composite

of the corresponding Mayer-Vietoris homomorphisms.
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(7 .1 ) Let us assume tl1at in the following diagram of triads

consecutive pairs

both start at Y, I’l Y2 = Y3.’ and both end at X = X t 10 Then. for the composites
of the corresponding Mayer-Vietoris homomorphisms we iiave 

Proofs This is an immediate consequence of (1 .4).

~7,2 ~ Let us assume that

and

are consecutive pairs of triads starting at

and both ending at X . Assume further that

we have

Proof, Let us consider the following triads s

We claim that every pair (T2i-1,T2i) for i = 1,2,3,4,5 is a consecutive

pair of triads starting at Y A Z and ending at X .

For i = ~ and i = 5 , this is true by assumption.
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Assume now that i = 2 . Taking into account the inclusions

we have respectively

and thus the statement holds for i = 2.

Next , we suppose that i = 4. In this case, the proof is strictly analogous
to that for i = 2 .

Assuming , fimlly that i = 3 , we have

and

Thus, the proof of our statement is completed.

Furt11er, we note the following inclusions between the triads

The various established interrelations between the triads may be displayed as

follows z .

we let

and apply Levna (7.1) and property (1) to our situation. We obtain :

and the proof’ of the lemma is completed.
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Proof of Lemma (3.1).

Ile shall use the notation given at the beginning of this section. Letting
k = d(a,) we have d(y) = = k-r1 and d(B) = k+2 . Define a linear isomorphism

Rk+2 Rk+2 by putting

Now take linear isomorphism

such that

and

There is a ’unique isomorphism such that

Consider the following triads

By straightforward computation, one easily verifies that (T 1 P T ) 2 and (T 31 T 4)
are consecutive pairs of triads satisfying the assumption of Lemma (7.2).

We have therefore

There are alternatives : either l£wB or "’W 13. Now, we shall show

i11 of the above cases, iie obtain the desired conclusion

, then -w and we have
P ° P
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Thus, in view of (2), 1&#x3E;e obtain (~).

if 0 c -w~, and we have

~ 

Consequently, again by (2), we get the desired formula (~). The proo’f of
Lemma (3 .1 ) is completed.
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IV. COHOMOLOGY THEORIES 0N gj

living defined the absolute cohonology we turn now to the relative case and

show that to any cohomology theory H* on K corresponds certain "infinite

dimensional" cohomology theory on the Leray-Schauder cateory § , More

specifically, for every n , we construct the relative cohomology functor

(X,A) - I-f -"L "(XgA) , the coboundary transformation 6--n : 
and then ire prove that = (I#°~~,6°’~~) is a cohomology theory on § in the

sense of III,I ,I .

1 t Tl1e relative cohomology functor 

Notation : F = E 3 R stands for the direct product of E and the real line

R - we consider E as a 1-codimensional linear subspace of F . B1/e fix a point

in F not lying in E by putting y+ = (o? 1) , 9 where 

We begin by fixing an orientation {w} in the space E . For technical
a

reasons, we shall consider also an orientation in the space P ; this will be

defined in a specified way as follows. Let I E and tF be the directed sets of

finite dimensional linear subspaces of E and F , respectively, and ’ L, 0 be a

subset of £ consisting of those linear subspaces which contain the point

I I clearly, 9 is cofinal in -7, a For denote by a’ the element of

given by L ~ =L 1) Ry+ . .

To the orientation {w} in E we assign an orientation (w, in F by the
,Cy 0153 

_

following rule x If we 
a 
= w. If a$LE and we define wa

arbitrarily. Assuming that y there is a such t = 0153. vie take

a representative l : LB -&#x3E; Rk in 
wB, where k = d(B), 9 and put

Now let be a linear map such that

and let cu "00 orientation of L determined by 7Q . Thus, we have defined
u a

an orientation {w} in F ; we an extension from E
a a a

over F .

From ’tie assume tInt sucii an orientation {w} in F is fixed..
a

Next, consider the categories
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and observe that hE and 1)0 (E) are h-subcategories of hF and ho (F), res-o F "O

pectively. We will denote and h2F the corresponding h-categories of

pairs.

In what follows, we a.,iall reduce certain facts in the relative case to those in

the absolute case. This will be done with the aid of a functor p rom A to

~ which will now be defined in terms of the cone functor as follows : Let

be the cone functor corresponding to the point y+ . We recall tintv ’-F
for AcE

and for f :A~B in 1gg the field C(f) is given by

Now, given a pair (X,A) in 9,;t; , let us put

and for a map ,

in ~ define

by

(1.1) The assignments (X~A)’~XUCA and define a covariant h-functor

p to the category Sp . Moreover, we have p(h2E(E)) c ho(F)
and p (T4) c il-I

Now let H--- be a fixed cohomology theory on XE and (X,A) be a pair in ~g.
We turn to the defini-bion of the relative groups To this end, for an

such that X 
a 
~~ , let

denote the corresponding inclusions. Since e is an excision and CA has all
a 0153

cohomology groups trivial, the induced maps
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are isomorphisms. Define an isomorphism

by

Let a  ~ be an elementary relation in £E and suppose that X is non-empty.
Then is a proper s’Uotriad of and we denote the correspond-p p P p p p 

’"

ing relative Mayer-Vietoris homomorphism by

Note that , in this case, (X U - X 
-’::1 
U CA and we have the f ollowing :

(1.2) The 

in wbich is the Mayer-Vietoris homomorphism of the triad

is commutative.

Now j3 be an arbitrary relation in .1-B and --Y. = a 0   . * I  alt+ 1 = 0
be a chain of elementary relations joining -, and 0 . We define

as the composition of the corresponding relative Mayer-Vietoris homomorphisms. In

view of Lemma (III.3J) and Lemma ( ~ .2 ~ , this definition does not depend on the

choice of a chain. Furthermore, the groups together with the
’ (n) ’ 

CY CY 
‘ 

homomorphisms form a direct system of abelian groups over L which we will
X

call the (co-n)-th cohomology system of the pair (X,A) (corresponding to the
theory H* and the orientation {w} in E).

ci

.3) Definition. For an integer n we define the relative cohomoloor 

as the direct limit of the cohomology system of the pair (X,A) .
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Evidently, this definition extends tInt of the absolute group 

Now, for the orientation in F, apply the construction of the previous
Q’ 

chapter to the space F and denote by R : the functor corresponding
to H and the orientation il ) .

a

Observe that, by Lemma (1 .2) the family {11 J is a direct family of maps
between and Yioreover0153 (Y (XP 11 J 

a Q’ lot
since for all 0153 with a sufficiently large dimension the n 

cY 
is an iso-

CY

morphism, we conclude that the direct limit map

is also an isomorphism.

(1 .4) Definition. For f : (X,A) --&#x3E; (Y,B) in £~ we define the induced map

f_ = Hoo-n(f) oy imposing commtativity on the following diagram :

Thus,

1.5 The assignments (X 9A) --&#x3E; and f -4 f* define ’a contravariant
h-functor from the category 9 to category of abelian groups. Moreover,

n is a ,xsjigz*I equivalence between functors and o 
-- 

P

Proof. (1.5) follows clearly from the definitions involved and Theorem III.6.2.

2. The homomorphism 8n.
(y

Next some lemmas which will be used in defining the coboundary transformation

For an object A in ~ we let

(2.1 ) For a pair (~9A~ in $ and Q/(.£ A define the homomorphism

by puttincr

is the coboundary honomorphism of the pair
a ce
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(2.2) Lemma. t (X,A) be a in hF. Then, for every relation aB
the following diagram commutes :

Proof. Assume first  j3 is elementary. Let

denote t11e Mayer-Vietoris homomorphism of the triad (X U CA ,CA ,X). Evidently.01 a, 0! 
’

we have

Nextg we observe that tl1e consecutive pairs of triads

satisfy the assumptions of Lemma III.7.2. Consequently,

Now we consider the diagram :

The composition of the top row homomorphisms equals (-1)d(a)8n and the compositiona 
of the bottom row homomorphisms equals (-1 )d(S) ôn. Since the left-hand square is

B
anticomoutative and the square by Lemma (1.2), commutative, the

t . 
n 

11 T’ 
.. 

tux 
. 

1 . 
n n n n+ 1 

fassertion follows. This? in turn implies that An 0 60 o for a
a P a B

a  p and the proof is completed.

The following two propositions are iwwediate consequences of the definition
of 
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(2-3) Let (X,A) be a and let i :A~X , j : X~(X~) denote

the inclusion Bsps. Then, for every a n CA v the following sequence is exa ot :

(2-4) Let and (Y B) be two lnirs 4 and let f: (X,A) ... (Y,:8)
Then. for 2M of such that the following

diagram commutes

3. Definition of the co-boundary transformation 8oo-n.

Let (X,A) be a pair in It follows from Lemma (2.2) that the family
f 811) is a direct family of homomorphism. The coboundary homomorphism
a

is defined by

Similarly, we let

commutes :
.....

Proof. This clearly follows the definitions involved.

~~·2 ~ The by the pairs (X,A) in is a

transformation from to 

In view of (3~1), it suffices to prove that, for f : (X,A~ -~ (Y,B) in

the following diagram is commutative
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Assume first the field f is finite dimensional. In this special case,
we apply a straightforward to the limit in the commutative diagram of (2.2)
and {~.~.~ and the desired conclusion follows by ~3 ·1 ~ ·

Consider now the general case and take an approximating system

The definition and the proof of the existence of such a system is 

to that the absolute case. It follows from (1 .1 ) that the sequence

~

forms an approximating system for f:XUCA~YUCB.

Consider the inclusions

the special case of our assertion? the following diagram commutes for 

pair 

Applying the direct limit functors to the corresponding commutative in

the category of direct systems of ebelian groups, we obtain the following 

ti va diagram :



B-IV-8

Ilir Theorem (111.6.1) the homomorphisms Lim ((jl)*) k and Lim are invertible.
E’ " it "’

This , in view of (3. 1) and the definition of the induced map, implies our assertion
and thus the proof is completed.

(3.3) THEQREH. = is a cohomology theory on t 1101-fl-

over for each n we have

a..e. the coefficients of the theory coincide with those of the theory H

Proof. The Exactness Axiom follows from (2.3) and the definition of

by passing to the limit with of .

To show that the Excision Axiom is fullfilled, let (X;A ,B) be a triad

in h with if k : is the inclusion then so is

k : A U n B) -+ X U CB. Since (ka)* is an isomorphism for each of and
-- . -..-

-it follows that is an isomorphism

To show that the last assertion of Theorem (3-3) is satisfied, take the

system

of the unit sphere S in E ; note i e elementa:ry t then 6 a,,,3
coincides with the suspension isomorphism. Consequently, for sufficiently large

a , we have

8bd our assertion follows.
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V. GENERALIZED COHOIIOLOGY THEORIES AND DUALITY

Assume that the starting point of our discussion in Chapter III is not a cohomology

theory H* but the stable cohomotopy ~* on K~ . Then, by applying previous con-

structions to this case, we are led to the infinite dimensional stable cohomotopy

theory E on S) . It turns out that (more generally) to every spectrum A (in
the sense of G. Whitehead [1 4]) corresponds a (generalized) cohonology theory

~A~~ on -~ . This being established, our main concern is the Alexander type

of duality in infinite dimensional normed space E :

where H n-1 ( ;A) is the generalized homology with coefficients in A . Although the

above duality holds for an arbitrary spectrum A , we shall confine ourselves to the

case when A is either the Eilenberg-MacLane spectrum (the Alexander-Pontriagin
duality) or the spectrum of spheres S (the Spanier-Whitehead duality).

1. Generalized homology and coh omology theories and the spectra.

Notation : 

jjP - the category of finite pol fihedra ; ° ,

T = the category of all topological spaces ;

W = the category of CW complexes ;

D = any of tl,e above categories ;

D*= the category of pointed objects in D j

D2 - the category of pairs in D ;

S and £ stand for the suspension and the reduced suspension functors.

Let V : D2 -&#x3E; If be the covariant functor defined by

~~X,A~ - A ~= ~h,~~ for any (X,A) in If,

&#x3E;(I) = f ~ A : A - B for any map f : ~ :~, ~~ ~ -~ ~ Y, B ~ in D~ .

A generalized H* mn D is a sequence of covariant h-functors

H : fl - Ab (- oo  n  co) together with a sequence of natural transformations
n -

dn : Hn -&#x3E; Hn-1° § satisfying thc Excision and Exactness axioms for homology. The

graded group (H (p )}, y where p 
0 

is a point, is called the group of coefficients of
n o . o .... --

the theory H*.
*

Similarly, y a generalized cohomology theory H on D is a sequence of contra-

variant h-functors : D2 ~ Ab (- co  n  co) together with a sequence of natural

transformations 6 n : -~ 1-~ satisfying the analogous Excision and Exactness

axioms for cohomology ; 9 the graded group is the group of coefficients of the
* o

theory H .
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Thus, a generalized homology theory (respectively cohomology theory) satisfies the
Eilenberg-Steenrod except for the Diraensions axiom. The important examples of

generalized theories are provided by the stable homotopy and cohomotopy.

Various generalized honology and cohomology theories can be treated in a unified

manner 1vi thin the framework of homotopy theory the aid of spectra.

A spectrum A is a sequence of objects of W* together with a sequence of" n

maps cy n : EAn -&#x3E; A 1 in W* . If A = {An,an}, B={Bn,Bn} are spectra, a 
n n n+ n n n n -

f : A -&#x3E; B is a sequence of maps fn : A - Bry in Ii such that the diagrams
. n n n

are homotopy commutative. Two such maps f and g are homotopic if and only if, for

each n , f is homotopic to g . Clearly, the spectra form an h-category.
n n

The simplest examples are provided by the spectrum of spheres S in

. +1 . , , 
, 

n

which cr : s Sn -&#x3E; Sn is the natural identification and by the Eilenberg-MacLane-
n 

 -

spectrum K(n) defined for an abelian group II . An important example of maps of

spectra is provided by the Hopf-Hurowicz map h : S ~ 

In what follows we shall consider various homology and cohomology theories on

various categories with coefficients in a spectrum.

We recall first some basic facts due to ~o lbitehead [141 :
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(1 .1) For any spectrum A there is on P (or more generally on W) a homo-

lo H ;A) and a cohomology H*( A with coefficients in A (t).
(1.2) H.~~ ~.g.~ and H*( A) are functors~ ~of the second variable ; thus.

f : A -* B of spectra, we have natural transformations.

~ 

between corresponding theories. 
’

(1.3) If A = then the corresponding homology and cohomology theories are

naturally isomorphic to the ordinary singular homology and cohomology with coefficient

and cohomology theory with coefficients in S are isomorphic

to the stable homotopy and cohomo’topy theo respectively.

(1.4) If h : S -&#x3E; K(Z) is the Hopf-Hurezicz map then 4

is the Hurewicz map from the stable homoto to the singular theory over Z ) an.d

is the Hop! map (from the stable cohomotopy to the singular cohomology over Z).

1) We recall briefly how H*( ;A) is defined. First, for XeP we define the re-

duced cohomology with coefficients in A . We take f : A . re-

presenting an element is an abelian group 

Then the composition 
-

represents an element The assignment v - defines

a homomorphisms

and we put

Now, for a polyhedral pair we let
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For further development, we shall need an appropriate extension of the ochomology

theory H( ;11.) on P over the category K_ . This is done by means of the Cech
fj

limiting process and we obtain the following :

(1.5) To every spectrum A corresponds a theory H*( ;A) on KE called the co-
- .......-.- ......- ..- ’ - --E

houology theory with coefficients in ti . Every such theo is continuous and satisfies

the strong excision axiom. Moreover, the assignment A -&#x3E; H*( ;A) is natural with

respect to maps of spectra.

On the other hand, in the treatment of duality in the infinite dimensional case,

we shall need our homology groups to be defined for open subsets of E . We must

have therefore an appropriate extension of H( ;A) over T .

~1.6~ To every spectrum A corresponds a homology theory H*( ;A) on T

(which ;A) on P over T ) and satisfies the compact carriers axiom.

Moreover, the assignment A 4 H*( ;A) is natural with respect to maps of spectra.

Let (V,U) be a pair of open subsets in E . Given a relation a ~ S in

denote by

the corresponding inclusion maps. Let H n ( ;A) be a homology theory on T as in

(1.6) and consider the direct system (i4),,1 together with the di-

rect family of homomorphisms ((i,)*l -
From the Approximation Theorem one deduces the following 

1(1 .7) Lemma. The map ~

is an 

2. Cohomology theory 

The following result is a generalization of Theorem Iv.3.3.

(2.1 .) Theorem. To every spectrum A there corresponds a cohomology theo

Hoo-*( ,A) on 6 with the same group of coefficients as H*( ;A) on P. The

theory Hoo-*( ;A) is continuous and satisfies the strong excision axiom. Moreover.

the assignment A - ;A) is natural writh respect to maps of spectra.
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When A = S , the proof (which uses (1.5)) is strictly analogous to that of
IV.3.3. For the proof for an arbitrary A we refer to [5].

We let

and call E the stable cohomotopy c n 8,5 .

co-* 

The Hopf-Hurewicz map h : S -~ K(Z) induces a natural transformation h~ from

E to H "0-*( ;Z). More precisely, for any field f : a (X,A) -&#x3E; (Y,B) in h2 the

diagrams

and

are commutative. The map h* will be called the Hopf-map from E to H 00-’*( ;Z) .

3. Duality in Sn for polyhedra.

Next we indicate the consecutive steps of the proof of the duality in E . We

begin by recalling the definition ond basic properties of the Alexander duality iso-

morphism D for polyhedra in sn ; these were established by G. Whitehead with

the aid of the theory of products for arbitrary spectra.

For our purposes it will be of importance to specify D 
n 

(by selecting for each
n an orientation and to exhibit an appropriate relation between D 

n 
and

Dn+1 in terms of the Nayer-Vietoris homomorphisms.
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Assume that we are given a spectrum A and let A be the natural pairing.
1’1e choose a generator z£H (S1;Z) and define inductively111

For a pair (LyM) of polyhedra in Sn (in some triangulation) we denote (M*,L*) its

dual pair and define the Alexander duality map.

by putting where the cap product

L) corresponds to the natural pairing

of spectra.

We have the following important properties [14J

(3.1.) The duality map D 
n 

is an ... n

(3.2.) Let N C Me L be subcomplexes of a triangulation of sn.

Then the diagrams

in which the upper row is the cohomology sequence of the tri le and the

lower row is the homology sequence of the tri le has two left-hand

squares commutative and the third commutative up to the (-1)n+1 .
(3.3) Let f : be a map of spectra. Then the following diagram commutes :
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Now let 14 C L be subcomplexes of some triangulation of and let 

denote the corresponding dual pair in S~ ’ . Putting i-i0= M and 10 = L n 
let be the corresponding dual pair in ~. Denote by A the relative Mayer-
Vietoris homomorphism corresponding to the proper inclusion of the triads.

and let i : (M*, L*) -&#x3E; (M*,L*) be the inclusion. 
"

0 0

Now, the lemma which is the main tool in extending the Alexander type of duality to
the infinite dimensional case.

(3.4) Lemma. The following diagram is commutative :

For the proof of (3.4) (based on the results in [14]) we refer to [5] ,

4. Duality in sn for compacta

Let A be a spectrum H* = (0( ;A)} the continuous cohomology theory on Koo
and H* = [H n ( ;A)l the homology theory with compact supports on T .

Now let Y c X be a pair of compact subsets of sn. Let 1~
be approximative sequences for Y and X y respectively, consisting of subcomplexes of

triangulations of Let ~: (~+1 ’~+1) -7 denote the 

Then, by continuity of we have

Without any loss of generality, we may assume that

Let be the inclusion.

Since H~ has compact supports,
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By the straightforward passage to the limit, D n extends uniquely to an isomor-
phism (still denoted by D ) .

defined for all compact subsets Y c: X of sn.

Now as a consequence of (3.2) and (3.3) we obtain

(4.1) The duality isonorphisn satisfies properties similar to those in

(3.2) and (3.3) .

Let (X,A) be a pair of compacta in and

Denote by A the relative Hayer-Vietoris honomorphisn corresponding to the proper
inclusion of the triads

and by the inclusion.

(4.2) The following diagram i s commutative :

5. Duality in 0 .

Notation : 1fe choose a sequence of continuous maps GJ : Rn -¿ Ef- with
n n

the following properties :

(i) w n+ 1(x) = W n (x) for all 

(ii) LU maps Rn homeomorphically onto y

If X is a subset of Rn ~ae let u : denote the rap defined by
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From now on we assume that ;1 is either the Eilenberg-MacLane spectrum K(n)
or the spectrum S of spheres. note in either case, the honomorphism

is an isomorphism for all q # n-2 .

that (X,Y) is a pair of conrpacta in Rn n-2 , B1e define the

duality map 
’

by putting

(5.1) The duality map D 
n 

is an isomorphism and whenever defined satisfies pro-n - 

. 

 -- ..

erties similar to those in the previous section.

6. Duality isomorphism D
. ’ 

He pass now to the infinite dimensional case. By (X,Y,Z) we denote a triple in

~ and we let U = 1 ~.-x , V==E-Y , 

Let be a fixed orientation in E . For each L -&#x3E;
"a 

i d(a) ae of a

be in 0’ 
O! 

. E we let X c¿ = l (X ) C R 0153 and we denote by the same letter
a a c/ a 

"

A 
a 

the homeomorphism from X c¿ onto X’ 
£Y 

given by x - L C/ (x) .
Now with the aid of L , ~ we "transfer" the duality map (defined in the previous

section) from R 
a

(6.1) Definition. Assume that and d(a) ’ n+2 .
B1e define the duality isomorphism

by imposing the commutativity on the diagram



B-V-10

Clearly D 
C/ 

depends only on the orientations O 
Ct 

of L .
v a 0153

From (5.1) we obtain

(6.2) Let and d(c,,) ~-~ n+2 . Then the diagram

in which the upper row is part of the cohomology sequence of and the lower

row is a part of the homology sequence of (w a,v92U ) has two left-hand squares commu-

tative and the third square conmiutative up to 
a . --...--. 

- ...-.- .........--- .-.

(6-3) If a2 S is a:’relation in ~ with 

then the following diagram commutes

Proof. If o~ )3 is elementary y this follows from the property of the duality map in

R y which is analogous to that in (4.2) . The assertion in the general case follows

then from the definition of 

(6-4) --I-f .EZ 1 and then the following diagram commutes

7. The duality in E and the Hopf Theorem

ny passing to the limit in the diagram of (6. 3) we get an isomorphism
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Now we define the duality map

by putting

where

Now we are ready to state the main result (cf. [14J, [101, [13] ) .

(7.1.) Theorem. (The ilexander Duality Let A be either the spectrum

of spheres S or the Eilenberg-MacLane spectrum K(TT). Then

(i) the duality map D : - H n(V,U;A) is an isomorphism ;r n &#x3E; n n i n ... -r

(ii) D maps the sequence of a triple into the homology sequence of

the complementary triple (~1,V,U), i.~e, the following commutes:

(iii) D is natural with respect to the Hopf-Hurewicz map of spectra

h : S -~ K~ ~~ , i.e., the following diagram 

Proof . (i) in view of the definition Tf D , frcm Lemma (1 .7) and

(iii) is an evident consequence of (6.4) .
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To prove (ii) , we recall that 5 is (by the definition) the composite

where j* is induced by the inclusion and 5 
1 

is the coboundary homomorphism of
the pair (X,Y) .

According to (IV.2.1) we ha,ve

where is the coboundary homo-

morphism o~’ (X, Y ’) .
Hence, in view of ~6.2~ ~ the diagram

is commutative for each This implies the commutativity of the right hand

square. The commutativity of the two left hand squares follows clearly from (5.2)
and thus the proof of the theorem is completed.

Next, some corollaries of Theorem (7e1) .

(7.2) (The Alexander-Pontriagin Invariance in E).
The relation X - Y implies that

for any n &#x3E; 1 and any group of coefficients I1 .

(7.3) Invariance in E). The relation X - h Y 
implies that for any n # 1

The following important corollary is an immediate consequence of Theorem (7 .1 )
and the Harewicz Theorem in and [13])*
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(7.4) (The Hopf Theorem) - the first non-vanishing stable

cohomotopy group is isomorphic to the first non-vanishing cohomology- sroup over Z .

More precisely, , we have

f or any

then the Hopf map

is an isomorphism.
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VI. REPRESENTABILITY OF THE STABLE COHOMOTOPY AND CODIMENSION

Consider compact fields from an object X to the open set E - 

dim E n-1 = n - 1 , and denote by the corresponding set cf homotopy classes.

flur next aim is to show that there exists a natural isomorpbism between and

the stable cohomotopy group ~~~’ (X~ .
Then some applications of this result to the notion of codimension are given·

1. Fields with afij,ssihle##L£e U i

Call an objet U admissible provided U is open in E and its complement is

contained in a finite dimensional subspace of E .

From now on U will stand for an arbitrary but fixed admissible set and W = E-U

for its complement.

We shall use the following abbreviations :

Denote ’by ~ the cofinal subset of Z defined by the condition

and put L = The elements of are said to be admissible with
X,U £Un £X 

respect to X . The elements wliich will appear in the sequel are assumed to

be admissible respect to the objects under consideration.

~ 1 .1 ~ Let x 6 &#x3E; . Then for each the set TT (X) i s non-empty end

the restriction ma

k the assignment

is bijective.

The proof is straightforward and is omitted·
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(l’2)j~t X E 5- and ht : X - U be a compact homotopy. Then 

and for each e satisfying

0 e dist(h(X x I,W))
there is an a-homotopy hj : X - U such that

The first assertion is evident and the second follows from the Approximation
Lemma.

we obtain

{ ~ . 3) Let be, an CL-field and g ( (513 (X) be a f and g

are compactly homotopic, then for Borne y satisfying CY  Y , we

have f ’1t g .
y

2. Homotopy and . 

Definition. For each relation aB 1 let 11

be defined by the assignment I

Clearly, the family [11 (X),i} is a directed system of sets is a
cc aB £Y’

direct family of maps ; be called the of X .

(2.1) Lemma. The map

is invertible in Ens .

Proof. This is a consequence of (1,2) and (1,3) .
Now for a relation oe :5 P in Cxlu consider the map

,

defined by Lf]O! -+ Lf~ and the map

given by 
.

It follows from (1 . 1) that is bijective.

Definit-ion. For define
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Toy putting

is called the restricted homotopy system of X .

Clearly, is a directed system of sets over 

(2-2) The family of restriction maps I T) defines an isomorphism from the

to for each oe :5 - P the following diagram

commutes.

3- Continuity of the functor X - rr(X,U).

Notation : For a fixed admissible U denote by TT an h-functor from h to the

category of sets which assigns to an object X in § the set fl(X) = and to

each field f : X - Y assigns

We denote by TT0* 850- Ens the restriction of ’IT to 8,50 a
oo o

Let and tp : X - U be a field; call cp inessential provided for any
Y E h with X Z) Y there is a field cp : Y - U which extends cp over Y . Any two

inessential fields are homotopic and the homotopy class which contains an inessential

field is denoted by 0 and called the zero element of H(X) . One shows easily that

f*( 0) = 0 for any f E 8) o and this H may be considered as an h-functor from

(9-50, ~d) to the category of based sets Ens* -

Next we prove that TT 
o 

is continuous. We begin with two lemmas.

Let Y be an object and an approximating family for Y .

(3.1) Ierma. Let f :Y-~U be an a,-field. There exists an index k and an

f ’ : such that I Y.

Proof. Let F : Y -&#x3E; E be an a-map such that ? I Y = F . Clearly the set
o

is compact ; consequently y for some k 2: Yk does not intersect C . Now putting

f’ = f I Y k ~ we obtain a required G-fieid f’ .
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(3.2) Lemma. let be to a-fields such that I Y .
There exists an index m :2~ k such that f ) I g t Y .

Proof. Let be an a-homotopy such that h =f and h1 = g.
On the set : 

° l 
°

define an a-mapping H* : by

Cl early, we have

By extending H# fr,,m T over Y k x I , we obtain an o~-mapping

Clearly, the set

is compact ; therefore, for some m &#x3E; k the intersection C f~ (Ym X I) is empty. Nowt

putting I Y , we obtain an a-homotopy h’ : such that h’=f Yt t m t m 0 m

and h 1 = g I Y . The proof is completed.
Consider the direct based sets and the direct family

I of based maps, where i* are induced by the inclusions1k kl k

( ~. 3) Theorem The nap

is a bijective based In other words, the functor fdo ~ Ells is continuous·

(3.4) Corollary. TT is an b-functor from (h, ~) to the category of based sets.

4. Na tural ,group structure:ill 

Next, we establish that for some U (called algebraically admissible) the functor
TT : 6 ~ Ens* may be converted to a functor to the category of abelian groups.

Definition. An adnissible object U is said to be algebraically adE1issible pre-

vided there is a cofinal subset !U of 4j such that

(i) for each a E the assignment X - ,U) is an h functor from
-U a a

(ha, a) to the category of abelian group ;

(ii) for every relation in JL’ the riap j ap is an iscmor

phism.
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(4.1) Theorem. If U is algebraically admissible. TT(X) ac1nits a structure of

an abelian u for all objets X Moreover, an abelian group structure in

TT.(X) is natural with respect to naps in fJ ,i.e., the induced nap f*: rr(Y) 
is a hemomorphism ff’r an coinpact field f: Y .

The proof of Theoren (4.1) iises (2,1) , (2,2) and the oontinuity of the
functor IT .

5. The rou - 
.

Let 0 E ) be a fixed sequence of direct sum decompositions of E as in
n

the section 1 For n ê; 1 

Clearly is admissible and we denote by the corresponding functors from

S tn 

Next, we let 14

Clearly, £n, X is cofinal in £n and £n is cofinal in £ .
n, n n 

,

For k &#x3E; n &#x3E; 0 ,the map from s-- to 
I 

given by the assignment

is a homotopy equivalence and woe dencte by

a homotopy inverse of this map. e

Let ~e a fixed orientation in E . For each n ’ 1 choose n n
which represents the orientation of E n ~x~ for x E E n

For choose such that
n,X d’ cy

end define a map

ty

is a homotopy equivalence and therefore :

is bijective. Moreover, since
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the set of homotopy classes nay be identified with t:0153 

cohomotopy group of X~ (and also with the stable cohonotopy cf X) , i.e.

Consequently, TT(X admits a unique abelian group structure such that (y 
is an isomorphism ; this structure is determined only by the orientation w 

ci 
in L 

a, 
.

(5-1) Every U is algebraically admissible (n # I) . Morecver, for each
the (ya,n)* where defines an isomorphism from

, n, .

If and f: X~Y i s an /-field, then we have a

commutative diagram

Therefore, the assignment is an h-functor to the category

of abelian groups. is a relation then the following diagram

commutes

Ilence j043 is a homomorphism and the proof is completed.

(5.2) Corollary. is an h-functor from 6 to of abelian

groups.*)

*) The groups were introduced and considered for the first time bY K. Geba
inL2].
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We shall prove next that the functors and are naturally equivalent.
To this end, recall that, in view of (2,1) and (2,2) , we may identify 
with

- - 

r -- .... , ,

. 

Using this identification we let

(5.3) (Representation 1heoren). The family y = (YX) is a natural equivalence
between the functors and 2: CO-n . 

YX 

Proof. Py the definition Y x is an isomorphism of abelian groups for each

object X remains to prove that if f : X-&#x3E;Y is a map in g) then the

following diagram commutes

In view of the continuity and ¿:~ it suffices to prove it for f 

Suppose that f is an ol 0 -field. If X ’ aoaB then the following

diagram commutes:
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Since we have identified Lim with and under this identi-

fication (f) = the desired conclusion follows- This completes the proof.
0!

Remark : The entire argument can be repeated in the relative case. Namely, letting
11""~ E - .en+1 .t{+ we obtain a pair of open subsets of E . One

can prove that for a pair (X,A) in 6 there exists a natural isomorphism

Thus Theorem ( 5· 3~ remains vali ed in the relative case.

An immediate consequence of ( ~ · 3~ is the fol l owing : .

(5.4) .22rollarv. For an object X E - X is connected if and 

any two compact fields f,g : are compactly homo t opic .

6. Co dimension .

Let G be an abelian group ;G) the corresponding aohomology theory

on ? *

Definition. We define the codimension CodimG(X) of an ob ject X with .

respect to E as the smallest number n , such that 0 for some ~
object A  X . 

Definition. Let X be an object in S and say that U is an

extension object fcr X provided that, given an object A  X and a oompact field

f : A -+ U I there exists a field f : X -* U being an extension of f 
0 

over X .

We denote by e(u) the set of objects defined by the condition :

X  15(U) « U is an extension object for X and we let

Definition. For an object we define the codimension Codim X of X

fii th respect to E to be the smallest integer n for not an

extension object for X .

The following is an immediate consequence of the definitions :

(6.1) Fbx any two equivalent objects X and Y Codim X = Codim Y

and = 

Now our aim is to prove that Co dim X = This result(which is

analogous to the "Fundamental Theorem in the dimension theory", due to Alexandroff

l 1 ]), wil l be established with the aid of the Hopf Theorem, and the Representation
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Theorem after some preliminary lemas.

First, as a consequence of the Homo to py Extension Lemma, we have the following :

(6.2) If the space E is complete, then for an object the following

tw* conditions are equivalent :

(i) Xe e~-(n+1) ;
(ii) For any pai r o f objects ACBcx the res tri ction map

is 

Next, two lemmas based on the continuity nf the functors under consideration :

(6.3) Let X be a given object. Assume that for any pair of objects A C B C X

the map 
- -

ip an epimorphism. Then for any object A ex 

Proof* Assuming that our assertion is not true, take a nontrivial element

of the . 

IFer a point x in A I let Y = S(§) be an essential carrier of 9 with ’

respect to x . Now, take an additive triad (Y~ Y ty 2) in which both Yl s Y are

proper subsets of Y such that x E y y 1n Y2 and consider the corresponding

Mayer-Vietoris exact sequence :

In view of the definition of the triad (Y;Y,,Y 2) we have

and therefore by exactness

Further, by the assumtion (i) , the map y is an epimorphism· From here, in

view of (iii) , we infer that for same I

Cbnsequently, again by’ exactness, J* (t) = 0 , contrary to (ii) .AY

(6.4) For an object X the following two conditions are equivalent :

10 H04l(X,A) = 0 for all objects 
2° For any pair of the ~

induced by the inclusion is an epimorphism.
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Proof. 1 ° =&#x3E; 2° : Assuming 1° we infer, in view of the exac1ness of the cohcmo-

logy sequence of a pair, that both jh and are epimorphisms. SinceJAX
it follows that j1B is also an epimorphism.

21 =&#x3E; 11 : Consider the cohomology sequence of the pair (X,A) . Assuming 2° ,
we infer by (6.3) that H ’(X) = 0 and, consequently, by exactness 0 .

The proof is completed.

Now, from (6.1) , (6.2) 1 (6.3) , (V.7.4) , and (5.3), we obtain the follow-
ing :

(6.5) Theorem. If the space E is complete. then for every object X in F? we

have C6 X == 

Anong other facts which follow easily from the proved theorems, we mention :

(6.6) If E is complete and Codim X ~ 2 , then E - X is nonnected.

(6.7) (The Phragmen-Brouwer Theorem in E). For an object X , denote bv

b (E - X) the number of bounded components of E - X . Let E be complete and

be an additive triad in S such that Codim Y1 n Y~ &#x3E; 2 . Then
, b0(E - Y) = b0(E - + Y~) .
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