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INTRODUCTION

These notes are based upon a series of lectures given at the Colldge de France in
the spring of 1970. Our aim is to survey some of the recent results related, on the
one hand, to the generalizations of the Lefschetz Fixed Point Theorem and, on the other,
to the branch of infinite dimensional topology known as the theory of compact vector
fields. The notes consist ~f two independent parts and the link between them is pro-
vided by the classical Leray-Schauder theory. In Part A we shall be concerned mainly
with the fixed point theorems for non-compact spaces, and in Part B with the infinite

dimensional cohomology theories.

Let E be an infinite dimensional normed space. A continuous mapying f : X->Y
between two subsets X and Y of E is called a compact vector field provided it is
of the form f(x) =x - F(x) , where F : X > E is a compact mapping (i.e., the clo-
sure of F(X) is a compact subset of E ). Two such fields f,g : X = Y are compactly
homotapic provided there exists a homotopy ht : X>Y joining f and g which is
of the form ht(x) =x - H(x,t) , where H : X X [0,1] > E is compact. Since compact
fields compose well, we have the category & with subsets ~f E as objects and com-
pact fields as morphisms. By the Leray-Schauder category © we shall understand the
subcategory of & generated by clnsed bounded subsets of E . This category arose
naturally in connection with the question ¢f sclvability of the non-linear equation
x = F(x) , where F is a compact operator, and was introduced in the early thirties
by J. Schauder and J. Leray [B.11], [B.9]. Furthermore, the above authors made the
important discovery that many familiar geometrical facts of finite dimensional topo-
logy can be carried cver to infinitely many dimensions provided attention is restricted
to the above category of maps. In particular, for maps of this category, a generaliza-
tion of Brouwer's degree (or of the equivalent notion of the fixed point index) was
established, known presently under the name of the Leray-Schauder theory, and with its

aid various applications were obtained.,

For somes time, it was thought that the Leray-Schauder theory had rather loose
ties with topological fixed point theorems. This is not the cese, however, and one of
our aims is to show that several results in the fixed point theory can be reduced to
the suitably modified and supplemented theory of the Leray-Sohauder index (a.26] ,
[a.15].

To be more specific, let U Dbe an open subset of a normed (or more generally
locally convex) space E and F : U->E be a compact map with a compact set of fixed

points. To every such F , one can assign an integer Ind(F) , the Leray-Schauder in-

dex of F , which eatisfies a number of naturally expected properties ; in particular,

when F : U->U , it is equal to the (generalized) Lefschetz number A(F) of F and,
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hence, A(F) # O implies that F has a fixed point, Now, more generally, let X be a
space which is r-dominated by an open set U in E (for example a metric ANR), r :U-X
and s : X>U be apair of maps with rs =1, and G : XX be a compact map;
then, 8Gr s U-U is also compact and A(G) = A(sGr) = Ind(sGr) . Consequently, if
A(G) £0, then G has a fixed poirt. The last theorem (established by the author in
[A.24] contains several known results in topology (eg. the Lefschetz Fixed Point Theorem
for compact ANR-s) and non-linear functional analysis (eg. the Schauder Fixed Point The~
orem and the Birkhoff-Kellogg Theorer). As another interesting consequence of the Leray-
Schauder index, we note the well-known fixed point index theory for compact ANR-s. We
recall that some years ago, such a theory was deduced (by a device due to A. Deleanu
[1.14]) from the fixed point index theory for convexoid spaces established (by combing~
torial means) by J. Leray [A.37] in 1954 (see also [A.10, [A.12]).

Alongside the index function Ind we consider in Part A the related notion of the
Jocal fixed point index ind, The local index is defined for arbitrary compact maps

of metric ANR-s and (although more restrictive than Ind ) is topologically invariant,
Its theory, however, is based on ideas other than that of the Leray-Schauder index,
which go back essentially to W. Hurewicz.

We emphasize that in the definition of the generalized Lefschetz number A(F) and
in all the development of the fixed point theory for non-compact spaces, an essential
use is made of the notion of the generalized trace due to J. Leray [A.39] . In parti-
cular, using the Leray trace, we define, following C. Bowszyc, new topological inva-
riants (the Euler~Poincaré characteristic and the Lefschetz power series of a map)
which turn out to be convenient tools for the treatment of periodic points, even in

the finite dimensional case [A.8].

We now give, in brief, some general idea about the results of K. Geba and the
author [B.S] on infinite dimensional cohomologies which are to be presented in Part B.
To this end, we recall the following theorem, proved by J. Leray (with the aid of
the degree) in [B.8] : If X and Y are two equivalent objects of the Leray-Schauder
category © , then the complements E ~X and E -~ Y have the same number of compo-
nents. In connection with this theorem, the following problems arise :

Problem 1 ¢+ If X and Y are two equivalent (or more generally homotopically
equivalent) objects of & , are the homology groups Hn(E - X) and Hn(E - Y) isomor—
phic for each n ?

Problem 2 : If X and Y are equivalent in © will the fundamental groups
% (E-X) and mn (E-Y) be isomorphic ?

The answer to the latter is "no" and the corresponding example shows that, from
the geometrical point of view, the Leray-Schauder category is as "rich" as the cate-

gory of compacta in R « One of our aims will be to give an affirmative answer to the
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first (and more involved) problem and thus to establish the Alexander-Pontrjagin Invae
riance in E . We note that the Leray-Schauder degree is not adequate for this purpose
and therefore a theory of an essentially algebraic character is needed. Thus, we are
lead to infinite dimensional cohomology theories. The construction of such theories

and their applicability will constitute our primary concern in the second part of this
notes.

In conclusion, I wish to thank the Collége de France for the opportunity to deli-
ver these lectures and to Professor Leray for his kind invitation. Looking back over
my own researches, I camnot but express my deep gratitude to K. Borsuk, J. Leray and
L. Lusternik., I have received from them, in different periods, much advice and encou-
ragement, and it is in their work that I have found especial source of ideas. My
thanks go also to K. Geba for his help and collaboration, and to the participants of a

topological seminar in Gdansk for many useful discussions.

Andrzej Granas
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PART A

SOME NEY RESULTS IN THE THEORY OF FIXED POINTS

In the topics of the fixed point theory which we propose to discuss in the
first part of these lectures, an cssential use will be made of the generalized
theory of the trace due to J. Lexoy [39]*)° We shall begin therefore by recalling
the basic definitions and facts cf this thsoxry.

I. THE IFRAY TRACE AND THE GEINTRALIZFD IEFSCHETZ NUMBER

In wat follows all ths vecctor spaces are token over a fixed field K .

1. The ordinary trace.

For an endomorphism ¢ : E - & of a finite dimensional vector space E , we
let tr ¢ denote the oxdimry trece of ¢ .

We recall the following two bagic properties of the trace function +tr :

(141) Assume that_in th: onbogory of finite dimsrsional vector spaces, the

following diagram cormtas

e £

o —s E"

g

B m

Then +tx ¢ = tr § § in othex words tr{ef) = tx(fg) .

(1.2) Given a commtative disgrom of finite dimensionmnl vector spaces with
exact rows

0 - mE - 5 - K" - 0
W) ? lcp CP"
o -~ &t - k - E'" - O

#) For some other advances in “ho fixed point theory (not related to the theory of

the generalized trace) sce thn expository article of E. Fadell (Bull. Am. Math.
Soc. Nx, 1, 1970).
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we mave tr(p) = tr(e') + tx(e") .

Définition. Let B = {Eq} e a graded vector space. VWe say tmat B is of
a finite type provided : (i) din E <= forall q; (ii) B, = 0 for almost
all q o If o = {cpq} is an endomorphisn of such a space (i.e., cpq s Eq —>Eq)

then the (ordinary) Lefschetz mumber A(p) of ¢ is defined by

AMe) =2 (-1)2 tr(o,)

by
q
and the Buler-Poincard characteristic x(B) of a space E = {Eq} of finite type
is given by
v@ =% ()Y dnE .-
q q

Clearly, x(B) =A(lg) .

2. The Leray trace Tr :

Let ¢ ¢ BE>E be an endomorphism of an arbitrary vector space E . Denote

by cp(n): E->E the n-th iterate of ¢ and observe that the kermels

,(2) (n)

ker ¢ < ker ¢ C eee © Ker o C oo
form an increasing sequence of subspaces of E .
Let us put now

N(g) = U Ker @(n) and B = E/N(p)
n=1

By definition
x€N(p) o cp(n)(x) =0 for some n .
Clearly, ¢ maps N(p) into itself and, therefore, induces the endomorphism
p: B - E
on the factor space B = E/N(p) .

(241) Ve mave ¢ (Ne)= Ny , consequently, the kernmel of the induced map
¢ E-E is trivial, i.e., § is a monomorphism.

Proof. If xeg(Np) , then o(x)eNp o This implies that for some n we iave
n n+1
¢ (p(x)) =0 =¢" (x) and hence %eN(p) . Conversely, if xeN(p) , then

n
@ (x) =0 for some n; then ¢p(x) =0 and, hence, o(x)eN(p) , i.e.
JCGCP_]' (N‘\P) .

Definition. Let ¢ : B > E %be an endonorphism of a vector space E . Ve

say that ¢ is adnissible provided the factor space E = E/N(p) is finite
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dimensiomal. For such ¢ , we define the (generalized) trace Tr ¢ of ¢ by
putting Tr(e) = tx(3) .

k

(2.2) Let ¢ s E—>E De an endomorphism. If din E <o , then Tr(@) = tr(qp).

The following properties of the generalized trace can be deduced from the

corresponding properties of the ordimaxzy trace (cf. [39]).

(2.3) Asgume that in the category of arxbitrary vector spaces the following

diagram commutes s

Bt —s  E"

Then if any of the maps ¢ or ¢ is admigsible, then so is the other and in that

cage Tr o =Tr ¢ .

(2.4) Given a commtative disgram of vector spaces with exact rows

0 » Bt - B - E' 5 0

o l o

0O - nt - IH - E" - 0

the endomorpnigm ¢ is admisgible if and only if both o' and 9" are admissible

and in tint case

Te(p) = Te(p') + Tr(o") .

3« The Leray endomorphisms.

Let ¢ = [qu} be an edomorpiisn of a graded vector space B = {Eq} into
itself, By o = {@q} we denote the induced endomorphism on the graded vector
space B = {B q} .

Definition (cf. [39] and [8]). We say tmt ¢ is a Leray endomorphism
provided the graded vector space E = {ﬁq} is of a finite type. For such ¢ we

define the (generalized) Lefschetz number A(p) of ¢ by putting

Ao) = 5 ()¢ (9, )

B

and the FEuler-Poincaré characteristic x(9) of ¢ by

X(\P)d}? - (-1)% aim Eq = x(B) .

2
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(3.1) Assume that in the category of graded vector spaces the following
diagran camutes :

Et o DE" O,

Then if any ¢ or ¢ is a Leray endomorpiisn then so is the other and in that
case Alp) = a(Y)

Proof. This clearly follows from (2.3).

(342) Let
sees E(;- -> Eq - E:;" - Ec‘l_1 > ses
ot | or !
n
im& i%a ]@q i@q_1
i } l
1 1]
ese > 1 ~> Eq -> Ea - Eq:_.] > see

be a_commutotive diagram of vector spaces in which the rows are exact. If both

9 = {mq} and ¢! = {@&} are the Leroy endomorphisms on E = {Eq} and B! = [E&}

respectively, then so is o".= {@a} on BY = {Ea} . Moreover, in that case, we
have

Ale") = Alp) ~ A(®!)
Proof, This follows from (2.4).

Among the properties of the Leray endomorphisms we note also the following
generelization of a theorem of H, Hopf (cf. [28] and [9]).

Given a chain complex C = (cq,aq} denote by H = {Hé} the graded homology
of C .,

(3+3) (The Hopf Lemma). let c = {cq} be o _choin map of a complex

¢ ={c ,aq} into itself and ¢, = 1 = [hq} be the induced endomorphism on
H= [Hq}. If ¢ is a Lerny endomorphism, then so is c, and in tlat case we
nve

A(C) = A(C*) .

Proof. Denote by Zq and Bq tie spaces of cycles and boundaries. We mave

clearly the following commutative dicgrams with exact rows
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q q q
i Z J+
°q i Q 11q
i { i
B A H
0 - q - aq - q - 0
dq
0 - Zq -~ Cq - Bq_1 - 0
c .
Zq q ®q-1
i aq_
0 - Zq - (Jq_ ~ Bq_—1 - 0

Now, applying (2.4) to the above diagrams, we have for each gq
= 1 I and T = i
Tx(z,) = (b)) + Tr(h,) an x(c,) Tr(zy) + Tr(o,_4)

and, by simple calculation, theorem (3.3) follows .

4o Lefschetz maos.

Now we may pass to the topological situation. To this end, consgider a
category & of pairs of topological spaces and continuous mappings and fix a
homology functor H from the category & to the category of graded vector spaces

over X . (Remark : In all that follows H is either the singular homology or
the Gech homology functor).

Tius, for a topological pair (X,i) in o  H(X,A) = {Hq(X,A)} is the graded
vector spce, Hq(X,A) being the q-dimensional relative homology group with
coefficients in K . For a continuous map f ¢ (X,A) - (Y,B) , H(f) is the
induced linear map £y = [fq} , where £ Hq(X,A) - Hq(Y,B) .

Definition. A continuous mapping £ : (X,;A) » (X,A) is called a Lefschetz map
(with respect to H ) provided £, : H(X,A) - H(X,A) is a Leray endomorphism. For

such f we define the Lefschetz nmumber A(f) of f by putting
A(E) = A(f*)

and the Buler—Poincaré characteristic x(f) of £ by
x(£) = x(£4) «

The following simple and evident property is of importance :
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(4.1) If the maps f and g are homotopic, then their Lefschetz numbers
g are 1omovoplc, SIS 122

(if defined) coincide, ises; A(L) = A(g). Similarly f ~ g implies tiat
x(£) =x(g) .

(4.2) Assume that in the category < of pairs of spaces and continuous maps,

the following diagram commutes :

f
(X,A) —_— (Y,B)
<
P ¥
(X,4) S (Y,B) .

Then (i) if any of the maps ¢ or { is a Lefschetz map, then so is the other
and in that case A(p) = A(y) 5 (3i) ¢ bas a fixed point if and only if

does.

Proof., The first assertion follows clearly (by applying the homology functor H
to the above diagram) from the corresponding property of the Leray endomorphisms

(3.1)s The second assertion is evident.
The following are typical instances in which the above proposition is used :

Example 1. Iet £ : X - X be a map such that f£(X) c K < X. Then we have the

commutative diagram
c
K —_—
fK I ?\\\\\\\\\\
c
K —

3 - ” 3 7\(-
with the obvious contractions ).

Example 2. Let = : Y -»X , s : XY bvea pair of continuous mappings such

that xs = 1X o In this case X is said to be r-dominated by Y and r is

said to be an r-map (cf. [6]). In tnis situation, givena map ¢ ¢t X - X , we

wve the commutative diagram

*) Let £ : X~—>Y bea mp such thiat f(A) B, where AcCX and BcY. By
the contraction of f +to the pair (4,B) , we understand a map f'!' 3 A » B with
the same values as f . 4 contraction of f to the pair (A,Y) is simply the

restriction f}A of £ to A . The same terminology will be used for maps of
pairs of spaces.
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X — Ly
P w !#
S
X @ — Y

with \V=SQ9"-"~

Given a continuous mapping f : (X,A) -» (X,A) we denote by fo+ X >X and
fA s X »>X and fA ¢ A > A +the evident contractions of £ .

(4.3) Let £ : (X,4) » (X,A) »e a mpping. If fy and f, are Lefschetz
maps, taen so is the map f and in that case

A(E) = Algg) - a(g,)
Proof. For the proof, write the endomorphism of the exact homology sequence
of the pair (X,A) induced by £ and then apply proposition (3.2).

Remark : The above definitions and properties are clearly valid also in the

contravariant case, when H is the cohomology~type functor.
In what follows we shall use the following terminology.

A continuous mapping f s X - X is called homologically trivial with respect

to the functor H provided the induced homomorphisms

f*q s Hq(X) - Hq(X) are trivial for gz 1 and £ : HO(X) ~ HO(X) .

A space X is said to be agyclic (with respect to the H) provided (i) X is
non-empty ; (ii) HO(X) ~ Ky (iii) Hq(X) =0 forall qz 1.

(4.4) Let £ : X » X De continuous and assume that any of the following
conditions is satisfied :

(3) f(n)(X) is contained in an acyclic subset A of X

(ii) HO(X) ~ K and f(n): X > X ais homologically trivial ;

(iii) HO(X) ~ % and f(n): X » X is homotopic to a constant map.

Then, £ is a Lefschetz map and A(f) = 1.

i’roos To prove (1) A — s X
we write the commutative <
diagram 3 g f(n)
fn
A —m8 —— X

with obvious contractions. Since A is acyclic, we infer by (4.2) tmt f(n)
is a Lefschetz map. Iloreover,
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U for q=

vV
-

Tr (f(n))*q

1 for ¢

i

0

By functoriality we mave for all g¢q = 0 , [f*q](m) = [f(m)j*q . This, in view of
(242) implies easily that

O for all gq

v
—

1 for q=0

Consequently A(f) = 1 and the proof of (i)

is completed. The proof of (ii)
is similar and (ii) implies (iii).
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IT. COMPACT MAPS OF THE ANR-SPACES

We shall propose now the first application of the theory of generalized trace
by establishing a gencral fixed point theorem which on the one hand contains the
classical Lefschetz Theorem for compact ANR-s and on the other hand contains

various fixed point theorems of the non-linear functional analysis.

1. The Hopf=-Lefschetz theorem.

Let H Dbe the singular homology functor with coefficients in K from the
category of topological pairs to the category of graded vector spaces. A pair
(X,A) is said to be of a finite type provided the graded vector space
H(X,A) = {H (X,A)} is of a finite type. Clearly, every continuous self-map
f: (X,A) » (X,A) of such a pair is a Lefschetz map and A(f) coincides with the

ordinary (relative) Lefschetz number

AME) =3 (—1)qtr(f*q)
q

of the map £ .

In wiat follows we shall moke use of the following (relative) version of the
Hopf-Lefschetz fixed point theorem remarked independently by W. Holsztymski and
C. Bowszyc (cf. [28] and [7]3, [9]).

(1.1) (The Hopf-Lefschetz Theorem for polyhedral pairs) : Let (X,A) be a
pair of finite polyhedra and £ : (X,A) - (X,A) be continuous. Then A(f) #0
implies that © has a fixed point in X-A ,

The proof of (1.1) is similar to thot in the absolute case (cf. [45]).

2. ANR~gnaces.

e denote by ANR (respectively 4R) the class of metrizable absolute neigh-
bourhood retracts (resp. absolute retracts). We recall (cf. [6]) that YeiNR (resp.
YeiR) provided for any metrizadvle pair (X,A), with A closed in X and any
continuous fo ¢ A » 7Y, there exists an extension f : U ->Y of fo over a

neighbourhood U of 4 in X (resp. an extension f : X - Y of fo over X .

In what follows we shall malie use of the following two facts from general

topology :

(2.1) (Xuratowski [6]) : Every metrizable space is embeddable into a Banach

space § in varvicular, any topologically complete metrizable space can be embedded

as a closed suvset of a Banach space.

(2.2) (srens-Eells [1]) : Zvery metrizable space can be embedded as o closed

subset of a linear normed space.
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The above embedding theorems permit to give the following simple characterization

of the ANR-s (xesp. tonologically complete -iNR~-s).

(2.3) In order that YeiNR (resp. YesR) it is necessary and sufficient that Y

be r-dominated by an oven set of a normed space (resp. by a normed space) .

Proof. Let YeiNR . By thacorem (2.2) there exists an cmbedding o : Y » E
of Y into a normed space E such that (Y) is closed in E . Take a retraction
r:U-op(Y) of an open set U D o(¥). Then J'r : U->Y is clearly an r-map.
The converse follows from the general properties of the ANR-s [5]. The proof

of the sccond part is similar.
By applying (2.1), instead of (2.2), we obtain analogously :

(244) A _metrizable space Y is a topologically complete ANR (resp. a_topolo-

gically complete AR) if and only if it is r-dominated by an open set in a Banach

space (resp. by a Bamach space).

3. Compact maps.

A continuous map f ¢ X =Y between topological spaces is called compact

provided it maps X into a compact subset of Y . Let ht ¢t X »Y be a homotopy
and h: X x I->Y be defined by n(x,t) = ht(x) for (x,t)eX x I y +then hy

is said to be a compact homotopy provided the map h is compact.

Ve shall wake use of the following :

(3.1) (Approximation Theorem [41], [26]) : Let U be an open subset of a

normed space B and let f : X - U be & compact mapping. Then for every ¢ > 0O

there exists a finite polyhedron K€ < U and a mapping fe s X>U , called an

~

e=~approximation of £ , such that

(i) Ji£(x) - fe(x){! < e for all xeX 4
(ii) fE(X) cK

o

(iii) f_ is homotopic to f .

Proof. Given € > 0 (which we may assume to be sufficiently small), £(X)
is contained in the union of a finite number of open balls V(yi,e) cU (4
(i = 1,2ye005k)e Putting for =xc X ,

MR
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where

|

A (x) = max {0,e-f(x) - ¥,

’

we obtain the map fa satisfying (i) and (ii). Clearly, the values of f oare
€

in a finite polyhedron Ks C U with vertices ¥; ;7,000 Wy .

Next, we make the following simple but important observation :

(3.2) Let f : X->X bea compact map of a metric spaces X and assumc tht

f i the uniform limit of o sequence {fn} of mps f :X-X. If, for almost

every n there is x €X such tiatb fn(xn) =x , Ihen f Ias a fixed point.

o

Proof, Since f 1is compact and fn - £ wmiformly, there is a subsequence

{x } of {xn} such tihat

(1) CCREDIEEN

(2) fx, ) » x for some xeX
e
From (2) and (1) we get xnk - x and, hence, by continuity of f ,
(3) f(x. ) - £(x) .
P

Comparing (2) and (3) we have f£(x) = x .

4. The Lefschetz Fixed Point Theoren for arbitrary ANR-s .

Ve consider first the following special case of our main theorem.

THEOREI] 1 Let £ ¢ U~TU be a compact map of an open set U in a normed space
E., Then )

~

(a) £ is o Lefschetz map and

(b) A(f) # 0 implies that £ has a fixed point.

Proof. By applying to f the Approximation Theorem (3.1) we get o sequence

{Kn} of finite polyhedra Kn C U and ¢ sequence [fn} of maps fn : U->TU such
that

(i) f,»f unifornly on U ;
(ii) i‘n(U) C K  for every n

(iii) f, is homotopic to f for every n .
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Now, for cvery n , Wwe nave the commutative diagram

Kn —_— U
C
t \ o
fn N I'n

N

—
-

K
n

v .

Since every Kh is of a finite type, f% is a Lefschetz map. Consequently, by
the property (Ie442) of Lefschetz maps (see Exomple 1), fn is also a Lefschets
map and A(f;) = A(fn) for every n . Now (iii) implies that £ is a Lefschetz

mp y and, moreover, we have

(iv) a(£) = A(fn) = A(f;) for every n .

To prove (v) assume that A(£) # 0 « Then, in view of (iv). we have A(fé) £ 0,
for evexry n o Now we apply the Hopf-Lefschetz Theorem to f; s Kn-e Kn for each
n and obtain a sequence {xn} of points x €U such that x = fé(xh) = fn(xn) .
Now, because of (i), we may apply (3.2). By (3.2) there exists a fixed point for

f and the proof is completed,

Now we state the main result in full generality (ef. [24]).

THEORLE! 2, Let X be an ANR and o 3 X -»X be a compact mapping.

Then (a) o is a Lefschetz map and

(ii) Ap) # 0 implies that  Ias a fixed point.

Proofs By (2.3) X is r~domimated by an open set U in a normed space E .

Let s :X->U and r : U->X %be a pair of maps with s = 1x + Then we have

the commutative diagram

6]

X -> U
\K&I‘
® T~ :
x = >y
with 4 = ser ., Clearly, the compoctness of o inmplies that of ¢ . Consequently,

by Theorca 1 , ¢ is a Lefschetz rap. From the commutativity of the above dicgranm
it follows, in view of (I.4.2), tint . is also a Lefschetz map and A(9) = A(Y).
Now, if n(p) #0, then A(y) #0 and, by Theorem 1 , § s a fixed point.
From this, by applying again (I.4.2), we infer that ¢ ms a fixed point and the
proof is completed.
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5. Corollaries.

Ve may drew now some consequences of Theorenm 2,

COROLIARY 1 (Lefschetz Fixed Point Theorem [36]) : Let X Dbe a compact ANR and
f : X ->X be continuous. Then AN(f) # 0 implies tlat f las a fixed point.

COROLLARY 2, Let X Dbe an acyclic 4aNR or, in particular, an AR . Then any

~

compact map L : X - X nas o fixed pointe.

COROLLARY 3 (Scinuder Fixed Point Theorem [44]). Let X Dbe a_convex (not necessa-
rily closed) subset of a normed (or locally convex metrizable) linear space. Then

any compact £ : X - X has a fixed pointe.

Proof. By a theorem of Dgundji [16], X dis an AR and hence the assertion
follows from Corollery 2.

COROLLARY 4 (Birkhoff-Kellog Tueorem [31) : Let S = {x¢B ,{x| = 1} be the unit
sphere in a normed space E and f : S - E Dbe a compact operator satisfying

(*) |£(x)]| = >0 forall x¢§ .

Then therc exists an invariant direction for f , i.e., for some erS and w > 0,

we have
fX = X .
(x,) = ux,
Proof, Let us put for eacin xcS

f(x
(o) = 2L
? E(x)]
Then (¥*) implies that the map w5 >9S5 is compact. Since S is clearly an

acyclic ANR , ¢ las a fixed point, i.e.,
f(x
(x,)

O\X = = T =X
?xg) EICH .
for some xg and the proof of our assertion is completed.

COROLIARY 5, Let X bean 4NR and f : X - X Dbe a compact map. Assume further

that one of the following conditions nolds :

(i) f(n) maps X into an acyclic subset of X

(ii) f(n) : X » X 1is nomotopic to a constont map.

Then A(f) =1 and f kas a fixed point.

Proof. This, in view of Theorem 2, follows from (I.4.4)
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COROLIARY 6 (Browder-Eells [13]). Let X be a Banach (or more generally a Frechct)
manifold and f : X - X a _compact map. Then A(f) is defined and A(f) # 0O
implies tlot £ los a fixed point*).

Proof, It is known (cf. R. Palais, Lectures on Infinite-dimensional ianifolds,
1965) tint a space which is locally an 4ANR is an ANR, Since X is locally an
ANR, the assertion follows.

6. .0 alternate proof of Theorem 2.,

Another method of proving Theorem 2*”*) is based on a result of J. Dugundji
which characterizes metric ANR—-g in terms of homotopic domination by polyhedra.
We shall state a part of the Dugundji theorem which will be sufficient for our
puxrposes.

In all that follows, by polyhedron, we shall understand a simplicial complex
with the weak topology [45].

Definition. Let e > 0 and h-b ¢t X =>Y be a homotopy into a metric space

(Y,0) 3 then hy is said %o be an e-homotopy provided p(ht(x),’nt,(x)) < ¢ for
all xcX and +t,t'€[0,1]. If two given maps f,g8 : X »Y can be joined by an
g=homotopyr

+hen We Write £ '; g and say that f dis e~homotopic to g 3

clearly, f 7 g dimplies, in particular, that o(£(x),e(x)) <e forall =xX .
Definition. Let X Dhe a metric space and ¢ > 0 , Ve say that
TX’E = (P,s,r,dt,s)

is an e-dominating system for X provided (i) P is a polyhedron H

(ii) s s X >»P? and r : P ->X is a pair of maps satisfying rs ’g‘ 1X H
(iii) d, : X > X isan c-deformation joining rs and 1y . If sucha system

exists, X is said to be e~doninated by o polyhedron P .

(6.1) (J. Dugundji)s Let X e a metric ANR. Then for every e > 0 there

exigsts a polvhedron which e-~dominates X

Now we turn to a proof of Theorem 2. To this end, let f : X - X be a compact

map of a metric ANR into itself.

For ¢ > 0, take an arbitrary e-dominating system

e P el O e ———— S W% W B G —

- —

*) Ve remarl: tiat the metihod employed in [13] will be used later on in proving
fixed point theorems for multi-valued compact maps of topologically complete ANR=-s,

"”) Cf, Jeie Jaworowski and ii..J, Povers, A-spaces and fixed point theorems, Fund.
ath, 1969,

*%%) J, Dugundji, absolute neighbourhood retrocts and local connectedness in
arbitrary metric spaces, Comp. imth. 13 (1958).
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for X ., Ve have

(1) ref v f
and nhence
(2) 2(xsf(x),f(x)) < e for all xeX .

Next, consider a map ¢ s P> P given by ¢ = sfr § since Y

is compact,
therc exists a finite polyhedron K such that ¢(P) c K .

Now write the following commutative diagram :

c 3 f
K - P & X < X
7 i
"t 1 17 —af ¥ £ / T .
Y W y=s1¥ r/ rs rs rsf:;P
| . //‘ r//-
{ P« X X
c s £

in which ¢! and " stand for the obvious contractions of ¢ . By Lemma I.4.2

all the vertical arrows represent Lefschetz maps and
(3) aCer) = a(y) = A(frs) = A(xsE) o

Since f is homotopic to xsf , f is a Lefschetz map and
(4) a(£) = n(xst)

Assume thet A(f) # 0 3 then, in view of (3) and (4), A(y') #0 and, since
X is a finite polyhedron, ¢! Ias a fixed point, by the Hopf-Lefschetz theorem.
Consequently, by I.4.2 and the commutativity of the diagram above ¢ = rsf has
a fixed point, i.c.,

(5) rsf(xo) = x_ for some x eX
and hence, in view of (2) ,
(6) p(xo,f(xo) <e for some x_ €X .

Since € > 0 was arbitrary, the compactness of f implies that f las a
fixed point and the proof is completed.,

WUES Pl

INSTITUT FOURIER
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ITI. THE FIXED POINT INDEX

We shall encounter two approaches to the fixed point index theory for compact
maps corresponding to the two diffcrent ways of proving Theorem II.2 , First, we
consider the fixed point index in a somewhat restricted sense (the local index : ind )
and, using an approach based on the Theorem of Dugundji, we extend to the case of
compact maps of the [(NR-s the classical local index theory for finite polyhedra,
Then we turn to more general axioms and, with the aid of the Approximation Theorem,
we extend to infinite-dimensional case the fixed point theory due to 4. Dold [15] .

This leads to the Leray-Schauder index : Ind and to a version of the Leray—Schauder

theory [41], [42] which is suitable for cstablishing a relation between the

Lefschetz number and thc fixed point index of a compact map.

1. The local fixed point index.,

Notation : Let U be open in a space X and f : X X be a map ; call
(X,f,U) a triple provided f is fixed-point free on the boundary U of U . Given
*
a class of self-maps & , we shall denote by &  +the corresponding class of all

possible triples,

Definition., Let & be a category of topological spaces and H o homology
(or cohomology) functor from & to the category of graded vector spaces, A class
% = %(6) of distinguished self-maps ond self-homotopies in & is said to be

admissible for a local fixed point index on & provided :

(1) if h is invertible in & and f ¢ ¥, then hfh‘1e3;

(ii) every feF is a Lefschetz map with respect to H 3

(iii) the fixed point sct e = {TX ; f(x) = x} is compact for every
f:XoX in & ;

(iv) for every homotopy, h, : X — X in & , the set n({h,}) = U ulh)

t t - t
0=t=t
is compacte.

Example : Let G% be the category of all polyhedra and E% the category of all
metric ANR-s . Assume that ?i = 9(@&), i=1,2, consists of those self-maps and
self-homotopies in E% which are compact. Then 2?1 is an admissible class for a
local fixed point index on Gi(i=1 2) o

Definition. (comp., [39], [12]) Let ¥ =%(6G) bc an admissible class and 7

the corresponding class of triples, Then, a local fixed-point index on &F is a function

ind : ¥ . K satisfying thc following axioms 3

I (Bxcision). If (X,f,U) and (X,g,U) ere in & and f=g on U , then
ind (X,f,U) = ind (X,g,U) .
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II (Additivity). If (X,f,U)e® and U contains mutuslly disjoint open sets
Uj(j =1,2,.00,k) such that f is fixed-point free on U -~ U U, , then
3=
ind (X,f,U0) = %ind (x,£,U
3=

III (Fixed Points). If ind (X,f,U) #0 , then f has a fixed point in U .

5

IV. (Homotopy). If h, ¢ XX is a homotopy in F and (X,ht,U) € F* for
all t , then
ind (X,hg,U) = ind (X,h,U) .
V (Commutativity). If for twomaps £ : XY, g:Y¥-X in & the triples
(%,ef,0) ’ (Y,fg,g'l(U)) are in F* , then
ind (X,gf,U) = ind (Y,fg,g*(U)) .
VI (Normalization). For every f : X X in &
ind (X,f,X) = A(f) o

Remark s It should be noted that the commutativity implies the following property
of the local index s

VII (Topological invariance)s Let h ¢ X - Y be an invertible map in &
Then for any (X,f,U) € F*

ind (X,f,U) = ind (Y,hfb™,h(V)) .

2. The local index for compact maps of polvhedra,

We begin by stating the following classical result which goes back essentially
to H., Hopf :

(2.1) (The local index for finite polyhedra).*) et & be the category of all

finite polyhedra, H be the singular homology (or cohomolqu) functor with rational

coefficients, and let F = ?(Gﬁ consist of all continuous self-maps in & . Then

there exists o unique integer valued function ind : F* ., Z satisfying the properties
I-VI,

* cf, H, Hopf, Gber dic algebraische Anzahl von Fixpunkten, lMath., Z, 29 (1929) ; for
the uniqueness and complete self-contained proof of (1.1) (in terms of cohomology)
we refer to B, O'Neill, Essential sets and fixed points, Anmer, J. Math 75 (1953).
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We shall use the following property of the local index which is = consequence of
the Commutativity Axiom

VIII (Contraction). Let (K,f,U) ¢  and K' CK be such that f(K) C k' .,
Denote by ft!' : K!' o K' the contraction of f and put U' = X! N U, Then

ind (X,f,U) = ind (X',f',U') .

Definition, Let P be an arbitrary polyhedron, U openin P and f£ ¢: P, P
a compact mop which is fixed-point free on ¥ U . The compactness of f dimplies that

there exists a finite polyhedron K € P such that f(P) C X ., Denote by fK : KK

the corresponding contraction and put UK =UNK.
Clearly, (K,fK,UK) is a triple. We let

(%) ind (P,f,U) = ind (K,fK,UK) .
af

The Contraction property of the local index for finite polyhedra implies that
ind (P,f,U) is well defined.

Theorem 1. Let & be the category of polyhedra and & = %(&) the class consis-

ting of 211 self-maps and self-homotopies in & that are compact. Then, the index

function ind : #* .. Z , defined by the formula (*) , satisfies all the properties

I - VI , Moreover, the above function is unigue,

Using properties of the weak topology and the Contraction property, Theorem 1

follows in a straightforward menner from Theorem (2.1) .

3. The local index for compact maps of the ANR-g,.

Notation : Let (X,p) be a metric ANR, U openin X and f : XX a
compact map which is fixed-point free on the boundary I} of U, For €¢>0, we let
v, = {xeX ; dist (x,0) < g}
be an € -neighbourhood of U in X ond for a number 1 such that
(1) 0< 1< dist (nf,f})
we let V1 :V(n) and V%-: V(;]-) .
The compactness of f implies that for sone ¢ > C we have
(2). p (z,f(z)) = 9, for all z&'{nf1
We let

(3) 8 = nin (é}, Tl) .
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Let

TX,E: = (P,s,r,dt,e) and TX,e‘ = (P',s',r',d't, )

be two dominating systems for X with constants e and ¢! respectively .

We have
tat

(4) rs 1, end r's % 1X
(5) rsf ~ £ and  r's'f ., f
(6) p(rsf,f) < e and p(r',s',f,f) < et .,
We define

by : PP and h! =P!'. P 0=st=1)
by putting

| - 1 1 — 1] = =
h! = s'fd,r' and h, = sdlfr (o=st=1) .

(3.1) Lemnn. Assume that both € and €' are smaller then _éﬁ_ . Then

i) h! is a compact homotopy joining s'fr!' and (s'fr) (sr!) ;
t Py ?

(ii) h;; is a fixed-point free on »!~t (Vl) H

. 2
({ii) h, is a compact homotopy joining sfr and (sr')(s'fr) ;

(iv) ht is fixed-point free on ¥+ (Vl) .

2
Proof, (i) and (iii) are evident, To prove (ii) , suppose to the contrary

that for some t¢[0,1]

hé(y) =y = s'fdtr'(y) for a point yer"‘l (V%).
Then, in view of (6) and (3) , we have
(7) rt(y) = r's'fd r'(y)

(8) r‘(y)cVL and 2z = d,;r'(y)evl .
2
From (7) and (6) we get

(9) el r(y) , ri(y)) <e<2
(10) p(ar () , T (3)) < e <3

and hence, in view of (3) ’

p(z,f(z)) < 6 <9
which is a contradiction becsuse of (8) and (2) , Tus completes the proof of (ii) .

The proof of (iv) is similar and is omitted.
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(3.2) Lerma. Let Ty o 2nd TX be two dominating systems for X with
constants € and €' smaller than '%- . Consider the following commutative
diagram

(stfr)
$ o1

Then

(1) (sr') (s'fr) ~ sfr (rel r’l(U))*) 3

(i) (stfr) (sr?) ~ stfr? (re1 ™ 2(U))

(1i1)  ind (P,,7*(U)) = ind (P',&',r*(U)) ;

(iv) ind (P,¥,r 1 (U)) = ind (P,¥',r"™*(U)) .

Proof. (i) and (ii) are consequences of Lemma (4.1) ; and the formula
Fr(£2(a)) c £*Fr(a) (iv) follows clearly by the Homotopy from (i) , (ii) and
(1i1)

To prove (iii) , we note that since both & and &' are compact, the

commitativity of the index in & implies
ind (P,%,r(U)) = ind (p',2',(sr?) 2 (U)) = ind (P?,',(xex')™ (V)
Next, we observe that
(rsrt) 2 (U) c 22 (U) U r"l(Vi)
and z
73 N (U) < (st ) (U) o
Consequently, by the Excision, we get
ind (P!,&!,(rsr!)™*(U)) = ind (P',&',»* (V) U o™ (Vy)) =
z
ind (Pr,®!,r*™(U))

I

and the proof of (iii) is completed,

Definition. Let (X,f,U) be a triple such that X is a metric ANR and
f : XX is a compact map, Take an arbitrary e ~dominating systenm

T = (P,s,r,dt,s) for X with constant e less than 'g- . Using Theorem 1,
we let
(%) ind (X,£,U) g ind (P,sfr,r(U)) .

It follows from Lemma (3, 2) that ind (X,f,U) is well defined,

*) 1f (X,f,U) and (X,g,U) are triples, we write f ~ g rel U  to mean that f
and g can be joined by a homotopy which is fixed point free on 1§
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Theorem 2. Let © be the category of metric ANR-s and % = %(6) be the class

consisting of all compact self-maps and compact self-homotopies in & . Then, the
function ind : ., Z defined by the formula (%) satisfies all the properties

I-VI, In V it is assumed that one of the maps f or g is compact.

4, Proof of Theorem ITII.2 .

The Normalization property was already established (see the proof of Theorem
I1.2 given in section II.6) . All the remaining properties (except the cormutativity)
follow easily from the corresponding properties of the local index in &; . Let us

prove for instance Property IV .
Property IV ¢ Let h. : X X be a compact horotopy such that (X,ht,U)e G*
for all te{0,1} . Take a number 1T satisfying
0 < N < dist (%({ht}),ﬂ) .
The compactness of the homotopy {ht} implies that for some & >0 we have
p(z,ht(z)) > 9 for all z¢V, and te[0,1]

n

Put 6 =min (J,7) and take an arbitrary Ty ¢ = (P,s,r,dt,e) with s<-g- . Then
?

sh,r : P P is a compact homotopy such that (P,shtr,r"'l (U))eF* for all te[0,1] .

Consequently,
ind (X,ho,U) = ind (P,shor,r"1 (U))= ind (P,shyr,r*(U))= ind (X,h, ,U) and the

agsertion follows,

Property V ¢ For the proof of the commutativity (which is somewhat more involved)

we shall need two lemmas,

(4.1) Lemma, Let Yo ¢ P .. P Dbe a compact map of a polyhedron and H ¢ P—-Y g

map into a metric space Y ; assume that U is open in Y and (P,\V,pi'l (U))e 3*(61) .

There is a 6 > 0 such that for any e —deformation d1': : YooY with €< §

(1) (Pyy,utal™ (V) e 7*(8,) for all te[0,1] ;

(i1) ind (P,y,u™ (0)) = ind (P,y,w7*af™(v)) o

Proof., This reduces to the case of finite polyhedra.
Consider now the following comrmutative diagram
f

X— = Y
X £ Y

[ §
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in which X and Y are metric ANR-s and f is compact. Assume that o is
fixed-point free on the boundary U of UG X ; this inplies that § is fixed—point
free on the bounda U of Uu=gtU)cy. W = £

ry U y =& (U) e let Uy =1 (U,) .

@.2) Lemma, For every 6 >0 there exist TX .- (P,s,r,dt,e) and
r
TY,E' = (P',s',r’,d%,s') with ¢ and €' smaller than & such that the following

two conditions are satisfied

(a) the homotopy h% : P' - P' given by
(1) bl = s'fd gr! (o0=st=1)

is fixed-point free on r"l(ﬁY) H

(b) the homotopy h, : PP given by
— 1
(2) h, = sgdlfr (0

is fixed-point free on (fr)“l(r's')“l(ﬁy) .

A

t=1)

The proof of Lemma 4.2 is given separately in section 5 .
Now, after the above preliminaries, we turn to the proof of Property V .

By Lemma 4,2 there exist dominating systems

TX,E = (P,s,r,dt,g) and TY,s = (P’,S',T',d%,ﬁ')
such that the conditions (a) and (b) of Lemma 4.2 are satisfied and
(%) ind (X,%,0,) = ind P,s § 7,27 (Up)

(%) ind (Y,V,UY ) =ind (P',s! § ' (UY)) .

Consider the following comrmtative diagran

P stfr , P!
¢ ]
P Sh

s P!

We assert that

ind (Y,%,0, ) 1) 5 (P, stgrt, 2172 0,)) (1)3n4 (pr, y, o (Uy) =
(11i)
(ig).

ind (P,sgfr,(fr)"l(r's')”l(UY))

Hina (xe0,0) i (x,e2,0)

ind (P,q,(s'fr)trr (UY)) = ind (P,q, (fr)™* (r'st)™? (UY)) =

il

()10 (P, setr, v (Uy)) =

Indeed,

(1) and (vii) are evident in view of (*) and (**) ; (ii) holds by the
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Homotopy because, in view of Lemma 4.2 ,

follows, by the Homotopy, because (in view of Lemma 4,2)
¢~ sefr  rel (fr) (r's')™(Uy) 3

y ~ stfgr! (rel r'—l(UY)) 3

(iii) is a consequence of the Commutativity of the index in S,

(vi) is a consequence of Lemma 4,1 aplied to the map p = fr :

holds by the Excision of the index in &, .

(exx)

and, consequently,

Thus, we proved that

It follows then, by the Excision, that
ind (Y,fg,V) = ind (X,gf,f (V))

The proof of the commutativity is completed,

5. Proof of Lemma 4.2 .

Let 6>0; we fix

TX,a = (P,s,r,dt,a)

such that €< § and

(3)

(4)

fd,g(y) #y for all yeU, and te[0,1] .

Y

We assert now that

ind (X,ef,U) = ind (¥,fg,g™ (U)) .

( There exists T >0, satisfying N < & , such that for any

Ty 1 = (Pr,sr,r',d}c,e') with &' <1 we have
?

h%(x) = s'fdtgr’(x) # X

| for a1l xert™t (fIY) and  te[0,1] .
For suppose not. Then there is a sequence

= 1t ol n
TY,ah (Pn’sn’rn’(d%) ’Qh)

such that every homotopy

has

(5)

N\ 1 . Pt !
ht snfdtgrn : Pn-e Pn

a fixed point on r;;l (UY) and {ozn} satisfies

lim = < >0
% o S %, % *

n=co

=1 (T . s [] (n)
Denote by x er! (UY) a fixed point for h!

Thus, for some tne[0,1] we have

Granas, TopicS...

i (iv)

PoY; (vii)

(#**) holds assuming that one of the maps f or g is compact.
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A=III.9
(n)
t = t ! —
nt VV(x)) = (sifd, erl)(x ) ==
n n
and hence
1ot = i = pt 5
ris!fd tng(yn) y, with vy, rn(xn)eUY .
From this we get
p(fdtng(yn),yn) <o, n=1,2...
This in turn implies, in view of the compactness of the homotopy fd +8 and the

interval [0,1] , that
fdtg(y) =y for some te¢[0,1] and yefIY
which is in contradiction with (3) .

Next we claim that

(5) For some TY et = (pr,st,x! ,d%,e‘) with &' < 6 we have for all
b4

ae(er)™ (r1s') 2 (0y) and te(0,1]

hy(z) = sed fr(z) # =,

For suppose to the contrary that (5) is false. Then for each n = 1,2,eee and
_ (Dt at ot g2 1
TY,_T_'_ = (Pn’sn’rn’dt ,n)
n .
. -] tatl )=t
there is tne[o,‘l] and zne(fr) (rnsn) (UY) so that

sgd%n fr(zn) =z
n

and hence

(6) frsg [d%n fr(zn)] = fr(zn) .

Consider the sequences {tn} y {zn} and put for each n

x, = fr(zn)
b ol — plgt - ptat ¥
(7) x! = rnsnfr(zn) = rnsn(xn)e Uy
no_ g1 — g8
X = dt fr(zn) = d% (xn) N
n n

Fron (6) and (7) we get

(8) . frsg(x;'l) = Xn
1 1
(9) p(xn,xr’l) <5 and p(xn,x;’l) < a

Now, using the compactness of f and (8) , (9) we obtain
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frsg(x) = x for some xefIY

which is in contradiction with (3) . Thus (5) is proved. Now, by comparing the
statements (3) and (5) the assertion of the lerma follows.

6. More general axioms.

Now we shall consider a more general notion of the fixed point index.

Definition, Let f : U X be a continuous map between topological spaces,
Call f admisgible provided U dis an open subset of X and the fixed point set of
f

e = {xeU, £(x) =x} cU

is compact., A homotopy ht : U~ X will be called admissible provided the set

n({ht}) = U n.(ht) is compact,
O=st &1
Definition (comp, [15]). Let ©&be a category of topological spaces in which a

class % = #(© of admissible maps and homotopies is distinguished. By a fixed-point
index on % we shall understand a function Ind ¢ ¥ - K which satisfies the

following conditions :

I (Excision). If U'CU and #e CU' , then the restriction
£f1 = f|U : U' L X isin & and
Ind(f) = Ind(£') .

k
II (Additivity). Assume thet U= U Uy, £y = f[Ui and the fixed point sets

i=f
Mg =no N Uy are mutually disjoint, w, N "y = g for i# 3 . Then
k
Ind £f= ¥ Ind f., .
i=1 1

IIT (Fixed points) . If Ind £ #0, then n,#0, i.e., themap f hasa
fixed point,

IV (Homotopy). Let hy :U-X , 0O=t=1 , be an admissible homotopy in 7.
Then Ind (ho) =Ind (b ) .

vV (Multiplicativity). If fy: U, X and f, : Uy =X are in F then so is
the product mep f; x f5, : U; x 0, - X xX and

Ind (f; x £,) = Ind (f,) Ind (£,) .

VI (Commutativity)., Let UcX , U' €X' be open and assume f : U X' ,
g : U - X are maps in &, If one of the composites

gf + V=f1({Ut)oX or fg: V' =g2(U) - X!
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is in & , then so is the other and, in that case,
Ind (gf) = Ind (fg) .
VII (Normalization)., If U=X and f : XX is in F , then Ind(f) = A(f)

7 . The Fixed Point Index in R® .

In the following definition H is the singular homology B over the integers

Z . Let us fix for each n an orientation 1eHn(Sn) of the n-th sphere
s% = {zeB™™; ((x)) =1} and accordingly identify H (") m 7 with the integers 7 .
Definition (cf [15]). Let f : U— R" be an admissible map. Denote by K = x
the fixed point set for f and by
(i~f) : (U,0k) - (B",R"- {0})

the map given by (i~g)(x) = x~f(x) . The fized point index Ind f of the map f
is defined to be the image of 1 under the composite map

f

n n n - i-f n.n
Z = Hn(S ) - Hn(s S~ K) NHn(U,U - K)( - )*Hn(R LR ~0) =2
The following theorem was established by A. Dold [15]
(7 .1) (The Fixed Point Index in R® ) : Let & be the category of open subsets of

Buclidean spaces and 3‘(6) the class of all continuous admissible maps in & .

Then the function f — Ind f defined above satisfies the properties I-VII, In VII

it is assumed that f is compact.

We note that the excision and the commutativity implies the following property of
the index :

VIII (Contraction). Let U be open in Rnﬁ and f : U~ R be an admissible

map such that £(U) c R® . Denote by f' : U' R™ the contraction of f , where
Ut =UNR. Then Ind(f) = Ind(f') .

8. The Leray-=Schauder Index.

Let U be an open subset of a normed space E and let f : U~ E be an admissible
compact map. Take an open set V C U such that e CV . Then the number
€ = inf {|x - £(x)|| for =¥} is positive.

let g=f|V:V_E ., From the definition of € , it follows that :

(i) every e —approximation g :V-E of g is admissible ;

(ii) given two e -approxizations gl,g! : V> E of g , there exists an
admissible finite dimensional compact homotopy h‘t : V_E, 0=%=1, such that
hO ge y Iy ga

Definition. Iet f : U E be an admissible compact map and g, * V-E be an

¢ —approximation of g = f{V as above. Denote by E® 2 finite dimensional subspace
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of B such that g (V) cE" and let gl vn.ﬁ.En , where V=V EY , be the
contraction of 8, - Using (7,1) , we define the Leray-Schauder index of f by
putting Ind(f) = Ind(g;) .

It follows from (i) , (ii) , and the properties I , IV and VIII of the index
in R® , that Ind(f) is well defined.

Theorem 3, Let € De the category of open subsets in linear normed spaces and
let F Dbe the class of all admissible compact maps in & , Assume that all adnissi-
ble homotopies are compect. Then, defined on F , the Leray-Schauder index
bl q.Ind(f) satisfies the properties I-VII, In VI it is assumed that both f and

g are compact.

Proof, Using the Approximation Theorem I, 3.l,properties I-V  follow from the
corresponding properties of the index in R" . These once proved, property VI
follows (similarly as in [15]) from I, TV and V

Proof of property VIII : Given a compact map f : U U 1let fa: U U be an
g -approximation of f such that its values are in some finite dimensional subspace
E' of B andlet U =UNE" .

Consider the following commutative diagram in which all the arrows represent

either the obvious inclusions or the contractions of the map f 3

U
n
frT
g
U
n
By the definition Ind(f) = Ind(f;) « By Lemma (I.4¢2) , we have

A(f;) = A(fs) and, consequently, in view of (7.1) , (property VII) , Ind(f) = A(fs) .
Since f is homotopic to f_, this implics that Ina(r) = A(f) .

C

C

o — o
H
m

N
rd

9. Remarks on the non-metrizable case. First we remark that the Approximation Theoren

(I.3.1) extends (with appropriate modifications), to the case when U is open in

locally convex topological space E .

This fact permits to extend the Leray-Schauder index to the case of locally

.

convex spaces and to state Theorem 3 in the following riore general form s

Theoren 3'. Let & be the category of open subsets of locally convex topological

spaces, Let & = %(3) be the class of all admissible compact maps and assume that

all admissible homotopies are compact. Then, there exists a function Ind ¢ & . Z

.

(the Leray-Schauder index) which satisfies the properties I-VII , In VII it is

assumed in addition thast both f and g are cormpact.
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We remark that Theorer 3 is not completely satisfactory (because the question
of topological invarience of the Ind f remains Open). Nevertheless, some useful

applications of the Leray-Scheuder index can be given.

Theoren 4., Let X be a space which is r-dominated by a set U open in a locally

convex topological space E , ILet r ¢: U X and s : X U be a corresponding pair

of maps with s = 1X e Assume thet f ¢+ X X is a compact map., Then (i) f is a
Lefschetz map (ii) A(f) is equal to the lLeray-Schauder index of the map sfr ,
A(E) = Ind (sfr) ; (iii) if A(f) #0 , then the map f has & fixed point.

—

Proof, (i) and (ii) follow from Lemma (I.4.2) (Example 2) and Theorem 3
(Property VII) H (iii) is a consequence of (ii), Theoren 3 (Property III) and again
of Lemma I.42.

Remark., Since every metrizable ANR 1s r-dominated by an open set in a normed
space, Theorem 4 includes as a special case Theorem II,2 ; moreover, it gives nore
precise information about the Lefschetz number A(f) of a compact map f by relating

it to the Leray-Schauder index of the map sfr .

10. The fixed point index for corpact (non netrizable) ANR-s .

We shall give now an application of the Leray-Schauder index to the fixed point
index theory for the compact ANR-s for normal spaces, Such a theory was established
previously by combinatorial neans (end in a different form) by several authors (cf.

J. Leray [37], A. Deleanu [14], D. Bourgin [10], F. Browder [12]).

Let X be a conpact ANR for normal spaces and h ¢ X — E' Dbe an embedding of
X into a locally convex space B! . It can be shown that the linear span E of
the compact set h(X) in E!' is normal, It follows that X is r-doninated by a

set open in a locally convex space.

Definition (comp. [19]). ILet X be o compact ANR for nornal spaces and
f:U0U-X be an admissible map, To define Ind(f) take an open set V in a locally
convex space B which r-dominates X § let s : XV, r:V_X bea pair of

maps with s = 1X . Since the composite nap

) Zvixsy

is compact, its index is defined by Theorem 3'and we let

(%) Ind £ = Ind (sfr) .
The Excision and the Comrmtativity of the Leray-Schauder index inply that this
definition is independent of the choices involved,

Theorcrr 5. Let & be the category of compact ANR-s for nornal spaces and &

be the class of all continuous adnissible neps in & , Then the function f -~ Ind £

defined by (*) satisfies all the properties I-VII .
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IV, OTHER GENERALIZATIONS OF THE LEFSCHETZ FIXED POINT THEQREM

In the previous lectures it was shown how the Lefschetz Faxed Point Theorem
for compact aNR-g can be extended to the case of non-compact spaces. Now we

turm to some otier generalizations of the above tiheorem,

1. Fixed Point Theorems for Approximative ANR-s .

First, using the general properties of the Lefschetz maps and Theorem II.2,
*
we extend the Lefschetz Theorem to a classg of compacta ) introduced by H. Noguchi
in [43] and called here the class of approximative ANR-s. Until further notice

H stands for the éechAVietoris homology functor with compact carriers.

Definition. Let (X,A) %bec a pair of metric spaces and ¢ be a positive
nunber. A continuous map rE s X »A is called an e-retraction provided

p(rs(a),a) <e forall aci. A subspace A c X is said to be an approximative

retract of X provided for eachh e > 0 there exists an e-retraction r€ e X » A,

(1.1) Assume thot o compactum A is an approximative retract of a space X .

Then the map i, s H(A) - H(X) induced by the inclusion i : A »X is a mono-
morphisie

Definition. A compactum X is said to be an approximative ANR (resp. appro=-
ximative AR) provided for each embedding h : X - Y into a metric space Y , the
set h(X) is on approximative retract of some open set U in Y (resp. an

approximative retract of Y).

Although not necessarily locally connected, the approximative ANR-s enjoy

many familier properties of the 4ANR spaces (ef. [43] and [20]). In particular :

(142) Bvery compact approximotive aNR ig of a finite type.

The following property of the approximative ANR-g is of importance :

(1s3) Let £ : X »Y be a map into o compact approximative ANR. There

exists an e > O such that for eaca & ¢ X » Y the condition

o(f(x).a(x)) < e for all =xeX

implies £, = gy »

Proof. In view of (II.2.1), we umay assume without loss of generality, that Y
is contained in a Banach space E , and hence there is an open set U in E such
that Y c U is an approximative retract of U . Let € > 0 be a nunber smaller
thon the distance dist(Y,U) of the compact set Y %o the boundary U of U

#) Ue recall (cf. [5] and [32]) tint there exist in R® locally connected acyclic
continua without the fixed point property. This shows that the Lefschetz fixed
point theorem cannot be extended to arvitrary compacta,
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in B, Let g ¢ X ->Y be a map such that
(%) lg(x) - £(x) 1 < e forall xe X .

Denote by Jj ¢+ Y » U the inclusion and put f' = jf , g' = jg . From (¥) and
the definition of e we infer that for each xeX the intermal £'(x) +(1-t)g'(x)
where 0 = t =1 is entirely contained in U ., This implies that f£' and g!
are homotopic. Consequently, ', =g'y , i.e. , J.fy = Jx8x + Since j, is

by (1.1) o monomorphism we get L, = g, .

THEOREM 1 (cf. [25]). Let X Je an approximative compact ANR and f : X - X

be continuous. Then A(f) # 0 implies that f has a fixed point.

Proof. We may assume, without loss of generality, that X is an approximative
retract of an open set U contained in a Banach space E . For each n = 1,2,444,

let rn : U->X be a -31-— retraction from U to X . We have

o =z <y forall wer

Let j : X->U be the inclusion and define for each n = 1,2,,.., a map

8, ¢ U -»1T Yy putting

(2) g, = Jfr, .

Consider now for cach n the diagram

J

U
R

and its image under the functor H in the category of graded vector spaces

H(X) i 1(U)
H(D_) = £ (£x,)x ()%

H(X) —  H(U) .

In view of (2) we have .
(3) (gn)* = (j*)(frn)* for all n .

In view of (1) the identity map 1 : X » X is the uniform limit of the
sequence {rnj} of maps rnj : X »X . Applying to the map 1 : X » X proposition

(1.3), we conclude tint there exists an integer a  such that 1, = (rn,j)¥ for
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all nzn . This implies fy = (fr )y o jx for n=z n , and hence in view
of (3), the diagram H(Dn) commtes for nzn_ .

Applying now Proposition (I.3.1) to the diagram H(Dn) we have
(4) AE) = A(£) = A(gh) for n> n .

Now let us assume tint A(f) #0 . We smll prove that f Ias a fixed point.

In view of (2) and (4) each g, * U~ U is a compact map with A(gh) £0 for
nénon

Applying Theorem II.2, we find a sequence {Xh} of points in X such that

(5) gh(xn) =x for nzn .
Let [x? } Dbe a subsequence of {xn} such that

(6) linx, =% .

In view of (1) we have
1
7 r (x )) =+
() p(xkn’ kn an kn

and hence, in view of (6) ,

(8) Lim 1y (x, ) =x .
N=ew 1N n

By comtinuity of £ , we have from (8)

(9) Lin £(z, (x )) = 2(x) .

N=eco n

In view of (5) and (2) , % =g (%, ) = f(rk (Xk )) and, therefore, in
n n n n

view of (6), we have .

(10) lim f(rk (Xk ) =x .

N=co ]
Comparing (9) and (10), we conclude tint x = f(x) and the proof is completed.

COROLIARY, Acyclic compact approximative alR-s, and in particular approximative

AR=-s , hove tne fixed point property.

2. Fixed Point Thecrems for Pairs of Spaces.

Next, some generalizations of some of the proved theorems to the case of pairs
of spaces. Tae corresponding results due to C. Bowszyc (cf. [7], [9]) assure not
only the existence of, but also provide certain information about the localization

of fixed points. By H we denote the singular homology functor with coefficients
in X,
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(2.1) Let (X,A) be a pair of 4NR-s and f : (X,a) » ({,A) Dbe a compact
* —
mp ‘e Then I 3is a Lefscnetz map and

A(E) = A(fx) - A(fA) .
Proof, This clearly follows from Theorem II.2 and (I.4.3).
(2.2) Let (U,V) De a_pair of open subsets of a normed space E and

£ : (U,V) » (U,V) Dbe a compact map. Then A(f) £ 0 implies that f has a fixed
point in U=V .,

Proof. First we apply the Approximation Theorem for ¢ = (n=1,2,e04)
and find a sequence of finite polyhedral pairs (Kn’Ln) and a sequence {fn} of

mps £ : (U,V) - (U,V) such that (Kn,Ln) c (U,V) forall n>N and

(i) j£(x) - fn(x);‘; <-1£ for all xU and n>N

(ii) fn(U,V) c (Kn,Ln) for all n>N

(iii) £ ~ T for all n>N,

Then, using the Hopnf-Lefschetz Theorem for the pairs of polyhedra and the

argument analogous to that in the abgolute case, we get a sequence of points
£Xh} such that for almost all =n

= nd If - .
fn(xh) x, and x, € K -1
This implies, in view of (i), thnt

;if(xn) - xn§; -0 and dist(xn,U—V) -0

and hence, in view of the compactness of the map f , implies the existence of
a fixed point for £ in U~V ,

(2+3) Let (X,A) be a pair of ANR-s with A open in X and let
£ (X,A) - (X,4) Dbe a compact map. Then A(f) #0 implies that f has a fixed
point in X-A ,

Proof, By the same argument as in the proof of Theorem II.2, this follows
from (2.2) and (I.4.2).

(244) Let (X,4) be o pair of ANR-s with A closed in X and let
f: (X,4) » (X,)) Dbe a compact man. Then A(f) # 0 implies that £ has a

.~

*¥) Amp £ : (X,4) » (Y,B) between the pairs of spaces if compact provided it

maps (X,4) into a pair of compact spaces contained in (Y,B) .
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fixed point in X-A .

Proof. In view of the compactness of the map f , it is sufficient to show

that for each &> 0 there exists o point x €X-u such thnt p(f(xo),xo) <E .

Let ¢ > 0 %be given. Ve may assume without loss of generality that X is
a closed guwvset of a normed space E . Take a retraction r : U ->X of an open

set UcCE onto X . VWe may assume (by making U smaller if necessary) that

(1) je(x) = x| <5 forall =xeU .,

et B=r1(4) y clearly for the pair of maps
i (X,A) - (U,B) and r: (U,B) » (X,A) ;3
we lave T o i = 1(X,A) . We define a compact map g : (U,B) -» (U,B) by putting
(2) g=iofor

and we let
(3) 6 =

We claim now that there exists an open set V in E and a continuous map

Wi~

nin(e,6, ) where & = dist(g(U),E<U) >0 .

g : (U,B) » (U,B) such that the following four properties are satisfied :

(i) g is compact ;

(1) g (V) cBcV

(iii) ||g (%) ~ a(x)|| < 6 for all xeU 3
(iv) g is homotopic to g .

To this end we shall define four open sets U, U ,U, and V satisfying

(4) Bc'\rc:Vc:Ugcﬁch1 cU cU

as follows

Since B is closed in U and A dis an ANR , there exists an

extension E'B : U >4 of ry:B-A overanopenset U cUj thus Uj is
defined.,

Next, before defining U, , we let &

[ Uo - A Ybe given by
5) Bty 0%

clearly % is a compact map and

td
-

(6) 2(x) = g(x)eh for every xeB .

Now we let

(7 U, = {xU

(e}

A

373(x) - g(x)] <8} .
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FPinally, we define U, and V arovitrarily.
Now let )\ : U - [0,1] %ve o rcal-valued function such that
(8) AMx) =0 for =xeU-T, and AMx) =1 for xV .

We define the function g on U as follows :

g(x) for xU-U,
(9) g (x) =
g(x) + A\(x)(E(x) - g(x)) for =xU .
From (4) and (8) it follows timt g is well defined and continuous.
Furthermore, it is not difficult to check that g : (U,B) - (U,B) and that the
conditions (i) - (iv) are satisfied.

The various inter-relations between the relevant maps may be displayed now
in the following two diagrams 3

@) — s (0,V) (x,4) — — (U,8)
g I;&l f! S fr g = ifr ,
U8 ———— (U,7) (x,4) : (v,B)

C

Since g dis a Lefschetz map (by (2.1)) and g ~ g we conclude by (I.4.2)
A(E) = a(g) = a(g) =a(g) .

If A(£) £#0 then by (2.2) there exists a fixed point Br g . More precisely,
we have

that

5 (,)=a,) =y, ~forsome yeU-V.

Let us put x, = r(yo) $ clearly, X, does not belong to 4 (because
r1(A) =B )., Further, in view of (1), (2), (iii) and (3), we mave

g = vou = iiz(y,) =y, <e/2

1

o = £G )i = ia ) - £ )i] = la (v,) - &y )l < e/2

and consequently
i - | 3 -
i%f(xo) xoh <e with x e X-4 .
The proof is completed.,

The precceding discussion is summarized in the following :
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THEOREM 2 (of. [7]). Let (X,4) Dbe a pair of ANR-s such that A is either
closed or open in X and assume tiat f : (X,4) » (X,A) is a compact mapping.
Then :

(i) f is a Lefschetz map
(11) a(2) = a(g) - a(£,) 3

(iii) A(Ff) # O implies that f has a fixed point in X-A.

3. Some applications of the Mayer-Vietoris functor.

Notation : Let {Ai} be a finite family of sets (i = 1,2,e4.,n) and

n n
T U A. - U Ai
i=1 1 i=1

be a map satisfying f(Ai) C 4, forevery i =1,2,...,n . Given a multi-index

HA
o

j= (Jl 9j99-'-’jk) H jl < -jz < geecy < jk with IJ! =k
we let
A, =4, DA, N eee NA,
J Jl JQ Jk

and denote by

the corresponding contraction. By i {Ai} we denote the smallest lattice of sets
containing all the members of the family {Ai} and by N({Ai}) the nerve of the
family {Ai} R

Definition. An ordered pair of spaces {Xl »%;}1 is called an excisive couple
(cf. [45]) provided the excision map (X ,% N X ) - (X, U X, ,X ) dinduces an
isomorpihism of the corresponding homology groups. More generally, a family of
spaces {Ai} (i = 1,2,.ee5n) is said to be excisive provided for any members X,
and X, of the lattice m{Ai} the couple {Xl 3%} 1is excisive.

Clearly we have the category of excisive couples and on this category there
is defined the Mayer-Vietoris functor which assigns to an excisive {X1 ,Xg} the

exact layer~Vietoris sequence
e G NX)-H ()2 (%) ~ B (g U %) -H (G NX) ..

and to a mormhism f : {X ,X} = {Yl ;¥ } it assign the map of the corresponding

exact sequences.
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(3.1) Let _/‘Li be closed in a metric space X for i =1,2,...,n , and

assume toat for every multi-index J the set A. is an ANR. Then (i) every

member X of the lattice m{Ai} is an ANR and (ii) {Ai} ig the excisive
family of spaces.

(342) Assume that

CB

A= A

i

i=1

and {Ai} is the excisive family., Let f : A - A De a continuous map such that

f(Ai) CA; forall i=1,2,...,n. If, for every multi-index J , fj : Aj —>Aj
is a Lefschetz map, then so is the map f _and we have :

ae) =z (DI )
J

Proof. We indicate the induction by consgidering the case n =2 , We have
the map of the layer-Vietoris exact sequence into itself induced by £ , i.e. the
following commutative diagram with exact rows :

5 HG NA) s H@)DEE) - Hl UK) -~ H 0 0k) -

far )g 19 ? T2q fq £a,2)
- Hq(A1 nNa) - Hq(Al) + Hq(AQ) - Hq(A.l Uby) - Hq—’l(Al nNa) -
By (I.3.2) {fo} is a Leray endomorphism and
AE) = a(l£} = a{(g @ 5,03 - allE, oy P
/\([f1q}) + A({qu}) - A({f(l )2 )Cﬂ)
/\(fl) + A(fg) - A(f(l,‘e)) .

THEORET 3 ([91). Let X e an 4aNR , {Ai}’i‘_1 a family of ANR-s such that

all A, cX are eitker open or closed in X and every Aj is an ANR . Assume
furtaer that

n
A= U and £ : (X,A) » (X,4)

is a compact map satisfying f£(A.) cay (i =1,2,00e5n) « Then
oL

() A - a(zp -2 (-1 ey

(ii) in particular, if all Aj arc eitner empty or acyclic

n(£) = A(fX) - x(N({r’li})) )
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(ii1) A(£) #0 implies that £ has a fixed point in X-4 .

Proof. (i) follows from (3.1), (3.2) and remark that any finite family of

open sets is excisive ; (ii) follows from the Euler-Poincaré formula, since
A(fj) =1 for every j 3 (iii) is just the restatement of Theorem 2.

COROLLARY 1., Let X be an AR and

3

v

2)

A = -:Li .iii (n

1
be the digjoint union of AR-s which are either all open or all closed and such
that every Aj is an AR . Asgsume Further that £ : (X,A) » (X,A) is a conti-
nuous map such that (a) £(4,) <A, amd (») £y, : X > X and all the maps

fi : A, —>Ai are compact. Then £ has a fixed point in X-4 .
£

Proof. Clearly f is compact , A(fX) =1 and X(N{Ai}) =n . Hence by

Theorem 3, A(f) = 1=n # 0 and our assertion follows.

COROLLARY 2 ([11]). Let X be a compact 4R and U De the union of n-open sets

U, 40y ye0e,U,  guch that (i) ﬁi N ﬁj £0, (ii) gvery U, isan AR, (iii) nz 2.
Agsume further that f : X - U - X is a map satisfying f(ﬁi) c:I—Ii for every

i=1,2,0eesn, Then £ as a fixed point.

Proof. Let n

A= U T, .
i=1 -
It follows from the assumptions that there is a map g : (X,A) ~ (X,A) such that
g(x) = £(x) for all =x¢X~U ., We ave clearly A(g) = 1-n £ 0 and hence g(x) = x
for some =xeX-A = X-U , Comsequently, f(x) = g(x) = x .

4, Common fixed points.

Let X be a space and 7, = {f} %be a family of maps f : X »X 3 call #

’ X
divisible [ 9] provided for any ii,fés%X there exists hf?X such that for some
n o, 0

£, =u and £ =u™ .
(4.1) Asswne ®% %, = {1 ig a divisible family such tiat for any £~

X
the fixed point set #n(f) = {xeX , £(x) = x} is_non-empty and compact. Then

N «n(£)
fe&

X
is also non=ecupty.
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Proof. Let £ ,f ,...,,fl,z;’?X 3 there exists an he‘]«'X such that, for some
nl "'.’nk
g =, g - x

-L2 =N goooyfk=h Y

Consequently, x=(h) n(fi) = n(hﬂi) for each i = 1,2,...,k and hence the
intersection

w(f ) N () N eea N %(fk)

is non-empty. This shows that the family {n(£)} fez., 18 & centered family of
Ty

compact spaces and our assertion follows.

Definition. Let (X,4) be a pair of spaces and {ft} (t = 0) a continuous
family of maps ft s (X,4) » (X,4) , depending on the parameter teRT H {ft} is
said to be a semi~flow on (X,A) provided

: +
(a) ftl+t2‘ =ft1 Ofta for any 1t ;% € R ,
(») fo = 1(X,A) ¢

If for a point =xX , ft(x) =x forall +=2 s then x is said to be a
fixed point for o semi-flow {f t} .

Ve note the following evident proposition

(4.2) Let £, ¢ (X,4) » (X,4) , teR" be a semi-flow. Then (i) ft1 is_ho-

motopic to £, foramy % R (ii) the family {£,} , indexed by ‘the positive

————————

rationals, ig divisible.

THEOREM 4. Let (X,)) be a pair of ANR-s such that A is either open or
closed in X and assume that the relative Fuler-Poincaré characteristic X(X,A)
4 ¢ (X,4) » (X,4) be a scmi-
flow on (X,i) such ttat £, is compnct for cach +t> 0. IThen {f,} Msa

of (X,i) is finite and different from O . Let f

fixed point XX\ o

Proof. We have clearly A(ft) = x(X,4) £#0 for every t = O and hence our
assertion follows, in view of (4.1), (4.2), and the continuity of the family {ft}’

from Theorem 2.

5« Vector fieclds on tue manifolds with boundary.

Let 1I %ve a Ck—manifold with voundary oM (k = 2) 3 for a point peM we
let TU(I‘-’[) be the tangent space to M at p . If pedM then T (M) decomposes
Js e - -
into two closed alf-spaces Tl‘)(l‘-'l) and Tp(l"’i) such that T _(3lM) = T;(M) N Tp(M).
A tangent vector §P is said to be outwardly (resp. inwardly) directed at a point
€3M provided & _<T' (M spe € €T (M)) .
PEIM  provide 8 p( 1) (resp SPETP(IL))
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Iz

Let ¢ = {gp}peM be a C7 =-vector field on the manifold M and assume that
on any component of the bHoundary i either (i) all gp we outwardly
directed or (ii) all §P are inwardly directed . Denote by

'A':A'.LU’.'UAk

the union of all the components Ai of the first kind and by
B=B]-U..QUB_1

the union of all components of the second kind.

We may state now the following generalization of the well-known result of
H, Hopf (cf. [9])

THEOREM 5, If tae relative Fuler-Poincaré characteristic X(M,A) ig different

from zero, then the field € = {gp} vanishes at some point peM ; the same

assertion holds when x(M,B) £ 0 .

Proof. First, by taking a tabular neighbourhood NA di?f AxI of A, we

enlarge M to a manifold ¥ . Ve have aNA =AUA' and 3H =BuUA',
Since the pair (I,A) is clearly a deformation retract of (M,NA) we lave
(*) )(ityd) = (@Y, .
Next, we define the vector-field ¢ = {ip} on M as follows :
Let ¢! = {gé} be defined on i U A' Dy
gé = gp for pecM and gé =0 for peA!?
we let E Ye an arbitrary Ck—1—extension of ¢! over M . Since on NA the

field ; is inwardly directed, it detemmines differentiable semi-flow

f.t 3 (M9NA) - (MsNA) .

in view of (%) and Theorem 4 , +there is a point peM = M - N, such that

ft(P) =p forall +z= 0 . For this point p , we have §p = gp = 0 and our
first assertion follows. The sccond agsertion follows clearly from the first by
considering the vector field 7 = - .

i
}
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V. THE LEVSCHETZ POWER SERIES AND THE EXISTENCE OFF PERIODIC POINTS

Next, some applications of the Leray itrace to the theory of periodic points. The
corresponding results, due to C. Bowszyc [8] are expressed in tems of the Euler-

Poincaré characteristic y(f) and the Lefschetz power series L(f) of a map f.

1. Algevraic preliminaries.

Tor a field X we denote by K{x} the integral domain consisting of all formal
power series

° n
Y a X

s = + e X+ a,xX + =
a, + 8 8 oos “

n=0
with coefficients aﬂsK H K{x} contains the polynomimal ring K[x], the field X

tal

and 11X,

N}
o

(141) A_power series s =

[l

anxngK{_x} is invertible if and only if a £ 0,
n=0
For an element s = 1-Ax we have

[oo]

(1-Ax)"t = 3 AR,
n=0
(1.2) Assume that
o8]
s = % a,nxneK{x}
n=0

ig of the form s = uvl, where uv,vK[x] , u# 0 and degu < degv = K . Then

for any natural m at least one of the coefficients

ot 2 B 700 By

must be different fron zero.

Definition. Denote by @ : X{x} - K{x] the ordinary derivation in K{x} , for

-

an invertivle clement SGK{X} we define tie logaritimic derivative D(s) of & by

D(s) = gta(s) .

(1.3) ZE£ tie elements s ,8;,.0.,8, ,8¢K{x} are invertible, then

k
D(Is,) = = 0(e.) and  D(s!) = -D(s) .
i=1 % =1 7

w

Definition. Assume that a power series s is of the form s = uvl waere

k=1 n k a
v= ZTax , v= Zbx and b,b £0
n=0 1=0 -
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Ve define the conjusate s* of s by putting

k=1 gk
s = (% a, X (T px )y,
n=0 n=0 0

(1.4) If the clements 8L 98z 500098 have the conjugates, then so does their sum

and

———

B

m
(g s.)*= % s“‘i* .
i=1 * i=1

2. The Lefschetz power series of an endomorphisn.

We recall that for an endomorphism ¢ ¢ E - E of a vector space E we let
$: B->E ve induced by ¢ on

oe]
B =5/ where Np = U ker ¢" ,
n=0

if ¢ is admissible (i.es, dim & <) then P is an automorphism and we denote
by w(p) the characteristic polynomial of § .

Since Ny =N ;pn we have clearly

(2.1) ¢ is adnissible if and only if o is admissible.

(2.2) Assume that K is algebraically closed and ¢ : E » B is an admissible
endomorphism. Then all the Toots Ay seeeshy (n = dim B) of the characteristic
polynomial w(p) are different from zero and for any matural n we have

Tr(@n) = . }\.? .

j=1

TN =]

Proof. By the Jordan Theorem, there exists a basis in E such that the
corresponding mtrix representation for $ has a triangular form. Consequently
m
Tr $ = % AL 9 Tr kpe cgeen
=1 Y 3

]
[ =]
>J

and the assertion follows.

Assume now that ¢ = {.pq} is a Leray endomorphism of a graded vector space
E = {Eq} ; We recall that in this case

BE={® wher E =E /N
(B} (wmere g = Eq/Neg)

is of a finite type, the Lefschetz number of ¢ 1is given by

M) = = (1)%2(eg) = 3 (<)%
q q
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and the Euler-Poincaré clharacteristic (o) of ¢ by

x(9) =x@E) =z (—1)qdim(§q) .
a

We note that (2.,1) implies

(2.3) ¢ is o Leray endomorphism if and only if @n is _a Leray endomorphism
. n
in that case () = «(9") «

Definition (cf. [8] and [2])., The Lefschetz power series L(p) of a Leray

endomorphism @ = {@q} is an element of K{x} defined by

© 0
L(p) = x(e) + ¢ A = & A"
n=1 n=0

and the characteristic polynomial w(p) of ¢ is given by

wip) =11 w (-1)%
? . q

where wq is the characteristic polynomial of 'ﬁq .

The following fact is of basic importance [8]

(2.4) Let o = {@q} be a Leray endomorphism of a graded vector space E = {Eq}
into itself, Then

) L(p) = (D(w))*

Where w is the characteristic polynomial of the endomorphism ¢ . Consequently,

the Lefschetz power series L(p) admits a representation of the form

() L(p) = uv'?

where u and v are relatively prime polynomials with deg u < deg v (u £ 0).

Proof, Ve shall indicate the proof for the case when K is algebraically closed 3
to this end, denote by M (3 = 142500a, din Eq) all the roots of the characteristic
Polynonial w. of . .

& q Pq

We have

(3) wo=I(x~\_.) .
q 3 ( QJ)

Taking into account (1.3) and (1.4) and the definition of w we get

Dw =L D(x~-hr_.)= -\ L)t
g T E D =hgy) =2 (g

J i
Dw = £ (-1)%(x -2 )2
qd 4

(G = ag )% = (1= 2
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and consequently

(4) (mW=(£#4ﬂu—x%rU%=§#4ﬂh—h%mﬂ.

On the other iand, taking into account (1.1) and (2.1), we have

L) = = AGHx"= = = (_1)%:3(:;2);51 =

n=0 n=0 q=0
e -
=3 3 (1% 7\33. <= ¥ (-1 - hqjx)‘l
n=0 qj aj

and hence, in view of the formula (4), our assertion follows.

Definitions Let L(p) = uv* be a ratiomal representation of L(p) with
relatively prime polynomials u and v as in (2.4). We let P(p) bve the degree
of the polynomial v .

(2.5) Let o = {:pq} be a Leray endomorphism. Then
(1) x(0) #0 implies P() # O 3

(ii) P(p) #0 if and only if A(e™)  for some matural n

(iii) if P(v) =k # O then for any matural m , one of the coefficients

L n-1¢ . . ;
\pm“ )y Al™ 2) yesey A(ET)  is different from O .

A(

Ve remark further that

(2.6) If the characterigtic polynomial w of the Leray endomorphism ¢ = {cpq}

is represented on the form w = yz ', with relatively prime polynomials y and 2z ,

then
x(¢) =degy - degz  and P(p) = atb

where a and b are the numoexws or different roots of the polynomials y and 2z

regnectively.

3+ The Lefschetz nower series of a continuous map.

Consider a category 5 of topological spaces (or pairs of topological spaces)
and let H "e a homology or cohomology functor from 3 to the category of graded

vector spaces over K . Ve recall that a continuous f : X - X is called a Lefschetz
map (with respect to H) provided H(f) is a Leray endomorphism.

It is easily seen (by taking into account (2.3)), tmt

(341) Aman 7 : X »X is a Lefschetz map if and only if so is any iterate 7
of £ 3 in this case

x(£) = x(£") .
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Now the essential part or tie proceeding discumsion is summorized in the following:

THEORE:i 1. The Lefschetz power series L(f) of amap f : X » X admits a "rational"
representation

L(f) = uv?

where u and Vv are relatively »rime polynomials with deg u < deg v . Let us put
P(f) = deg v . Ue Iave

(a) x(£) #0 implies P(f) # 0 ;
(v) B(£)
(c) 2(£)

0 if and only if A(f") = 0 for some n ;3

1

it

K # 0 implies that for any m at least one of the coefficients

AT, AE™R), e ()

of the series L(f) must be difierent from zero.

In the next section we shall turn to the applications of Theorem 1 to the theory
of periodic noints.

4. Lefschetz gspaces. The exigtence of periodic points.

Let © ¢ Y->Y be a continuous map ; a point y¢Y is said to be a periodic
point for f with period n provided f(y) =7y .

In order to increase the generality of our considerations it will be convenient
to introduce the following :

Definition (compe. [13]). Let Y ©e an object of the category 5 . CallY a

Lefschetz space (or a Lefschetz pair) with respect to the functor H provided every

compact map £ ¢ Y - Y is a Lefschetz map and A(f) # 0 implies the existence of a
fixed point y for £ ; in the case of a pair Y = (X,A) we require additionally
that y ¢ X=1 .

Examples : The following types of topological spaces (resp. pairs of spaces) are
all Lefschetz spaces (resp. Lefschetz pairs) s

1° metric ANR-g with respect to the singular homology §

2° compact metric approximative ANR-g with respect to the Cech-Vietoris homology 3

3° open sebs in locally convex spaces §

4° retracts of Lefschetz spaces with respect to the same homology or cohomology
functor

5° compact ANR-s for normal spaces with respect to the singular homology §

convexoid spaces in the sense of Leray [37] with respect to the Cech cohomology 3
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7° pairs Y = (X,A) of metric ANR-g such that A is either closed or open in X.

THEOREIL 2 (cf. [8])s Let £ : Y >Y De a map of a Lefschetz space (or a_pair of
spaces) guch tiat the n-th iterate ™ of f is compact for some n . If

x(£) #0 or P(f) £#0 then f has a periodic point y with a period k < n + P(f)
(in the case of a pair Y = (X,A) we assert that y ¢ X-A).

Next we draw some consequences of Theoren 2.

COROLIARY 1., Let Y be a lefschetz space of a finite type and f : Y>Y be an

eventually compact map*) such that £, : H(Y) - H(Y) is an isomorphism. Then

x(Y) #0 implies that f has o periodic point.

Proof, The fact that £, is invertible implies that x(f) = x(Y) and tims our

asserbtion follows from Theorem 2.
Corollary 1 implies the following result due to F.B. Fuller [19] :

COROLLARY 2, Let Y be a compact metric ANR and f : Y ->7Y an invertible or,

more generally, nomotopically invertible map. If the Buler~Poincaré characteristic

x(¥) £0 then f lhas a periodic point.

COROLLARY 3, Let Y Dbe a Lefschetz space (or a Lefschetz pgir) such that
Hzn(Y) =0 for all n = O, Then any cventually compact map f : Y->Y has a

periodic point.

Proof., Fron the assumptions and the definition of the Buler-Poincaré characteris-
tic of a map, it follows that % (£) # 0 and therefore our assertion is a consequence

of Theorem 2,

Corollary 3 contains as a particular case the following result due to
¥
0, Hajek ’:

COROLIARY 4. Let Y Dbe a_compact ANR such that Hzn(Y) =0 for all n = 0. Then
any eventually compact map f ¢ ¥ - Y hoag a periodic point.

¥) Amap £ 3 Y=Y is called eventually compact provided certain iterate 1 of

f is compact.

#%) 0. Hijek, Homological fixed point theorems. I, II, III, Comment. liath. Univ.
Carolimae 5 (1964), 13-31 ;, 85-92 ; 6(1965), 157-164.
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VI, FIXED POINTS ¥OR (ULTI-VALUZD COINMPACT IMAPS

In 1946, S. Eilenberg and D, .iontgomery [17] made the important observation
that, with the aid of an old theorem of L. Vietoris [46] several results of the
fixed=-point theory for single-~valued mappings could be carried over to the case of
multi-valued acyclic maps, i.e., maps for which the image of every point is an
acyclic compact set. Thus, the Lefschetz Fixed Point Theorem for compact ANR-g

.)’r

was extended by the above-named authors to arbitrary acyclic maps:

We shall propose now an extension of the above Eilenberg-ilontgomery theorem

to the case of compact multi-valued maps of non-compact ANR-g.

1. Vietoris mappings.

In what follows only metrizable spaces will be considered. The category of
such spaces and continuous mappings will be denoted by G . By H we denote the
Seen homology functor with compact carriers and rational coefficients from the
category & to the category OU of graded vector spaces and linear maps of degree

ZeYO0,

Definition. A continuous mapping £ : X - Y is said to be a Vietoris map

provided the following two conditions are satisfied :

(i) £ 4is proper, i.e., for any compact C , the counter image f£*(C) is
also compact,

(ii) the set f*(y) is acyclic for every yeY .
In our considerations an essential use will be made of the following :

(1.1) (VISTORIS iPPING THECREM). If f : X »Y is a Vietoris map, then the
induced map £, : H(X) - H(Y) 4is invertible.

%) For similar generalizations of some other topological facts see [30], [31] and
[27]. Ve remark that to the special class of acyclic maps consisting of those
which are convex=velued various fixed point theorems for compact operators were
extended (cf. [41, [18], [23]) as well as the basic facts of the Leray-Schauder
theory in Banach-spaces (cf. [22], [29]). As in the single-valued case (cf. [38])
fixed point theorems for multi-valued maps prove themselves useful in many branches
of mathematics ; theyfound, for instance, applications in the theory of games

(cf. [4], [18]) and more recently in the ordinary differential equations (cf. [33])
and optimal control theory (cf. [34]).

S3LE 1

3ES
JT FOURIER
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Theorem (1.1) clearly follows from the original statement of the Vietoris

viapping Theorem for compacta (cf. [46]).

2. Hulti=-valued mappings.

Let X and Y be two spaces and assume that for every point x¢X a non-
empty subset cp(x) of Y is given , in this case, we say that ¢ is a multi-

valued mapping from X to Y and we write ¢ : X »Y . In what follows, the

symbols ¢, ¥, ¥ Will be rescrved for multi-valued mappings , the single-valued

maps will be denoted by £, g, 2, etc.

Let o ¢+t X»Y bve a multi-valued map. We associate with ¢ the following

diagram of continuous mappings

X
in which
I, = {(x,7) € X x Y, yep(x)}

is the graph of ¢ and the matural projections p and q are given by
p(x,y) = x and a(x,y) =y .

The point-to-set mapping ¢ extends to a set-to-set mapping by putting

(h) = U ¢(a) cY
achA
for AcX ; o(A) is said to be the image of A under ¢ . If o(A) cBcY,
then the contraction of ¢ to the pair (4,B) is the multi-valued map ¢': A -» B
defined vy o'(a) = ¢(a) for each achA. A contraction of ¢ to the pair (4,Y)
is simply the restriction @lA of v to A .

Definition. A multi-valued mapping ¢ : X - Y is said to be continuous
provided the graph F“P of v is closed in the product X x Y 3 in other words,

the conditions x -x, y -7V, ynscp(xn) imply yep(x).

e note timt if 9 = £ (i.esy ¢ is single-valued), then the above definition
gives the ordinary continuity of f . In wiat follows only continuous multi-valued

mappings will ve considered.
Definition. A multi-valued mapping ¢ , ¢ 3 X »Y is called compact provided
the image QP(X) of X under ¢ is contained in a compact subset of Y .

The following evident remark is of importance :

(2.1) If o : X > Y 4is compact, then the projection p : rﬂ,) - X is proper
as_a single~valued mapping.
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Definitions Let ¢ : X - X Ye a multi-valued mappinge. 4 point x is called
a fixed point for ¢ provided xcp(x)

3. Acyclic maps.

Ve shall recall now the statement of the Eilenberg-Montgomery Theorem.

Definition. Let X and Y be two spaces. A multi-valued mapping ¢ : X -» Y
is said to be acyclic provided the set ¢(x) is acyclic for every point xe€X .

Assume now that X and Y are compacta and ¢ : X » Y is an acyclic multi-
valued mapping. We observe that, since for every =xcX , p*(x) is homeomorphic

to :\o(x) s The projection p : FQP - X is a Vietoris map.

Using the Vietoris Mapping Theorem we define the linear map ¢, : H(X) - H(Y)
by putting ¢, =4d, o p;,vl 3 9, 1is said to be induced by the multi-valued mapping

9 o It is casily seen that if ¢ = £ (i.e., ¢ is single-valued), then ¢, = £, .

Let X be of a compact space of a finite type and ¢ : X - X Ybe an acyclic
multi-valued mapping of X into itself. We define the Lefschetz number A(yp)
of ¢ Dby putfing
M) = A(oy) o

(3.1) (The Eilenberg-ilontgomery Theorem). Let X be a compact ANR and

¢ ¢+ X »X an acyclic multi~valued mapping. Then A(e) # O implies that o has

a fixed point.

4, The quasi=-category. & .

In all that follows, the symbol f ¢ X = Y will mean that either (i) f is
a Vietoris map or (ii) f is a homeomorphism ; we remark that in either case,

the induced map £, is invertible.

Definition. A multi-valued mapping o : X » Y is said to be admissible
provided either (i) ¢ is single-valued or (ii) ¢ is acyclic and compact.
The class of all admissible maps will be denoted by © .

(4.1) If a_sulti-valued mapping o : X » Y is admissible, then the diasram

of natural projections for ¢ has tiae form

X - T ————— Y .

¢
Proof, If ¢ = f , the assertion is evident y if ¢ is acyclic and compact,
our assertion is a consequence of (2.1), the fact that p ! (x) is homeomorphic

to @(x) for every xeX and the Vietoris iapping Theorem.
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Definition. Two admissible mappings v : X -»Y and ¢ : Y -2 are called
composable provided either (i) ¢ is single-valued or (ii) ¢ is the inclusion ;
in either case, the composite yp : X - Z given by the assignment x - y(p(x))
is an admissible mapping from X to 2 .

~

Tmus, & dis equipped with o partially defined operation of composition of

* ~
maps ) o« Next we show that the cohomology functor H : & —» 0L can ve extended

over G to a function H : £5 > Ol satisfying certain quasi-functorial propertiess

these turn out to be sufficient for the proofs of our main results.

Definition. Let ¢ : X » Y be an admissible map. Using (4.1) we define
the linear map

H(p) = g ¢ HX) - H(Y)
as the composite

(13-;(— )yt

H(x) ) ~ B uw)

¢y 1s said to be induced by ¢ ; clearly, if o =f , then o, = £, .

(4.2) Let @ : X »Y and ¢ : Y »Z be two composable meps in & . Then we

mave (§p)y = YuPy 5 in other words, H sends commutative triangles in & into

commutative triangles in OU .

Proof, Assume first that ¢ is single~valued and let ¢ = £ . Then the
product mapping f x id : X x 2 »Y x 2 maps F¢ch X Z into I"\,’ cY x 2 and
therefore determines the map f£Y ¢ T 4 - T

\»‘ L ]

Consider the following diagram

Y r

: Y
L

X e=

in which all unlabelled arrows represent the natural projections. From the

*) We note that, if one of the composites (po9o )9y or g3(m@ ) is defined, then
so is the other and, in that case 9, (0% ) = (g, ) . It is not, however, true

that the existence of both ¢ ¢, and g, dimplies that of ¢ P .
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definition of f£' it is clear that this diagram commutes | consequently, the

diagram
H(Y) — H(r, )
\ ol e
B() - H(T,)

also commutes and this shows that (y£)y = U, Ly

The proof of our assertion in the case when ¢ is the inclusion is similar,

5. Homotopy and selectors.

Next we introduce for maps in & an appropriate notion of homotopy.

Definition. Two admissible mappings ¢,y ¢ X » Y are called homotopic
(written ¢ ~ ) provided there exists an admissible mapping yx : X x I »Y ,
where I = [0,1] , such that

v(x,0) = o(x) and x(x,1) = y(x) for each =xeX ,

5.1) Let by ¢+ X >Y be two adnissible mappings. Then o ~ ¢ implies
et Py zappings. ltaen 9 ~ ¢ 1mplies
Px = s »

Proof. Let i ,i : X ->Xx I %e two embeddings given by x - (x,0) and
x -» (x,1) respectively, and x ¢t X x I »Y %be an admissible homotopy joining o
and 4§ « Then

"P=Y\oio and Y=X o dy e

From this, taking into account that (io)* = (i), , we infer by (4.2) that
Py = Ux o

Definition. Let o,y ¢ X »Y be two multi-valued mappings such that
r«p CT s ey o(x) < y(x) for each x¢X , in this case, we say that o is

a selector of ¢ and indicate this by writing ¢ C ¢ .

(542) Let v,y ¢ X > Y be two admissible mappings. Then ¢ C § implies
Pie = Uy o

Proof, Assume that ¢ c ¢ and note that the diagran
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with natural projcctions is commutative § consequently, its image under H

H(T )
AT

H(X) i, B(Y)
R
H(T,
(r,)
also commutes and this .hows that @, = ¥y

L e
w

6., Multi=-valued Lefschetz maps.

An admissible mapping o 3 X - X is said to be a Lefgchetz map provided
9y 3 H(X) » H(X) is a Leray ondomorphism. For such ¢ we define the Lefschetz
number Alp) of o by putting Aw) = Aley) »

Note that if X is a compactum of a finite type, then any admissible
¢ ¢+ X »X is a Lefschetz map and A(@) coincides with the ordinary Lefschetz
mmber A( ¢ ) of ¢ .

The following two theorems arc immedinte consequences of (5.1) and (5.2).

(6.1) Let @9 : X »X be two homotovic admissiblo maps. If ¢ is a
Lefschetz map, then so is ¢ and in this carse A(@) = A(¢) .

(642) Let 9,y : X - X De_two admissible maps such that ¢ < y. If one of
them is a Lefgchetz map, then so is the other and, in that case, Alp) = A(y)

We turn now to the property of the Lefschetz maps which will be of importance
in the proof of the main theoren.

(6.3) LEMMA, Assume that we arc piven the following commutative diagram of
spaces and admissible multi-~valued maps

Xt s — x"
< c

X : X"
e

in which i : X' -» X" stands for the inclusion. Then

(i) if one of the maps « or ¢ is a Lefzchetz map, then so is the other
and, in that case, A(y) = A(y) ;

(ii) ¢ mms a fixed point if and only if ¢ does.
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Proof., The first assertion clearly follows by applying (2.1), from (I,3,1).

The second assertion is evident,

Te The Iain Theorem.

The proof of our main result relies essentially on the following simple

geometrical fact (comp. [13]) :

(7.1) IEMMA. If U 4is open in a Banach space E and X < U is compact,
then there exists a compact absolute neighbourhood retract K such that
XcKcU,

Proof. Cover X Dby a finite number of closed balls Mﬁ,Wé,...;wZ cU, and
denote by Ki the convex closure of the compact set X N wi + By the Mazur Lemma,
every Ki is compact. From tie inclusions Ki C:Wi < U we conclude that X is
contained in the compact set X = U Ki c U . Now, taking into account the general
properties of the ANR spaces [6], we infer that K as the union of a finite
number of compact convex sets is an absolute neighbourhood retract and thus our

assertion follows,
Before stating our main result we shall prove first the following

THEOREM 1, Let U de open in a Banach space E and ¢ s U->TU be an acyclic
compact map. Then (i) ¢ is a Lefschetz map, and (ii) A(y) # O implies that
¢ has a fixed point.

Proofs By assumption, the closure ¢(U) = X is compact and contained in U .
By applying to X +the proceeding lemma, we find a compact absolute neighbourhood

retract K such that o(U) X c U . Consequently, we have the commutative
diagram as in (6.3),

X —- U

in which i is the inclusion, and @K,@’ stand for the obvious contractions of
the map ¢ o Since K is a compact ANR , A(pK) is defined j consequently, by
(6.3), ¢ is a Lefschetz map and A(pK) = A(@) .

To prove (ii) assume tiet A(p) # 0 . Then we Mmve also A(¢K) £0 and ,
hence, by the Eilenberg-ilontgomery theorem, there exists a point =x¢K such that

x ¢ gp(x) = 9(x).
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Now we are able to state our principal result in full generality (cf. [21]):

THEOREI 2. Let X e a topnologically complete ANR and o : X - X be a
compact acyclic multi-valued map. Then (i) ¢ is a Lefschetz map and

(ii) A(p) = 0 implies that o has a fixed point.

Proof, Since X is topologically complete we may assume, without loss of
generality, that X is a closed subset of a Banach space E . By assumption,
there is a retraction r : U X of an open set Uc E onto X . Denoting by

is:X->TU +the inclusion we nave the commutative diagranm

i
X - U
(P‘ N I\?:j_gpr
X i S 7

as in (6.3). By assumption, the multi-valued map ¢ is compact ; consequently,
80 is the map ¢ = ipr . Theorem 1 implies now that | is a Lefschetz map.
Applying (6.3), we conclude that ¢ is also a Lefschetz map.

To prove (ii), assume that A(p) £ O . Applying (6.3) again, we have
Ale) = A(y) £ 0 . This, in view of Theorem 1, implies that ¢ has a fixed point.
Applying now (6,3) for the last time we conclude that ¢ has a fixed point and
thus the proof is completed.

Remark. We know that for single-valued maps Theorem 2 is valid without
agsuning X to be topologically complete ; the question whether the same can be

proved for nulti-valued maps remains open.
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PART B

INFINITE DINENSIONAL CCHOIIOLOGY THEORIES

We give first a brief outline of our main results. ILet E Dbe an infinite dimen~
sional normed space and 9 the corresponding Leray-Schauder category. An "infinite
dimensicnal" or simple a cohomology theory 7 on % is a sequence of contravariant
functors ﬁw—n(X,A) from the pairs in © 1o the category of abelian groups together

with a sequence of natural trensformations 5, ﬁw-n(A)'e - n+1(X,A) satisfying
the Homotopy, Exactness and Strong Excision axioms ; the graded group e n-'1(.‘:“}), where

S in the unit sphere in E , is the group of coefficients of the theory,

To anyA(generalized) cohomology theory on the category of finite polyhedra corres—

ponds a cohomology theory on & with the same group of coefficients ; moreover, the

assignment B » ™ is natural with respect %o maps of the theories. Thus, in par-

ticular, we have the "ordinary" cohomology Hé—*( ;G) over G , the stable cohomotopy

7 and the Hopf map from 5 % to H *( ;7).

The "ordinary" cohomology H”_H(X;G) is isomorphic to the (n—1)1§Q singular ho-—

mology group H (E—X G) . A more general result holds in fact, and the second main
theorem may be v1ewed as an extension to the infinite dimensional case of the duality
theory due to G. Whitehead [14]. Next a number of consequences follow. Some of them
(as the Mayer-Victoris sequence) follow evidently from the axioms alone, while others
(as the Alexander-Pontrjagin Invariance or elementary properties of the Leray-Schauder
degree) do from both the above results together. The duality combined with the Hure-
wicz Theorem in S-theory yields to the important Hopf Theorem, relating the ordinary

cohomology over Z and the gstable cohomotopy on & o

Finally, we discuss briefly the concept.of codimension. First, we have for the ob-
Jects in & the "basic" codimension Codim defined in terms of the extension problem for
compact fields with special ranges E - i , where dim %' = n. Our definition coin~
cides in the finite dimensional case with a theorem of P. Alexandroff [1] which charac~
terizes the dimension of compacta by maps into st . Further, we define various cohomo=-
logical codimensions ; we have, in particular, Codimz defined in terms of the or-
dinary cohomology on & over 7 . If the space E 1is complete, then Codim = CodimZ »
The proof of this result uses (among others) the representability of the stable coho-—

motopy on © and the Homotopy Extension Lemma ; the latter is kmown to be true in need-

1
ed generality only under the assumptlon of completeness .«

1) Using the Smale-Sard Theorem, K, Geba has extended recently (cf. Fund Meth. 1969) to
Banach spaces the framed cobordism theory of L. Pontrjegin. The corresponding bordism
groups can be described equivalently as the (suitably defined) homotopy classes of cer-
tain c-proper Fredholm maps. On the other hand, they turn out to be isomorphic to the
infinite dimensional stable cohomotopy groups. Thus, the above results of K. Geba pro-
vide the important link between the theory of compact vector fields and that of the
Fredholm maps. Due to lack of time, however, we shall not be able to give any details.
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I. TEHE LERAY-SCHAUDER CATEGORY

We begin by introducing two categories of primary interest (the category of
compact vector fields and the Leray-Schauder category) and two geometrical construce
tions of further importance (the generalized suspension and the cone functors).,
With the aid of the generalized suspension, some examples of geometrical interest

will be given.

1« Remarks on the notation.

We denote by E° = (E7,]| ||) or simply by E an arbitrary but fixed infinite
dimensional linear normed space over the field R . We fix a sequence [Ew"n ) En}
of direct sum decompositions of E such tat

(l) EOCElC"'CEn9

(i1) o 52 5 ..o,

(iii) codim B = &im E_=n .

We let

SCD"'

n _ { x€ Eco-n+1

sjxi| = 1}
denote the unit sphere in Em'(n'1), n =13 and we reserve the symbol U™ for
the open set i~ BT,

Next, we let R° be the normed space consisting of all sequences x = (;scl 1%y sees)

of -eal numbers such that X, = 0 for almost all i with the norm

Pl =/ 2 %5

The following symvols stand for suvsets of R” :

B = {xR” 5 x, =0 for iz Isl},
k L2
R+={ R :xkéO} ,
BE = [xR® 5 x_= 0}
X It o
S° = {xeR™ 5 x|l =1},

z. 1
gk _ gk a R‘f’“ , gk _ 3K n Rk+1 .
+ -+ - -

1 lo _ ot k

There are inclusions R- = REF , S <8
- < I
S].C 1 - S].'S. ﬂ S.a.x -
- -

and we have clearly Sk = SE i1 ST and
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Finally, we use the following fixed notation :

Ens = tae category of secis §

Ens® = the category of based sets 3

Ab = the category of abelian groups 3
A = either Ab or BEns¥* g

~5(A,B) = the set of maps (- morphisms) f s A >B in a category 5 .

All atan@ordly used categories are denoted by script letters ; the category of
compact vector iields and its subcategories will be denoted by German letters.

2. h~Categories.

An  h-category (GS,N) is a category = such that for each pair of objects
(A and B) in ¢ there is defined in the set (4,B) an equivalence relation ~
(called homotopy) satisfying the following (compositive) property :

o

H~vhg g 2gh Ygf .
If fees(A,B) , then by [f] we denote the equivalence (homotopy) class containe

ing £ and we let m(4,B) be the set of such homotopy classes.

A subcategory =N of +; will De called dense provided it has the same objects
as & . Ve say that (50 ») is an hesubcategory of an h~category (%,~) provided

Soc: 3 and the relation £ T g implies f~g forany £ and g in 530 .

Remaxrk : In what follows Ens and cA will be congidered as h-categories with

the relation of homotopy ~ defined by : f~ge f =g.

Amap £ : A -B in (5,7 is invertible (respectively h-invertible) provided
there is amap ' ¢ B-A such that £t f = 1A and f o ft = 1B (respectively
flo £~1, and f o f1~ 1B). In the first case, we write A ~ B and call the
objects A and B equivalent. In the second case, A& and B are said to be

homotopically eduivalent and we write A DY B .

Examples :
1°) The catezory T (respectively K) of all topological (respectively compact
Hausdorff) spaces and all contimuous maps with the ordinary relation of homotopy.
2°) Let 1 »e a linear normed space and denote by KE tihe full subcategory

of X whose objects are compact subsets of B contained in finite dimensional

subspaces of E. Ve say that a nolyhedron KT E is a geometric subpolyhedron of

E if X has a triangulation wihich is a finite union of geometric simplexes. Ve
denote by PE the full subcategory of KE whose objects are zeonetric subpolyhedra
of T and consider KE ans PE as h~categories with the ordinary relation of
homotopy.
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3°) For any concrete nh~category D that will appear later on, we slall denote
by D° +the corresponding category of nairs. sor exanple, the objects of T° are
pairs (x,2) of topological spaces § the morphisms are continuous maps
£ (X,A) > (¥,B).

A functor A s 7y -3 Tetween two h-categories is called an h-functor
provided it sends homotopy commutative diagrams in ¢ into such in &, .

Cleaxrly if M\ -3, dis such a h-functor then

A

X~Y in 5 = AX)~A(¥) in 3 ,
and.
XY in 3 = x(x)rﬁk(‘f) in G .

3. The directed set (B).

Let B be an infinite dimensional normed space. By & = :(B)= {:@yxﬁsstono}
we shall denote the family of all finite fimensional linear subspaces of E.

TPor notational convenience we estadlish one-to-one correspondence « La

between the symbols o, By Yseeso and yygL ,LY,.,. and in the formulas to occur

e

We replace occasionally one sort of symbols by another.

We simnll write o = p 1if and only if Qy C:LB 5  evidently, the relation

= converts the family £ into a directed set (&,=).

Given an element « of we let d(y) denote the dimension of the linear
space Qy . A relation o =p in 7 will be called glementary provided
a(p) = dly) + 1. Given an arbitrary relation o =3 in ¢ by a chain joining o

e

and [ we siall understand a finite sequence o = o, S Foees = o = B of

elements in - such that s = oy is elementary for each i = 0,1,...,k=1.
If X is a subset of E and g€, we let X =X La « BEvidently, the sub-
o
set Iy of ¢ defined by
iy = {acs Xa is non-enpty}
is cofinmal in =.
If X and Y are two subsets of E and f : X »Y ig a mapping such that

o(x ) CZY& then by ﬁy X A'Ya we denote the contraction of f +to the pair

4, Conpact and finite dimensional nmappinss.

In what follows compact mappings will be denoted by the capital letters F,
G, H,
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(441) Definition. Let o bve an elenent of the directed set ¢ and F : X — B
be a coapact maphing into a normed space E 4§ we say tlat F is an a=-mapping

provided F is compact and F(X) CZLa « If F:X->E is an -mapping for some
o it is called a finite dimengional mapping.
We state for the reference the following two well-known facts

(442) Lemma (Approximation Lerra). Let U be open in E and F : X >U be a

conpact mapping. Then for each e > 0 there exists a finite polyhedron P€ cU

and a finite dimensional mapping F_ : X » U such that
(1) -'L‘E(X) CPE ’

(41) ||#(x) - FE(X)H < e for each x€X ,

(iii) P and P are honotopic.
g =

(4.3) Lerma (On Extension of Compact biappings). Let 4 be closed in a metric

space X and T : A »E be a compact mapping. If either (i) is complete or (di)
F is an ~-mapping, then there is a compact mapping F : X - E Dbeing an extension
of P over X and such that F(X) conv(F(L)).

Proof. Since the convex hull of a relatively compact set in a complete E is
also relatively compact, our assertion follows at once from the Dugundji Extension

Theorem,

Remark, It is not known whether a conpact mapping F : A - E admits a compact

extension over X , without assuning I +to be complete.

5« Compact vector fields.

Notation. Given two subsets X and Y of E and a continuous mapping
f ¢X->Y we denote by the same but capital letter the mapping F : X - E defined
by
P(x) = x - £(x) , x€X .
(5.1) Definition. Let X and Y be arbitrary subsets of E . A mapping

£f:X->Y is said to be a compact vector field (or simply a compact field) provided

the map I ¢: X » 8 is compact.

The set of all compact vector fields with domain X and range Y will be
denoted by 3(X,Y) and its elements will be denoted by the small letters £, g, h,

etc.

Some simnle wut inportant proverties of compact fields are surmarized in the

following proposition
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(5.2) Let £ : X >E be a compact vector field. Then (i) if X is closed
(respectively bounded) in I , then go is the set £(X) 5 (ii) if CcE is

relatively compact, then so is £*(C).

(543) I £ : X »Y is a one=to—one compact vector field of a closed set X

onto Y , then f is bicontinuous and f£': Y - X ig o compact field.

(544) Tae class of compact vector fields has the following properties :

(

) if £ and g are compact fields (respectively o-fields) then so is their

composgivion gf ; -

s

(ii) if £ is a compact field (respectively an «-field) then so is every contract

ion, and in particular every restriction, of f 3

(iii) the inclusions i ¢ A —» X and in particular the identities 1yt X>X are

a~fields for every we”

(iv) if £ : X -»Y 4is a continuous rapping between two subsets of E guch that

X is compact, then I is a compact field 5 if, in addition, X and Y are

contained in Loz then £ is an og=~field.

It follows from (5.4) that subsets of E as objects and compact vector fields
as maps for m a category., This category will be denoted by 3(E) and called the

catesory of compact vector fields in B, For each o we lave a dense subcategory

l’:a'a(E) of 4(E) whose maps are g-Tields between the subsets of E .

Clearly, if o < p is a relation in £ then

5

f%@c%@%
Now we define a category
f_jo(E) = U }'Q(E)
as the union of all categories G@(E) for wesf . Evidently, SO(E) is a dense

subcategory of &(E). In what follows the maps of 5O(E) will be called finite
dimensional fields.

6. Honotopy of compact vector fields.

Notation. Given two subsets X and Y of E and a homotopy ht : XY
(0=+=1) we shall denote by 2 : X x I »Y +the mapping defined for (x,t)eX x I
by a(x,t) = ht(x). By the capital H we shall denote the mapping H : X X I - E

defined for (x,t) ¢ X x I by

H(x,t) = x - ht(x) .



I-6 A, Gramas,; TopiCSeee

(641) Definition. Let X and Y bve two subsets of E . A family of compa.ct
vector fields ht ¢ X »Y depending on the paraneter t (0 =t = 1) is called a
compact homotopy provided the rmapping H ¢ X X I » E is compact. Two conpact

vector fields L,z ¢ X -» Y are said to be compactly homotopic, provided there

exists a compact homotopy hJG ¢ X -»7Y such that ho =f, h1 =g .

We write f ~ 3 to mean that the fields f and g are compactly homotopic,

The relation " ~ " is an equivalence relation in each of the sets 35(X,Y)
and it clearly satisfies the compogitive property in the definition of an
h-category. Consequently, it converts the category of compact vector fields into
an h-category (&,~). When there is no risk of misunderstanding this category will

be denoted simply by 3 .

(642) Let h, : X »E be a compact homotnpy. Then (i) if X is closed (resp.
bounded) in [ +then so is the set h(X x I) 5 (ii) if C c E jis relatively compact,

. . PP AN
then so is the set n (C).

(6.5) Let X & , U Dbe an open set in E and let f,0 3 X »>TU De two

compact fields. If the inequality

1£(x) - g(x)| = dist (£(x),E - U)

holds for each xeX , then the fields f and g are compactly homotopic.

Proof. Tae above inequality implies that for each x€X the segnent [£(x),g(x)]
joining f£(x) and g(x) in B ig contained in U , hence the formula

t£(x) + (1=%)a(x)
x = [$8(x) + (1-t)G(x)] (xex , t€ I)

]

ht(x)

defines a required compact homotopy wetween £ and g.

(6.4) Definition. Let X and Y be two subsets of E and « be an element
of the divected set : . 4 fanily of g-fields ht s X »Y is called an g=homotopy,
provided H ¢ X x I » B is an g-napping. Two g-fields f,8 ¢+ X » Y are called

a=homotopic if there is an g-aomotopy 1, ¢ X » Y such that ho = f and h1 = e

t

Vo shall write f ~ g tomean that o-fields f and g are o-fields f and

& are g-iaomotopic.

The relation of «o~honotopy ig an equivalence relation in E&(X,Y) and there-
fore decomposes tie above set into disjoint g-homotopy classes. If fsqy(X,Y) e
let [fjw denotve the g=inomotopy class which contains f . The set of these
classes will be denoted by ﬂy(X,Y). We note further tlhat the relation ™ satig~
fies the compositive property in the definition of an h~category and consequently

it converts ¢ into an hesuvcatezory (GE,;@ of (J,“D.

(4
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(645) Let by, s X > 1 De a conpact homotopy. Then for every e > 0 there
et

exists an  o=aonotopy hy : X - E guch that

t
-lih_;(x) - h_b(x)H <& for all xeX .

Proof, This clearly follows from the Approximation Lemma.

To The extension oroblen for conwact fields.

Let ht : X »>Y be a compact homotopy (respectively an a-homotopy) and A Ybe

a supbset of X . Ve let ht!A = h;; denote the partial compact homotopy (respect-

. . : - - . 1 .
ively q-nomotopy) 3 in this cage, we siall write also ht c ht and say that n,

. . ). . - .
is an extension (respectively an a=extension) of h,  over X .

Given a pair (X,A) cE with A clased in X and a field (respectively an
a~field) £ : A - U we may concider the extension problem for f , i.e., the

problem of extending f over X in & (respectively in &5a).

The following important lemna asserts that under some hypotheses this problem
depends only on the homotopy (respectively o=homotopy) class of a given field £,

(7.1) (Homotopy Extension Lerma). Let (X,A) Dbe a pair in E , A Dbe closed in
X and U an open set in B . Let h;; :A->U (0=+%=1) bea compact homotopy
such tiat hé(: hoas(X,U). If either (i) B ig complete or (ii) h, igan

a~homotopy, then tiere exists a compact homotopy (o/—homotopx) ht : X -»U such

t .
that ht Chy .

Proof. Let us put T = (X x {0}) U (A x I). By the assumption, there is a
compact mapping (o-mapping) B : T -1 such that
f t
l H'(x,t) for xeA , 0=t =1
B (x,%) =

I
(@]

j{ Ho(x) for xeX , t =

L
and

x = B (x,t)eU  for all (x,t)eT

Since T is closed in X x I , there is, in view of Lerma 4.3, a compact extension

H s X x I~»E of Hf over X x I . Putting
B={xHjx-~ Ho(x,t)sE - U for some teI} ,

We may suppose tiat tiue closed set B is not empty. Ve note further that A and
B are evidently disjoint. Now take a real-valued function ) : X - I such tiat
AMB) =0 and A(L) =1 and put

H(x,t) = H (A (x)t) , (xeX , teI)

lt(x) = x - H(x,t) s (xX , teI)
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It is easily seen tlat ht ¢ X » U is a required compact honotopy. The proof is
coripleted.,

(7.2) CNROLIARY. Let (X,A) be a vair in E with A closed in X and

£ 098, 3 A -U two qg-homotopic o—=fields. If there exists an o-extension

£f:X->U of fo over X , then there exists also an o-extension g of g

over X and such that f and g are o-homotopic. If the space E is coaplete,

the above is true for arbitrary compact fields fo and 8,

Remark. For some pairs (X,A) in E Lemma (7.1) and its corollary hold with-
out assuming E to be complete. It is not, however, known whether the above lemma
is true for arvitrary-closed pairs without tie above additional hypothesis.

8. The meneralized suspension and the cone functors.

Notation. Given a linear (closed) subspace M1 of E we let 8y denote the
unit sphere in ¥ . We assume that we are given a direct sum decomposition

E=N2D2N where I and N are complenentary linear subspaces of E .,
(841) Definition. Given a subset X of N we let
SM(X) = {z = tx + (’l--Jc);y'Q'E;xeX,ye.‘S:i\T s 0= %=1}

4

be the union of all seguents in & joining points x in X with points y in
the unit spaere SI’I o Given two subsets X and Y of N and g mapping £ ¢ X > Y
we let SI,I(:::) : sM(x) - SM(Y) be the mapping defined for xeX , yeS; and
0o=+t=1 %y

s.”(f)(tx + (1=t)y) = t£(x) + (1-t)y .
We say that SM(X) and S?’i(f) are the M-guspensions of X and f respectively.

For a linear subspace N of T denote by ip(N) the category whose objects

are subsets of N and whose maps are continuous transformations between the objects,
Note tiat for any two composable mappings f and g in P(N) we have

SM(E’,' o f) = Sﬂ(g) ° SM(f) .

It follows tihat the assigmments X - SM(X) , £ - s},i.(f) define a covariant

functor S, from p(N) to B(E) and called the generalized li-guspension functor.

(8.2) The M-guspension functor S, has _the following properties :

(i) Aif X is closed (respectively bounded) in N then so is SM(X) in E ;
(i)

(iii) if the fields (respectively o=-fields) f and g are conpactly honotopic

I
()

£ is a compact field (wrespectively an g-field) then so is Sﬁ(f) $

(respectively o-homotopic) then so are their Ii-guspensions Sr"(f) and S"‘I(g)'
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Proof. (i) is evident. To prove (ii), write P(x) = x - f(x) and take a

compact set C <N such tiat F(X) = C . Note that the set C, given by
C, ={zNs z=1tw , 0=t =1, weC)

is also a compact subset of N . Since for an arbitrary point z = tx + (1-t)y of
SM(X) we have

Z - Snli.f(z) = t(x-f(x)) € ¢ ,

it follows that SM(f) is a compact field. The proof of (ii) is completed. The
proof of other assertions is similar.,

(843) Let N be a finite dimension and X be a compact subset of N , Let usg
put U =N-X and U = B-Sy(X). Then the inclusionmap i : U - U induces an
isomorphism

iy, 3 ﬁn(UO) ——>nn(U)

of the nomotopy groups for all n < dim N-1.

Proof, By assumption, N = Loz for some €L o Let us put Ly = {veg,o = “o}‘
Cleaxrly, ‘go is a cofinal subset’of £+ Now, for any relation ¢ £ p in 5:0 y

let

i : U - T, and i 22U -»T
of o P o o

denote the inclusions. Congider the corresponding direct systen over 3:0 of homo-
topy groups {ﬂn(Uoz);(iaB)*} and the direct fanily {(ioe)*} of homomorphisns

(ia)% g ﬂn('Ua) —>Trn(U) .

It follows from Leumma 4.2 that

- {6 ). Lin (m () 5 (i)} »m,(0)
o o

is an isomorphisme. On the other hand, if n < din N-1, then, by finite dimensional

argunent, it is clear that

(101001)* g nn(Uao) —>1Tn(UC¥)

is an isomornhism and our assertion follows.

(8.44) Definition. Let y+ ve a fixed point in S . We define the cone

Ui
functor C : B(N) - B(E) by putting for X c N

C(X) = {8B; z = tx + (1-t)y+; xX , 0= %

JiA

1}
and
cf(z) = +£(x) + (1-t)y"

for any mapping £ : X a Y with X ,YCE.
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(845) The cone functor C hag the following properties :

(1) if X is closed (resp. vounded) in N +then so is C(X) in E

e

(i) 4if £ is a compact ficld (resp. o-field) then so is Cf

(iii) if the fields (resp. o=fields) f and g are compactly homotopic (resp.

a=honotopic) then so are Cf and Cg .

9. The Leray-Schauder category 5,

Denote by H(E) or simply by 5 the h-subcategory of & (I)
generated by closed bounded subsets of E , ©(E) will be called the Leray-Schauder

category corresnonding to the linear space E.
In what follows, the category . being of primary interest, we shall be con-

cerned with such geometrical properties of its objects that remain invariant under

the equivalences or homotopy equivalences in & .

Remarik, ITn all that follows the objects of the Leray-~Schauder category @(E)

will be simply called the objects.
(9+1) There exist two equivalent objects X, and X, such that m (E=X.) =0
and ™ (B-X,) £0 .

Proof, Let B =MD N be the direct sum decomposition of E such that
dim N = 3, Let Y, De the unit interval in N and Y, c N be the Artin-Fox
example (cf. [1]) i.e. the set homecmorphic to Y, with m (N-Y,) #0 ; let

f:Y -Y, denote the corresponding homeomorphisme.
Now we let
% o=8,%) 5 X o=8,(%),
Clearly, by (8.2),
Syf ¢t % = %

is an invertible compact field and thus the objects X, and X, are equivalent
in »H(B) . On the other and by (8.3) m (B=X,) ®m (N-Y,) #0 and m (B-X, ) = O,
The proof is completed.

Remariz. It can be shown tlat all the homology groups Hq(E—X1 ) and Hq(E—Xe)
vanisn. 3By talzing, instoad of Y, , the Alexander horned sphere in N and by
repeating the above construction, one obtains two equivalent objects X and X,

in L(B) sueh tat

il

m (B=X, ) =0 , m (B=X,) £ 0
H (B-X, ) %HO(E-XQ) N7,
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II. CONTINUQUS FUNCTORS

In what follows our basic constructions depends largely on the continuity prop-
erty of the functors under consideration. This chapter is devoted to the above prop-
erty and its main result can be briefly stated as follows : every continuocus functor
defined on the subcategory 2 of @ admits the unique extension over g . Through-
out the chapter Ao stands for a contravariant functor from sgo to the category A.

1. Approximating families and the carriers.

Notation. @o being dense in  , we let for X in bo
Mx) =2 (X)
and for a field f£f : X -»Y in 2, we denote by
£ = A (£) + A(Y) » A (X)
the map in A induced by f .

(1.1) Definition., Let Y be an object. A family {Yk} of objects indexed by
a directed set N is said to be an approximative family for Y provided

(i) Y cY, for any relation ksn in N,

(ii) Y = kQN Y .

In case N = {1,2,...} such a family will be refered to as an approximating
sequence for Y ,

We note the following evident proposition :

(1.2) Let Y be an object and « be an arbitrary element of <. . If
{Y,hon is an approximating family for Y , then so is the fanily {Y, NI}y

for Y
- o
Let Y bve an object and [Yk}keN an approximating family for Y . Denote by
ilm s Yn - Yn k=n
jk : Y - Yk ke N
the corresponding inclusions, all of them being finite dimensional fields.

It is not difficult to see that the objects }\(Yk) together with the maps
i¥ ~&iven for every relation k =n in N form a direct system {A(Yk);i]";n} in
A over N and tae family {j; of maps

ji’; : X(Yk) - )\(Y)

is a direct family of maps in A ,
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Consequently, we have the direct limit map in A

Ll_:igm {jiv’: : L%)m {k(Yk); i} - A(Y)

(1+3) Definition. We silmnll say that a functor A, t 9, —~A is continuous
provided for every object Y and an approximating fanily {Yk}ka for Y , +the
mep Lip {Jl';} is invertible in the category A .

k AW

Given a pair of objects (X,4) 1let Jpx ¢ & X De the corresponding inclusion.

In the following definition we assune that >‘o is a functor from o to the
category of abelian groups.

(1.4) Definition. Let A De an object, x be a point in A and £ a non-
trivial element of A(A). An object Sx(g) =Y contained in A and containing x
is called a carrier of § (with respect to x) provided jﬁ(g) £0 . A carrier
SX(g) of the element ¢ is said to be gssential (with respect to x) provided for

any object X C Sx(g) containing x we have j}’éA(g) =0 .

The following lerma expresses an inportant property of continuous functors :

(1.5) Lezwm, Let 4 De an object and xeA . If the functor A : o  ~Ab ig

continuous, then for any non-trivial elenent § of A(A) there exists at least

one_essential carrvier S _(g) of g with respect to the point x .

Proof, For an element € # O consider the set . of all carriers Sx(g) cA
of ¢ partially ordered downward by inclusion. If {Yk}l'eN is a totally ordered

subset of 4. then the intersection Y = N Y, is a non-enpty object and {Y }. . 1
X el k k' keN
is an approximating family for Y . From the continuity of the functor ko we

infer that Y is a carrier and thus {Yk}keN ras a lower bound in a . By the

Zorn Lemnw, the set Sy contains a unininal element which is a required essential
carrier for & .

2. approxirating systems.

Notation. For an object Y and a matural nuuber k we let
v | {xE , »(x,Y) = % } .
To a sequence {Yk} we assign the enlarged sequence {?k} by putting

T =B, o(xY) =g ) .
We begin with a proposition concerning approximating sequences.

(241) Let {Xh:} and {Ykl be two approxinating sequences for X and Y
respectively and let f ¢ X, - E De a conpact field. Then
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(i) (Xk U Yk} is an approximating sequence for X U Y

(ii) {3'(1,} is an approximating sequence for X 3

(iii) f(Xk) is an approximating sequence for f£(X).

Proof. Properties (i) and (ii) are evident. In order to establish (iii) it is
sufficient to prove the inclusion

(=] [s23
n f(Xk) < f( n xk) .
k=1 e=1
[++]
Let vy ¢ ]J_l f(X.k) ; We ave y = f(xk) , wiere xeX, and thus y = x_- F(xk).
Since F is compact we may assume without loss of generality that 1lim X =X
o] k.—_OO
Consequently, ¥ = lim f.‘(xk) = f(x)., Since xe¢ 0N X, s this completes the proof.
k= k=1

(2,2) Definition. Let X and Y bhe two objects and let f : X >Y be a
compact field. 4 sequence {Yk’fk of objects Y, and o, -fields f, : X > Y,

k
is said to be an approximating systen for £ , provided

(i) {Yk} is an approximating sequence for Y j

(ii) £~ §f in 3 where J_:Y oY

. X is the inclusion 3%

faa s in - N [ ie b i X -
(iid) £ R8 £ din o, where iy ¢ Y -Y, is the inclusion (k = n).

(2.3) Let £ :X->Y Ye a compact field. Then, for each k , there is an
1~
(%) , such that

oy ~field £, 8 X->Y, , where Y =
f(x) - £ (x), < L for all xex
1&. i 1{ re————t—

moreover, {Yk,fk} ig an approximating system for f .

In what follows any system {er,fk} as in Proposition (2.3) will be called a
standard approximating system for £ ,

We note also the following evident proposition

(2.4) Let {er’fk} be_an approximoting system for a field f : X »Y and

{?k} Ve an aporoximating sequence for y such that for each k we Jave Yk c Yk?

Denote by A R Yk he correspondinz inclusion and put :-f"l, = 4, £, « ZIhen

{Tk’-fk} is again an approximating system for f .

In what follows we assume tihat >‘o S oo ™ A is a continuous h-functor from "Jo
to A .

Let X and Y %he two objects and f : X » Y be a compact vector field., Let
{Y;’fk} be an arbitrary approximating system for f .
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In view of the definition of an approximating systen to an h~commutative
diagran in 3o

i

) Y
n
£
- n where k =n
X

corresponds the comutative diagram in A

£
_: W

M, ) =)
A(x)

Consequently {.Lk} is a direct sequence of maps and therefore

Lim {.c } g L_Lm {}\(Y ), i} - A(x) .
2 m

(2.5) Let {Yk’fk}’ and {i,—'fk} be_two approximating systems for f as in
(244) and let Bt Y _’Yk’ilr : Y = ?If denote the correspondine inclusions. Then
we lave

. o, o ok -1 . ¥ . o —1
L%m {1{2} (Ll%’m (Jk}) = L%m {fk} (L%m {lk})

Proof. Since for each k the diagram

Yk
e /R E
/

Y X
= J/ ra
%? . fk

k

is commutative in Ag it follows tiat its image under >‘o in A 1is also
commutative,

A(Yk)\
T
i \i*
v

A (Y)
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By considering the corresponding commmtative diagran in the category of direct
systems of objects in A and applying to it the direct limit functor we obtain
ne following commutative diagranm

Lin M(r)s 3
< \-

Lim {j;} T Lip {£}}
i ! \ ¢
A(Y) \S A(X)

Lim { | Linm {F*
m lk} \ %m i

L%“ ar)s )

This, in view of the continuity of AO s implies our assertion.

(2.6) et { 51, {v k"k} be two approximati=g systems for a field f : X » Y
with the same seguence {v k Consider the enlarged sequence W, = ﬁk} denote

lox i e Y- Wl s Ay 3 Y - Wk the corresponding inclusions and put g = ﬂ,}, fk ’

gk = J " Then {w ,g,} and {\fk,gh} are again approximating systems for £

\.

and we mve S

L:Lm {g } (Lm {J,V}) 1o Lm {g¥) (Lij_’m ()
<

Proof. In view of the definition of an approximating system, the fields
fk’fk g X - ch are compactly homotopic for every k . Let hgk) ¢ X = Yk be a
corresponding compact homotopy joining £ and 'f‘k . In view of the Approximation

Lemma there exists an ak—homotopy Etk ¢t X »E such that

989 - B0 <L forall (k) XK I

Clearly for each point (x,t) = X x I we have ﬁ_gk) (x)€Wk and consequently
E(k) may ve viewed as an a/k-homotopy 1—11(;1{ : X - WP . Agsuning without loss of

generallty that f and 'f‘k are ozk-fields, we evidently have B ~ h(()k) s

ék ~ hl( k) and ’cnerefore &g E:;k .

This implies gz‘{' = é‘; for each k , and the proof is completed.

(247) Assume tlat {Yk,fk} and {Yk,fk} are two arvitrarily given approximat-
ing systems for a field f: X ->Y . Denote by J : Y ->Y,_ , i : Y—>Yk the
corresponding inclusions. Then we have

Lim {1*? (.a.lli‘ {3 }) 1 L:Lm {f*}o (L:m {,11”)"
) k'
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Proof. Let us put for every positive integer k
W - 7 (k)
e = (N, U L) .
In view of (2.1), {Wk} is an approximating sequence for Y . Denote by

2 o 1 I v
Sk Yk - \Jk and e © Yk ->Wk

the corresponding inclusions and define the fields

gk’gkgx'—)wk

by putting

= f'1«: fk and & = Lk fk ¢

&
Note that {Y.J_,gk} and {Wk’é’:} are both approximating systems for f£ . It is
clear that the pairs {Wk,gk} y {Yk,fk} and [Wk,ék} , [Yk,fk} satisfy the
assumptions of (2.5). Now, our assertion follows from (2.6).

3. The Extension Theorem for continuous functors.

(3.1) Definition. Given a compact field £ : XY, let {Y,f;} be an
approximatin g system for f and let Jy ¢ Y - Yk be the inclusion., We define
the induced map:

% 2 A(Y) = A(X)
by the following formula :

£ = Lip (53 (Lp (D™

(3.2) The definition of f£* dogée not depend on the choice of an approximating
systen {Yk,fl,} for f .
Proof. This clearly is a reformulation of (2.7).
(3.3) Definition. Define the function A : % » A Dby putting for X in §
>\.(f) = f* .
and for a compact field f in 3
A(E) = £%
(3.4) It

feuy
the functor }‘o from ':bo over & .

o » lhen ko(f) = A(f). In other words, A is an extension of

Proof. This follows from the definition (3.1) by taking for f an approximating

sarstem {Yk,i'k} with Y, =Y and f = £ forall k=1,2,...
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(3.5) A is an h-functor from tue Leray-Schauder category & to the catezory

A o In other wvords, the induced map f* satisfies the following two properties :

(a) if the fields f and g are compactly homotopic, then f£* = g*

o

(v) for any two composable compact fields f and g we lave (gf)* = £% , g%,

Proof of the property (a) : Assume that the fields f,g : X > Y are compactly
honotopic and denote by hy : X-Y (0=t =1) a compact homotopy such that

h =L and b =g.
o
By the Approximation Lerma there exists an ak-homotopy hgk) $ X > Y(k) (0=1t=s1)

satisfying

Hh_g_'k)(x) - ht(x)H <,1—{ for all (x,8) ¢ X X I,

Let us put f, = ngk) and g, = hl(k) for every k . It is easily
seen that {Y(l‘) ,_1} and {Y(“c),gl} are approximating systems for f and g
respectively. Since for every k the oy ~fields Ij,g & X - Y( are homotopic

in g, , it follows that Linm {£f} = Lip {Qﬁé} .
Consequently, we nmave ¥ = g* and the proof is completed.

Proof of property (b). (Special case ¢ for finite dimensional g). Given two
compact fields £ : X ->Y and g: Y -»>2%2 , assume that g is an ao-field and

let h =gf « Ve shall prove that h¥* = £% , g% ,

(&)

Take a standard approximating systen {Y(k) ,fk} for £ ; Lemma T.4.3 implies
that there exists an ao-field ] Y(1 - I sguch that g 4is the contraction of
g to the pair (Y,Z).

Let us put for every k = 1,244

By (2.1) bota Wy
the following diagran

and Wk are approximating sequences for Z . Now consider .

£
X Y g

l
=

w*:

in which i.,: ané j,)_ axre tiae inclusions, & is defined by

5.0) = o) for yer(®
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e = G o0 Ay e

Since for every k both £, and
the fields

g, are finite dimensional we may apply to

h = ék o £, and g =5, o i
the functor }\o and therefore we ave
h{i-—fl’"{f'; and g‘*ﬁ:ie\’-@e.
Consequently,

Lin {1} = Lim {fi:} Lin {g;a} L.u:x (£} (Lim 1*) ! Lim {
X o k -k i X

1,

and tius
tp () (i {303)7 = £¢ Lin {g] (m ()7

Further, it is clear that {‘\1’7'1 s} and {ﬁ s8] are approximating systems
for h and g respectively. Therefore, it follows from the last formula and
Definition (3.1) that ¥ = £% , g%, and the proof is completed.

Proof of the property () (general case). et f ¢t X »Y and g: Y ->% be

two compact fields and let h = gf

Let {z,(“) yin} and {7t ),QT

and g , respectively. From the meq_ualities

be two standard approximating systems for h

”hk(x) - ?1(x)" < - for all =xeX ,

1I°kf(x) - h(x)]] <11; for all xeX ,

it follows tiat for every integer Lk +the fields & nl s X = Z(k) are homotopic

in 5, This implies, in view of property (a), tnat h{\c = (gkf)* . BSince each g

is finite dimensional we have, by the proved special case of property (b)

and tlus we ovtain

il

I k k

This duplies ¥ = £% o g% and the proof is completed.
We nov sumarize the proceeding discussion in the following

(3.6) THEOREM. Let Ay e 9, >4 De a continuous contravariant h-functor. Then

7‘0 can e uniquely extended over . to an a-functor A : 3 - A ,
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Proof. In view of (3.4) and (3.5) it is sufficient to prove only the uniquemess
of an extension. But this, in view of the definition of an approximating systen,
follows clearly from the formula ("). The proof is completed.
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III. THE FUNCTOR H 2,

Now given a cohomology theory HB* on the category KE s We shall construct for
every n a contravariant h-functor H 0 fron the Leray-Schauder category & to
the category of abelian groups. IMirst, we define a functor Hz-n on Q. . Then,
using the continuity of H¥ on I‘E and an algebraic lemma on "interchanging double
limits", we show tihat the functor Hog "M is continuous and get a unique extension
™ of ™ over % .

1. Prelininaries on the Mayer-Vietoris homomorphism.

°

Notation. Ve denote by b any of the following h-~categories :

§H = the Leray-Schauder category on E 3

the full subcategory of ; generated by the compact subsets of finite
XE = Qinensiomal subspaces of B
In what follows, by a triad in b we shall understand an ordered triple
T = (X3% ,X,) of objects in b such that X =X U X, and, by a map
| £ (x5x %) - (6%,,%)
between the triads, amap f' ¢ X->Y in b wich carries X; dinto Yi for
i=1,2.

Let 92 be the h-category of pairs in d and let 2 3 5° - 9® be the cova-

riant functor defined by

]

3(XyA) = A = (A,0) for any (X,4)e"® ,

A ->3B foranymp f : (X,A) » (¥,B) in 92 .,

o(£) = £],

(141) Definition. A cohomoloay theory H¥ = {Hn,an} on b is a sequence of

contravariant »n-functors
B 2 52 - Ab (=0 <n<+o)
together with a sequence of natural transformations

§2 s 1 3~-—>Hn+1 (-2 <n<+w)

satisfying the following conditions s

(a) (Strong Excision). If (X34,B) is a triad in 6 and k : (4,A N B) -» (X,B)
is the inclusion, then H (k) : HX,B) ~ H*(A,AN B) for all n .

(v) (Bxactness). If (X,A) isapairin b and i:A-X, j:X- (X4)
are the inclusion maps, then the cohomology sequence

I O T S R A N S 7 TR ¢ O7Y B

of (X,A) is exact.
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(c) (Continuity). Given an approximating family {Yk}k en ©Of objects in b for
Y=n Y’: we have an isomorpiism for each n @

B(Y) ~ Iap {B(Y),i ) ,
(1) % 13p (25,18,

wihere i, T, =Y, , (k = 4) stands for the inclusion.

Convention. Cohomology theories on % are denoted by

% o (0™

where H 0 and 60 play the role of H " and 6 in Definition (1.1).

Ir 7% = {#"™,6°™"} is a cohomology theory on 5 , then the graded group

E™(S) , where S is the unit sphere in E is called the group of coefficients
of the theory K.

The aim of this and the next ciapter is to show that any cohomology theory on
KE gives rise to a geometrically meaningful cohomology theory on 3 . The rest of
this section is devoted to general remarks on the Mayer-Vietoris homomorphism which
are applicable both for cohomology theories on KE and on 3 .

Let H* be a cohomology theory on » . Given a triad (X% ,X) in b with
A =X NnNX , denote by

;jo1 s A X j% s A > X
JI.l :X1—>X iQ:XE-éX
ot X (X,%) B ot X - (X,X%)

the correspondinz inclusions.

Definition. The Mayer-Vietoris cohomology sequence of a triad (X;X; ,X,) with

A =X NX, is the sequence of abelian groups

ey 8 e 3 M) o ) ¥ @) ...
in which & and ¥ are given by

5(5) = ((8) () for g B(X),

Wee) = 0% (6) - 35 () 2or g ¢ Bx)  (1-1,2)
and the Mayer-Vietoris homomorpiism A" is defined by

hf“n = jf(' ] (l:*)-l ] én—1

where k is the isomorphism induced by the excision k : (X, ,A) -» (X,% ). We skall

often drop the superscript n on ., When there is no danger of confusion.
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Definition. The cohomology sequence of a triple B < A X with inclusions

A 5 wm 3 o3 3 xa)

is the sequence of abelian groups

et ne-1 . a3 ‘5%
' (4,B) 9 B(x,4) & EY(x,3) I H(4,B)

. . . s n-1 | .
in which the coboundary homomorpiism is defined as the composite

s n-1
) 5 e § H(x,A)
By purely argument we deduce from the axioms

(1.2) The iayer-Vietoris sequence of a triad (X;X ,X,) is exact. If
£ (X% ,X) » (¥3Y, ,Y,) is a map of one triad into another, then f induces a

homomorphism of the layer-Vietoris sequence of the second triad into that of the
first.

(1.3) The cohomology sequence of a triple is exact. If f : (X,A,B) - (X!',A!,B?)
is a map between two triples in © , then f induces a homomorphism of the cohomow
logy sequence of tne second triple into that of.the first.

Let T = (Ash ,A,) and T = (X3X% ,X) be two triads. Then, T, is a sub-
triad of T , written TO cT, provided AcX and Ai c:Xi for i =1,2 3 To
is said to be a proper subtriad of T , written TO &T , provided Ai =AN Xi
fOr i = 1,2.

If T €T, thenclearly T cT and A =4 NA, =ANX_ , where
XO =X i1 X, y moreover, the inclusions _
ar (K A) - (KN Ay )
ks (X X, N A ) - (XX NA)
are excisions.
Definition. Given (434, ,4,)E (X5X, ,X,) we define the relative Mayer~Vietoris

homomorphism
SRR SHCRTREEN S¢ ¥

°

by
s g% () Yo 6 o (g¥)t ,
where
5=H“’1(XoﬂAgrAg) - H“(xg,xoﬂAg) SLE 1
is the coboundary homcmorphism of tie triple (X, X, N4 oA ) ATCIRE

3 PURES

INSTITUT FOURIER
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and
i (X,A) - (X,%, N A)

is the inclusion.

The following proposition is an immediate consequence of the definitions
involved :

(1.4) To a_commutative dicgrem of triads

(353, ,8) € (¥5%,,%)

& Tf

(A?Aj_ 9-‘33) € (X5X1 9Xg)

corresponds the followirg commutative diagram of gbelian groups

el (¥ ,B) ——2— 24(Y,B)

L
g= £

g1 (xod',Ao) &, Hx,4)

2. Orientation in E .

We begin by defining an orientation in LO[ » To this end, consider the set of

o) or dimension

all linear isomorphisms from L(y to the euclidean space R
d() (we recall that d(y) =1,

Call two linear isomorphicis i sdy ¢ Lo: - Rd(o’) equivalent, 4, ~ 2, ,
provided 45t ¢ GL, (a(w)) , i.e., the determinant of the corresponding matrix is
positive, With respect to this eguivalence relation, the set of linear isomorphisms
from Lc: to RG‘(O") decompozes into exactly two equivalence classes. An arbitrary

choice woz of one of thens classes will be called an orientation in L
o

Let us choose now tor sach e an orientation ua in Ln and call the
family o = {"'%,} to e an orientation in B .

o

Given an elementary relation ~ < g in ¢ and :aaewd y there exists )?,Bewa
such that zB(x) = zd(x) for all xely .
Ve let
+ -1 (pd(B) - -1 (rd(8)
L, =4t (R and L- =g ' (R .
B B ( + ) B B (R )
and LE'; depends only on the orientations of

+

Clearly, the definition of L

L and L ., -
8 o

33

1
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As a consequence; given an object X and an elementary relation +v<p in

£y » ‘the orientations of L = and LB determine the triad (X.3 X) where

g**

-

0 + - -
X' =XN1L and =X
8 3 X’3 XN L[_3
and such that

-+ -
X = X ﬂ .X . .
X 3 g

(2.1) Let X and Y be two objects, f : X »Y be an v -field and let o < B
be an elementary relabion in ¢, gsuoh that ~ =o<p . Then f£(X ) cY and

fq , Xn =Y, induces a map, alsg denoted by f of the triad (x _;X;,X;), into
- 5 538 into
tne ur:;.ad (Y “Y B)'

3, Definition of the group H° 2(x).

let B¢ = (E1,51) De a cohomology theory on K and X be an arbitrarily-

given object of the Leray-Schauder category & . Now starting with H¥, we shall

define for an integer n the group H (X).

First, we fix an orientation o = {w ! in the space E . Next, for any relation
54

vy 23 in JX we define a homomorphism

) gtldmng ) L g
o i}

@

as follows : if ~ = 5 we let ve the identity. If + < g is elementary,
ve let (ﬂ) be the l’Iayer-VLetorl homomorphism of the triad (X ,XB XB) with
N X X .
D B o
In oxder to extend thig definition to an arbitrary relation -~ <@ in o Ve
shall need the following lemma ¢
(3.1) LEIA, Let X be on object and » < be a relation in =, such thab

a(p) = d(y) + 2., Assume ¥t v <y <B and o < v < B are two different chains

in oy Joining ~ and £ . Iien

-~ O 3 =40 o e
Syp o ey Yo o Tay
The proof of Lemma 3.1 is given in section 7 .

(3.2) Definition. Let ~ < Te an arbitrary relation in 5 and let
@ =y < 2 < eee < Chegq =P e a ciwin of elementary relations in ;X joining
and B . Ve define

() _ () (n) (n)

- e e

- — LS
o O.’1 B o Ug oy

as the compogition of the corresponding Fayer-Vietoris homomorphisms.

—

It follows Trom Lerma (5..1) sac tne definition of (g) does not depend on
o

the choice of the ciain o yev el Jjoining « and .
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Consider now the abelian grouvs Hd(a) n(X )  together with the homomorphism

_‘;CEE) given for cach relation o <g in ¢, . The family { d(oz)-n(x )sa (n)
indexed by ’x will be called the (w=n)-~th cohomology system of X corresponding
to the theory H¥* and the orientation w in E .,

(3.3) {Hd(a)_n(xa);géﬁ)} ip a dircct system of abelian groups over &y .

Proof. This follows clearly from Lemma (3.1).

(344) Definition. For an object X we define an abelian group

() = 1 (10O )50 (0

d

to be the direct limit over =, of the (0-n)th cohomology system of X .

Remark. We note that the group H° (X) depends only up to an isomorphism, on
the orientation in E uged for its definition. In fact, suppose that {wa} and
{Goz} are two oxientations in E . These determine two direct systems of abelian
groups Hd(cx) n(X ), A(n)} and. {Hd(d) n(X ),A( )} respectively. For each o€Z

define o 3 d(a/) n(X ) - i) n(XCY) by B

1 lf %) = ; 9
04 o
Py = _
=1 if 0= - .
o o

Since f@a} is clearly an isomorphism of the above direct systems, it follows tiat

the corresponding limit groups arc isomorphic.

4. Definition of f£* for finite dimensional field f .

(441) Let X and Y be two objects and let £ ¢ X »Y be an ozo—field, where

o iy o Then, for every relation o < p in oy Such that a, <a <P, Zhe

following diapram commutbes

Hd(a)—n(Ya) — EZZ — Hd(o")-n (XQI)
(n) (n)
C(p L

Hd(ﬁ)—n(Y“) f’__g - Hd(“)-n(XS)

Proof. If o < 8 is elementary, this follows from (1.2). Our assertion for an
a.z:o;.tmry relation in ,.I;X follows then from the definition of the homomorphism
n

(441) implies that £ : X » Y induces a map
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PR d(a)-n R (n) d(or)=n a1
{e2} + {H (x)sa, ' - {E (X386}
from the (w=n)=th cohomology system of Y dinto that of the object X .

(442) Definition. Given a finite dimensional field f : X » Y we define the
induced homomorpiism

2 i (£ () - TR®R)
-> o
(04

to be the direct limit over ¢, of the family [q;} .

(4.3) The induced homomorphism f£* gatisfies the following properties :

(a) if 1 4is the identity on X , then 1% is the identity on Hn-n(x) H

(b) for any two composable finite dimengional fields f and g we have

(af)* = £* o g* 3

(c¢) if the finite dimensional fields f and g are homotopic in 2y then

Proof, This clearly follows from (1.4) and the definition of ég)'

We summarize the preceeding digcussion in the following @

(4.4) THEOREI, The assigmments X - H(X) for x€y, and f - £* for feu

define a contravariant h-functor HZ-n from the h-category (90,20 to_the

catexory of abelian sroups.

5¢ An algebraic lemma.

Given a directed set ¢ = {a,B,y,...}, denote by the same letter the

category naving as objects the elements of ¢ and as maps the relations o

tA

B in
, denote by (g,») the category of covariant functors
from ¢ to 5, di.es the category of direct systems of objects of b over

£ « For a small category Y

™ .
By Lim : (3,») > we skall denote the "direct limit" functor, i.e. the left-

adjoint to the constant functor from  to (=,u).

?
Let A= {k,:ymyeee} and £ = {Q,B,Y,...} be two directed sets. Denote by
2 XLAK’ the corresponding product category.

Given a direct system of Abelian groups

ne (e x fAAD)
let us put
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w(y,k) = B,
o
1
n(g < B, k=k) = A‘i;
@p
o < = e 4
’(‘(CY’ k= ,6) 1k,£, .

For any relations k=7 and ¢ = 3 we have the commtative diagram

Nt
1 .
Hl: K Hf;

k &
AO»’B l "ol
Rt
il
B ki - oo,

B B

with the maps {ii@} , {45“} ; (satisfying the natural functorial properties), may
be identified with a functor ue(: xJ0%Ab). We shnll write simply u = [Hg 3 oo

Clearly, each double system of Abelian groups {HE } , indexed by ¢ x A7 together

We shall make use of the following algebraic lemma on interchanging double
limits,.

(5.1) IEMA. For any double direct system of Abelian groups # = {HZ,.}
indexed by I XJ°, We bhave a natural isomorphism

r, ¢ Lip Lip(E5.] > Lm o Lin{i'%.)
0] k k o

between the limit groups s more precisely, if

{fi} : [Hij;o} - {I-i(l;;.}

is a map betwecn two double direct systems of Abelian groups, then the following
diagram commutes

Lim Lin (55503 e Lin Lim {HE;.}

o < ~ k o
Lipn Lim ka Lim Lim {fi}
~ He o

lip 4p {FS5.) - > Lip Lip (£5.)

o Lo ~

o
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6. Contimuity of the functor H”Z—n

B-III-9

Now we are prepared to show that the functor Hz-n is contimuous. To this end

take an object¥ and let{Y

k}keww be an approximating family for Y . Denote by
Gt YooY, 4, s Y, oY, (k= 1)

the corresponding inclusions and consider the direct system of abelian groups

(£, , i)

over A, to_ether with the direct family {j;} of homomorphisms

i BT E(Y)
(6.1) THREOREil, The map
N o . b ¢ . % L)
Lig {3} - lip (7)) 5 4,) ~E ()

is an isomorphism. In other words,

n

OO
the functor Ho : Qo - Ab is continuous.

Proof, For an arbitrary element « in Sy and ke, let us put
1=
=Y N L
Y& k o
and denote by
. R k o, A <
Sy P Y, 0L ) I G Yﬁ (x = 3)
the corresponding inclusions.
Now, for any relations k= ¢ and ¢ =3 in 4 and Sy respectively, consider
the following diagranm
(52,)%
Hﬁ(a)—n(Yk) Hd(a)-n(yﬂ)
o l o
| |
k £
N
%18 j l o8
By

, md@)nty |

Hd(*‘)"n(ylg)

It follows from Definition (3.2) that the above diagram is commutative. Consequently,

d

the groups H (Q)—n(Ys) , together

determine a douvle direct system of

/] -] iz
simply by » = (83 R CIT R

. k
(iiz)* and QJB ’
.abelian groups over APx Ly which we denote

with the homomorphisms

Let n = {Hd(a)—n(Yd);.} be the (w=n)-cohomology system of Y. We shall treat

# as a doudvle direct system over

Now let us consider the double

a@>;2Y .

family of homomorphisms {jid} . Taking into

account the various commutativity relations between the inclusions, it follows from
Definition (3.2) that {jﬁy} is a map from % to X .
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In view of the continuity of the cohomology theory {Hq,oq} s the map

L_'3§m {j‘;';a} is an isomorphism for each gg:a,Y , and therefore so is the map
&

K
Lim Lij_),m [Jﬁa} . Consequently, in view of Lemma (5.1) the map
o z
. «3%7 _ . - o
L%?m {Jk} - L%)m L_:[.)m {ch{}
> %] [0

is also an isomorphism and the proof of the theorem is completed.

Now, Theorem (6.1), in view of Theorem (II.3.6), gives us the final result of
this chapter :

(6.2) THEOREM. The functor Hz_n oxtends uniquely from §_  over » %o an
hefunctor H 0 s H - Ab ,

7. Consecutive pairs of triads and Proof of Lemma (3.1).

Notation ¢ The following symbols denote the subsets of Rk'FI H
I+ Ie2
Q" = (xR 5 1 =0},
k41 k1 .
- A I =
Q‘+ {xe P X4 T 0} »
el Al
Q_ = {xcQ H Xk}Z = O} 3
o2 le+2 | -
ket? o oki2 | =
Pooo= {xeR PN T o} .

The proof of Lemme (3.1) will be preceded by a preliminary discussion about the
triads. \ie assume in this section that H¥ = {Hq,éq} is a cohomology theory on

the category KE « By a triad we understand an additive triad in KE .

For a triad T = (X3X ,X,) we let -T = (X3X,,% ) and denote by A1) , or
simply oy 4(T), the layer~Vietoris homomorphism s

M) ¢ Bx 0 %) - (x)
of the triad T . We note that
(1) o(T) = =a(-7)

Let T = (Ts5y ,Y,) and T = (X3% ,X) be two triads. A pair (TO,T) is a
congecutive vair of triads, written To T, provided Y, UY, =Y =X N X 3
We say in this case that (TO,T) starts at ¥; NY, andendsat X, UX

Ve observe that, if (TO,T) is a consecutive pair of triads, then we may form
the composite

a(m) o(r) = (D) o 2T s BN 0 Y) - B (R)

of the corresponding Mayer-Vietoris homomorphisms.
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(7.1) LEMA, Let us assume that in the following diagram of triads

R

T'm pt

the consecutive pairs

(TO,T) = ((Y5Y1 :Yg) .9 (X;XJ. !Xg ))

(m,20) = ((Tr5%,2), (X'sXt,%0))

both start at Y, N Y, =Y N ¥} and voth end at X = X' . Then, for the composites
of the corresponding Mayer-Vietoris homomorphisms wWe iave

a(T) o A(T)) = a(T') o a(T) .

Proof, This is an immediate consequence of (1.4).
(7.2) LETA, Let us assume that

((Y?Yl 9Yg) 3 (X3X1 9 X ))

and
(232, 125) 5 (X5¥, ,W,))

are two consecutive pairs of triads both starting at

YNzZ=Y,nNY, =% N %

and both ending at X « Assume further that

Z,=ZNX, and Y, =YNW, for i=1,2,
R 1 e— i 1
hen, we have
A(XsX, %) o a(YsY, Y, ) = =a(XsW, M) o (252 ,%,) .

Proof. Let us consider the following triads :

7, = (V5% ,Y,) ‘ T, = (X% ,%) ,

Ty = (0 X)) U Y )svnx,Y), T, = (% UW, X)) s
T5=(Y2UZ2','Z§,Y2) , '.1.'6=(x-,=x1 U W ,X, NW,),
g = (R NW) U Z5% 0Y,5,), Tg = (XsX, U W ),

T9 = (232, 44,) Ty = (XsW, W, ) .

We claim tiat every pair (sz__1 ’TZi) for i=1,2,3,4,5 is a consecutive
pair of triads starting at Y N Z2 and ending at X .

For i =1 and i =5, this is truc by assunption.
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Asgume now that i =2 . Taking into account the inclusions
L, =YW, cX, and Y, ¥
we have respectively
M NX)NY, =W, NY, =W, NW, NY=2N7Y,
Quw)ng =&nx)u M nx)

Yu (W 11%)
LuMnxg),

and thus the statement holds for i = 2,

Next, we suppose that i =4 .
to that for i =2 .

In this case, the proof is strictly amalogous

Agsuning finally that i =3 , we bhave

2, NY, =@ZNX)NENWw)=0GnWw)Nn TnNx)=20Y

9
and

Gy U¥)N (G W)

(X N NW)u (W X Nnw)

AN)u @Enx)=YU0U% .

Thus, tne proof of our statement is completed.

It

Further, we note the following inclusions between the triads
T, ,T5 c T3 5 T2,T6 cT

4
~T, T © T , TesTip © Ty o

The various established interrelations between the triads may be displayed as
follows :

m E——————Y\

N N N n
U ] U U U

Now, we le%b
Ai = ..J(Ti) fOI‘ i = 1,2,...,10

and apply Lemma (7.1) and property (1) to our situation. We obtain :

and the proof of the lemma is completed.
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Proof of Lemma (3.1).

Ve shall use the notation given at the beginning of this section. Letting

k=d(w) we mve d(y) =d(y) =k+1 and d(B) = k+2 . Define a linear isomorphism
k2 2 .
v : R - R by putting
00 seeesmoig 990) = (8 yeeeimomy 0 )
Now take linear isomorphisms
4 3 L —~>Rk, J AR T -+Rk+1 s 2 3 L —->Rk+1
o o Y v ~ § T~
Y Y
such that
t €ew s L € w ;@,,C(.UN
Y Y
and
5 (x) =2 (x) = ¢ (x) forall =xeL ,
Y ;? o o4
" . " . - k+2
There is g unique isomorphism 4 ¢ LB - R such that

2(x) = ﬂ\{(x) for all xeLY

2(x) = © o 4 (x) for all xel

~

Y Y

Consider the following triads

T, =xn @ R, BT
T, =X N g7 ( k2, le+2 9 R1f+2)
T3 =Xn gt (Qi-l-‘l; QI_EH , Q1f+1)
T, =Xn gt (RS2 Pli+2 , P<2)

By straightforward computation, one easily verifies that (T1,T2) and (TB,T 4)
are consecutive pairs of triads satisfying the assumption of Lemma (7.2).

We have therefore

There are two alternatives : either fey 8 or 4 € wg - Now, we shall show

that, in any of the above cases, we obtain the desired conclusion

() A

A .= A~ A~ o
vo ° Swr T e Sy

It ZsuB s Then cpo,-z € w, and we have
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By = 8T, s, = o(Ty)
~ = a7y,
by a(t5) ’ Me = -a(T,) .

Thus, in view of (2), we obtain (%),

If 4« =g 9 then ¢ o 4 ¢ w, and we have

B
AQ’Y = S(T1) ] [-\Ya = -L\(Tz) 9
b 70T s -

Consequently, again by (2), we get the desired formula (¥).

. The proof of
Lemma (3,1) is completed.
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IV, COHOMOLOGY THEORIES ON ¢

Having defined the absolute cohomology we turn now to the relative case and
snow taat to any cohomeclogy theory ¥ on KE corresponds certain "infinite
dimensional" coiomology theory H¥ on the Leray-Schauder category % . Ilore
specifically, for every n , we construct the relative cohomology functor
(X,4) > *™(X,4) , the coboundary transformation & © : E P(A) » E ™ (x,4) ,
and then we prove that H° X = {H"7,6"] is a cohomology theory on % in the
sense of Definition IIT.1.1 ,

1, The relative cohomology functor H™ O,

Notation : F =E ® R stands for the direct product of E and the real line
R 5 we congsider E as a 1-codimensional linear subspace of F . We fix a point
in P not lying in E by putting ¥y~ = (0,1) , where OcE , 1¢R .

We begin by fixing an orientation {woz} in the space E . For technical
reasons, we shall consider also an orientation in the space F 5 this will be

defined in a specified way as follows, Let and Ip be the directed sets of

£
B
finite dimensional linear subswaces of E and F , respectively, and ¢ o be a

subset of £F consisting of those linear subspaces a€ip which contain the point
y+ s clearly, 5:0 is cofinal in Lp s for e 'gE denote by o' the element of

. . +
So given oy Ly, = Loz PRy .

To the orientation { wN} in B we assign an orientation {Z}d} in F by the
following rule : If o€ly 5 We let ;d = woz . If ag‘xE and ag’.io , we define wa
arvitrarily. Assuming that ocf  , there is a pegy such that B! = o « We take

a representative £ L‘3 »Rk in wB s, Where k = d(s), and put

Q(X) = (31 (X) gees ,zk(x)) for X€LB .
- k+1 .
Now let 4 : LQ, - R be a linear map such that
(x) = (Os/‘?‘q (X)s-uyzk(x)) for KLQ ’

Z(y+) = (1 90900090)

and let Ea e the orientation of 1L determined by 7. Thus, we have defined
64

an orientation {wa} in F ; we call {Ba} an extension of {wa} from E

over F ,

From now on, We assume that such an orientation {& } in F is fixed.
o

Next, consider the categories
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and observe tiat @ and SQO(E) are h-subcategories of 2p and f_)o(F), Tres-
pectively. ‘e will denote by "f% and g, the corresponding h-categories of
pairs.

In wviat follows, we shall reduce certain facts in the relative case to those in
the absolute case. This will be done with the aid of a functor p from & to
Bp which will now be defined in terms of the cone functor as follows : Let
C 3 = Ip be the cone functor corresponding to the point y+ . Ve recall that
for AcCE

A

t

liA

CA) = (xeFsx=ta+ (I=t)y" , ach , O 1}
and for £ : 4 ->B in 3 the field ¢(£) is given by
c(£)(x) = t £(a) + (1-t) y* for all =xeC(a) .
Now, given a pair (X,A) in &y , let us put
XUCA if A4 4,
P(XsA) =
X if A=¢,
and for a map £ : (X,A) » (Y,B) in 3 define
o(f) =T :XUCA-YUCB

by
Cf(x) for all xeCA

F(x) =
£(x) for all xeX .

(1.1) The assignments (X,A) >X U CA and f - f define a covariant h-functor
o ZLrom the catesory if, to the category %y . LMoreover, we have p(”%(E)) c f'go(F)
and p(I’%) C XKy

Now let H* be a fixed cohomology theory on K, and (X,A) be a pair in Do
We turn to the definivion of the relative groups H (X,A) « To this end, for an
aelp such that X £d, let

s (X ,A X cA ,CA
S (oz’a/)—)(ozu o’ oz)
j ¢ (X cai X CA
‘]a ( o U a) > ( o J a)
denote the corresponding inclusions., Since e is an excision and GAoz has all
o
cohomology groups trivial, the induced maps
e* : H'(X U Ca ,CA (X ,A
~ ( ” U Aas O!) d ( ! a) ’

%« ®X U CA ,CA
i (x, U a,cg)—)Hn(XdUCA&u)
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are isomorphisms. Define an isomorphism

n, Hn(Xy,Ac{) - Hn(Xa U CAQ’)

n, =35 e ()2

o Y

Let o < p e an elementary relation in Ly and suppose that X is non~-empty.

Then (A3 Ab JA~) is a proper subtriad of (XB’XB’XB) and we denote the correspond-

ing rela.tlve nayer—VJ.etom homomorphism by

(n), d(x)-n S 2()-
a5 B (x4 ) g2 " n) -

Note that, in this case, (X U CA)Q, =X UCA andve Iave the following :

(1.2) Lermia. The diagran

Hd(c’)-n(XQ,Aa) “up . Hd(B)"n(XB,AB)
n, ,
()= A:/"" - a(p)-
gt n(xa U ca) b > gHB n(xB U cay)

in which Ay, ot is the Mayer-Vietoris homomorphism of the triad

(xu GA)p,g(X U CA)g,,(X U CA);,
ig commutative.

Now let « =p be an arbitrary relation in £, and o =o <o < see <o 4=8
be a chain of elementary relations joining » and p . We defme
@ 0 e )
"lrJ Oka’ 211 o

as the composition of the corresponding relative Mayer-Vietoris homomorphisms. In
view of Lemma (III.3.1) and Lerma (1.2), this definition does not depend on the
choice of a chain. Furthermore, the groups Hd(“)'n(x A ) together with the
homomorphisms (n) form o direct system of abelian groups over LX which we will
call the (oo-n)-th cohonology system of the pair (X,A) (corresponding to the
theory H¥ and the orientation {wd in E ),

(1.3) Definition. For an integer n we define the relative cohomology group

H™(X,4) = Lin g )-n(XaA)MCEE) }
[o 4

as the direct limit of the (w-n)=th cohomology systen of the pair (X,A) .
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Evidently, this definition extends that of the absolute group H (X) .

Now, for the orientation [Bry} in F , apply the construction of the previous
chapter to the space F and denote by R Q2 - Ab the functor corresponding
to H and the orientation {3 } e

bserve tlat, by Lemma (1.2), the famly {n } is a direct family of maps

d -5 -n-1%
between {H () 1(X ,A ),u( )} and {H\¥ d(a*)-n ((x U CA) ),A(?gl)j Moreover,
since for all 4 WJ.th a sufflmently large dimension d(a) the T] is an iso=-

morphism, we conclude that the direct limit map

n=Lip {1}« ©7(x4) > =) (¢ )

o

oo

is also an isomorphism.

(1.4) Definition. For £ : (X,A) - (Y,B) in %y We define the induced map

[ XY2

% = B £) by imposing commutativity on the following diagram :

£%(y,B) | £7(£) S BB(x,A)
il i
=Comitem |
f et
-co—l’l—1(Y U CB) H (£) N T 1(X U CA) .

Tus, B () = T o gon-1 (£) oM.

(1.5) The agsignments (X,A) » " 7(X,A) and f - £* define a_contravariant

h=functor o from the category 5% to the category of abelian groups. Moreover,

- ]
7 is a natural equivalence between the functors K N anda B (n+1) o p e

Proof, (1.5) follows clearly from the definitions involved and Theorem I1I.6.2,

. . n
2+ The homomorphism § .
—— o

Next some lemmas which will be used in defining the coboundary transformation

§° 1, For an object A in ty we let

s, - lacsgst A9 .
(241) Definition. For a pair (X,i) in % and qef, define the homomorphism
5;1 . gd(e)-n-1 (Aa) N Hd(af)-n(xa,Aa)
by putting
5 = (-1)3e) o(x_n )

where § is the covboundary homomorphism of the pair (X ;A ) .
(Xcv ’Acz) o’ o
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(2.2) Lemma. Let (X,A) be a pair in 2p o Then, for every relation o < g
in ¢ the following diagram cormutes @

“A
) o
aly)=-n=1,, o (@)=n
H AY — 5 !
@) i 1 (X 4 )
n+-1 n
byp S
n
%

a(p)=n=1,, R a(g)=-n
H (4,) > H (Xs80) .

Proof. Assume first that o < B is elementary. Let

5(1;1 . Hd(oz)—n—1 (Ad) N Hd(a)-n(xa U CAQ,) - Hd(oz')"n"1 (X U CAQ,')

denote the Mayer~Vietoris homomorphism of the triad (X U CAOZ,CAOZ,X ) . Evidently,
o

we ave
~n alw) n
= -1
6a' (=1) ° noz ° 60:
Next, we observe that the consecutive pairs of triads

L s cA) ,s(xuca)t, CA)”
(x uonsea x ), ((CUCa) ;s(XUCA), , (XUCA),)
ot "
(B 5i,87) (g U Chy

satisfy the assumptions of Lemma III.7.2. Consequently,

A ’XB)

n ~n ~n n+1
3 o = =0 o .
gt © O 8 ° %
Now we congider the diagram :
~N _1
6 il -
Hﬂ(a)"n-1 (L) o N Hd(cv)-n(x Uca) o4 5 Hd(af) n(X A )
o o o o’ o
n+1 n n
QZB %y'ﬁ' AdB
~Nn -1
- 6, a)m Ll 5)=
73(3)-n-1 @A) x3(8) (X, U CA) B , w26 x4 ) .
p B B , a

The composition of the top row homomorphisms equals (=1 )C)‘('Y)E>i1 and the composition
of the bottom row homomorphisms equals (-1 )d B)g® ., Since the left-hand square is
anticomrmtative and the right-hand square is, by Lemma (1.2), commutative, the

assertion follows. This, in turn, implies that A" o 67 = 60 o A7,
] B '

v 2l

for any
o = f and tne proof is completed.

The following two propositions are immediate consequences of the definition
n
of 6 .
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(2.3) Let (X,A) Dbe a pair in 3% and let i :A-X, J:X-(X,A) denote
the inclusion maps. Then, for every o in Ly the following sequence is exact
n+1

e T gy B @y e e,y B
[s] 84 o
(2.4) Let (X,4) and (Y,B) be two pairs in % and lot f : (X,4) - (Y,B)
e an o -field. Then, foreny o in £, such that o <o , Ihe following
diazram commutes
(@) by (@)
== o . @)=n
pile)n=1(, > BIT(x 4 )
(£, 1,)% (£ )*
6n
poler)-n-1 < » By 5
o o

3+ Definition of the co-boundary transformation 88,

Let (X,A) be a pair in zp « It follows from Lemma (2.2) trat the family
{6::} is a direct family of homomorphisms. The coboundary homomorphism

Sy BT @~ ETA)

is defined by

OmeY) _ N n
S(x,a) = Iip {6&} ’
Similarly, we let

3?;:1;) = Lim {(~1 )d(")‘é:} ™) o P xum) .
&

(3.1) The following diagrams commutes :
o=}
7 (a) ° 5 E(x,A)
T 2

=1y U ca)
Proof, This clearly follows irom the definitions involved.

(3.2) The family & = {6(x,)} dindexed by the pairs (X,A) in @ ise
ratural transformation from E*~P=1 [ 5 to K0,

Proof, In view of (3.1), it suffices to prove tmt, for f : (X,A) - (¥,B) in
fp » the following diagram is comwmtative
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~n-1 i comn=1
;i (B) > H (Y U CB)
(£],)* T*
r00em])

H00—1'1~1 ( A)

, 0 x y o)

is finite dimensional. In this special case,
we apply a straightforward passage to the limit in the commutative diagram of (2.2)
and (2.4) and the desired conclusion follows by (3.1).

Agsume first that the fisld

Consider now the general case and take an approximating system
k
i’:‘( ) : X,A) = (Yk,Bk)

for £ . The definition and the proof of the existence of such a gystem is similer

to that in the absolute case. It follows from (1.1) that the sequence

(k)
f : XUCA - 'Yk U CBk
forms an approximating system for T : X U CA -»Y U CB .
Consider the inclusions
- ; S
Jke -{UCB'éY]‘{U CBk’ JknB‘QBk

. S8 =
i, tY,UCB, >Y UCB , 1, :B -B (k=2) .

By the special case of our assertion, the following diagram commutes for caca
pair k=g

~COwaY)

=10, °(%,4) / BN (x U ca)
(£5)* \H‘”‘ "(p,) s B (Y, U cB,) - @)y
(8, » By, U o)
e
(30 0 (8,) ———— B 7(y, U cs) (3,0%
/ . N
If°-h-1 (B) 5 (Y,B) 5 ﬁoo-n-'] (Y U CB) .

Applying the dircct limit functor to the corresponding commutative diagron in

the category of direct systems of avelian groups, we obinin the following cormuta-
tive diagram :
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~ OnmY)}

(e l 1Lzenff“‘))*‘f
K K
. fopo=Di=1 . -n-1
Lin (777 (B3] ~ T (E7N(n U oB)s.)
Li 'S A : {*
in {Gp*} l o |
g1 (p) °(1,8) » vy .

By Theorem (IIT.6.1) the homomorphisms Lim { (jl'c)*} and Lim { ji} are invertible.
k k

This, in view of (3.1) and the definition of the induced map, implies our assertion
and thus the proof is completed.

(3.3) THEOREM. H°™ = {H"",6” ™"} is a cohomology theory on % . MNore~
over for each n we have

2 1(5) & B (point)

i.e. the coefficients of the theory H coincide with those of the theory H*,

Proof. The Exactness Axiom follows from (2.3) and the definition of
H ™ by passing to the limit with o .

To show that the Excision Axiom is fullfilled, let (X3;A,B) be a triad
in 3 with AUB=X 3 if k : (A,AN B) » (X,B) is the inclusion then so is
k:AyC@AnB) »XUCB. Since (Nkc[)% is an isomorphism for each o and
(i) L_:i_.)m{lc&} , it follows that Hw—n(k) is an isomorphism,
o

To show that the last assertion of Theorem (3.3) is satisfied, take the
(w0mn~1)=conomology system

{Hd(oz)—n-“l (5 ) 3

oY do:B}

of the unit sphere S in E ; note that,if « < is elementary, then Aoﬁ
{

coincides with the suspension isomorphism. Consequently,for sufficiently large
« 4 We have

§r=1(5) d(e)-n~1 (Sa)

and. our assertion follows,
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V. GENERALIZED CCHOLICLOGY THEORIES AND DUALITY

Assume that the starting point of our discussion in Chapter III is not a cohomology

theory H* but the stable cohomotopy %* on KE . Then, by applying previous con-

structions to this case, we are led to the infinite dimensional stable cohomotopy

theory Zm-* on © . It turms out that (more generally) to every spectrum A (in
the sense of G. Whitehead [14]) corresponds a (generalized) cohorology theory

{ﬁw-n( ;4)} on © . This being established, our main concern is the Alexander type

of duality in infinite dimensional normed space E :
D B TMX,Y;h) 2 5 (B1,B-%54)

where Hn 1( ;A) is the generalized homology with coefficients in A . Although the
above duality holds for an arbitrary spectrum A , we shall confine ourselves to the
case when A dis either the Eilenberg-liacLane spectrum K(II) (the Alexander-Pontriagin

duality) or the spectrum of spheres S (the Spanier-thitehead duality).

1. Generalized homology and cohnomology theories and the gpectra.

Notation :

P = the category of finite polyhedra ;

T = +the category of all topological spaces
W = the category of CW complexes ;

D = any of tle above categories

D* = the category of pointed objects in D ;
T = the category of pairs in D

[4)]

and ¥ stand for the suspension and the reduced suspension functors.

Let & : D° = I De the covariant functor defined by

$(X,A) = & (= (4,8) for any (¥,a) in DQ,

Il

3(f) = ffA : A>3B for any map f : (X,4) » (¥,B) in D° .

A generalized homology theory H, on D is a scquence of covariant h-functors

Hn : D° > Ab (— o <n< m) together with a sequence of natural transformations

an : Hn - Hn_{’ﬂ satisfying the Excision and BExactness axioms for homology. The

graded group {Hn(po)} ; where p_ is a point, is called the group of coefficients of
the theory Hy .

*
Similarly, a generalized cohomology theory H on D is a sequence of contra-

variant h-functors H' : D° - Ab (-® <n <) together with a sequence of natural
transformations 6n : HFFJOJ = satisfying thc analogous Excision and Exactness

axioms for cohomology ; the graded group {Hn(po)} is the group of coefficients of the
*
theory H .
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Thus, a generalized homology theory (respectively cohomology theory) satisfies the
Eilenberg-Steenrod axioms, except for the Dimensions axiom. The important examples of

generalized theories arc provided by the stable homotopy ancd cohomotopy.

Various generalized homology and cohomology theorics can be treated in a unified

manner within the framework of homotopy theory with the aid of spectra.

A spectrum A is a sequence {Ah} of objects of W¥ together with a scquence of
maps o ¢ ZA A, in W . If A= {An,ozn} , B= {Bn,Bn} are spectre, a map
f:A->3B 1is a sequence of maps fn : Anlé Bp in W such that the diagrams

o
n

ZAh i - Ahﬁi

Efn n+1

™
=
o v T

ZBn n+l

are homotopy commutative. Two such maps f and g are homotopic if and only if, for

cach n , fn is homotopic to g, * Clearly, the spectra form an h-category.

The simplest examples are provided by the spectrum of spheres S = {Sn,cn} in

which (In.: Y Sn'% Sn+1 is the natural identification and by the Eilenberg-MacLane-

spectrum KGI} defined for an abelian group i . An important example of maps of
spectra is provided by the Hopf-Hurcwicz map h : S - K(Z) .

In what follows we shall consider various homology and cohomology theories on
various categories with coefficients in a spectrum,.

We recall first some basic facts duc to G. Vhitehead [14] :
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(1 .1) For any spectrum A there is on P (or more generally on W) a homo-

logy H*( s4) and _a cohomology H¥( ,A) with coefficients in A (t),

(1.2) H*( ,A) and H*( ,A) arc functors of the second variable ; thus,
given amap f : A-> B of spectra, we have natural transformations.

£y ¢ H( 34) > H( ;B)

£ B¢ ( ;A) > B*( ;B)
) between corresponding theories.

(1.3) If A =K({) , then the corresponding homology and cohomology theories are

naturally isomorphic to the ordinary singular homology and cohomology with coefficient
group II . The homology and cohomology theory with coefficients in S are isomorphic
to_the stable homotopy and cohomotopy theory, respectively.

(144) If h: Ss->X(Z) is the Hopf-Hurezicz map then

he ¢ B ( 58) » E,( 5x(2)
is the Hurewicz map (from the stable homotopy to the singular theory over Z ) and

w* o B¥( 58) > H( 3K(2))

is the Hopf map (from the stable cohomotopy to the singular cohomology over 7 ).

1) We recall briefly how H¥( 3A) is defined. First, for XeP we define the re-
~ k
duced cohomology H (X;A) with coefficients in A . We take f : T°X - Ay ro

presenting an element yaT(ZkX,A l/_) 3 (W(ZkX,Am_k) is an abelian group for k¥ = 2 )e

ntk
Then the composition
o
k1, Zf ntk
S R At
represents an element ky(y)eﬂ(ZkHX,An_i_kH) +« The assignment vy = )\k(y) defines
. k k+t
a homomorphism )\k : (T X’An+k) - (s X’An—l—k+1) N

and we put

n+k

H(x;4) = Ligfm(E%4 ) 5 AT
k

Now, for a polyhedral pair (Y,YO) we let

HY(Y,Y 4) = BH(Y/T054) .
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For further development, we shall need an appropriate extension of the crhomology

theory H( ;4) on P over the category KE « This is done by means of the Cech
limiting process and we obtain the following :

(1.5) To every spcctrum A corresponds a theory H*( ;i) on KE called the co-

houology theory with cocfficients in A + Every such theory is continuous and satisfies

the strong excision axiom. Loreover, thc assigmment 4 - H*¥( 3;a) is natural with

respect to maps of spectra.

On the other hand, in the treatment of duality in the infinite dimensional case,
we shall need our homology groups to be defined for open subsets of E . We must

have therefore an appropriate extension of H( ;A) over T

(1.6) To every spectrum A corresponds a homology theory H*( sh) on T
(which extends H*(

;A) on P over T ) and satisfies the compact carriers axiom.
Moreover, the assignment A - H*( ;A) is natural with respect to maps of spectra,

Let (V,U) be a pair of open subsets in E . Given a relation o =g in £
denote by

i, (Va,Ua) = (v,U)
idﬂ 2 (VgeU,) = (VB,UB)

the corresponding inclusion maps. Let Hh( ;A) be a homology theory on T as in

(1.6) and consider the direct system {Hn(Vd,Ua;A) H (iaﬁ>*} together with the di-
rect family of homomorphisms {(ia)*} .

From the Approximation Theorem one deduces the following

(1.7) Locmma. The map

Lin {(ig)y} ¢ Lin {8 (V,,0.58) 5 €5 0)} » 8 (0,7)
o o

is an isomorphism.

2. Cohomology theory {H —( WA)Y .

The following result is a generalization of Theorem IV.3.3.

(2.1.) Theorem. To every spectrum A there corresponds o cohomology theory

H?—*( ,A) on © with the same group of coefficients as B*( ;A) on P. The

[ — . . . . . )
theory H ( ;A) is continuous and satisfies the strong cxcision axiom. loreover,

the assignment A = ﬁw~*( ;A) is natural with respect to maps of spectra.
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When A = S, the proof (which uses (1.5)) is strictly analagous to that of
IV.3.5. For the proof for an arbitrary A we refer to [5].

We let
) A I ST
E( ) = £ 7% k(@)

and call Z&_* the stable cohomotopy »n o .

The Hopf-Hurewicz map h : S - K(Z) induces a natural transformation h* from

=7 to H ¥( ;2) . lore preciscly, for any field £ : (X,4) > (Y,B) in $° the

diagrams
) s SR
v | |
co—n-1 o 00}
H (432) ———  H (X,432)
and
571, B) ) TR, )
1* J n*

B ()

B (Y, B;2) — B (X,4;2)

-k
are commutative. The map h¥ will be called the Hopf-map from i to H

3. Duality in S° for polyhedra.

Next we indicate the consecutive steps of the proof of the duality in E . We
begin by recalling the definition and basic properties of the Alexander duality iso-
morphism Dn for polyhedra in st ; these were established by G, Whitehead with
the aid of the theory of products for arbitrary spectra.

for our purposes it will be of importance to specify Dn (vy selecting for each
n an orientation of S ) and to exhibit an appropriate relation between Dn and

Dn+1 in terms of the Layer-Vietoris homomorphism.
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Assume that we are given a spectrum 4 and let (S,4) = A be the natural pairing.
We choose a generator ZiQ}H (Sl;S) ~ }a (Sl;Z) and define inductively
= (<1)®
z, (-1) A

{1 ~

For a pair (L,M) of polyhedra in S (in some triangulation) we denote (M*,I*) its
dual pair and define the Alexander duality map.

D_: HY(L,li4) - (1%, 1#54)
by putting Dn<w) =z N w for wqu(L,M;A) , where the cap product
n: Hn(Sn;S) ® Hq(L,M;A) - Hn_q(M*,L*;A) corresponds to the natural pairing
(S,A)-—> A of spectra.

We have the following important properties [14]

(3.1.) The duality map Dn is an isomorphisme

(3.2.) Let NC McC L be subcomplexes of a triangulation of Sn.

Then the diagram

eee = HY(L,158) - 1%(1,w;4) - 121, N;34) - eal (L,M34)  weus
D D D D
3 n n n n

|

(3, L*sn) = Hn_q(N*,M*;A) > H (M*,T%54) woe

.o - V[% ¥ o -
y Hn__q(h , L*34A) H _—

n-q

in which the upper row is the cohomology sequence of the triple (L,M,N) and the

lower row is the homology sequence of the triple (M*,i*,1*) , has two left-—hand

squares commutative and the third commutative up to the sign (_1)n+1 .

(3.3) Let f : i->3B be a map of spectra. Then the following diagram commutes s

(L, 15;7)
ad(L,m3) @ —m——— HY(L,ii;B)
Dn Dn
Hh_q(W,L*;f)

Hn_q(I-'I*,L*;A) —_— Hn_q(l-i*, L*;B)
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Now let M C L be subcomplexes of some triangulation of Sn'+1 end let (M*,L¥)
denote the corresponding dual pair in Sn+1 . Putting HO =MN S and L =1 nst y
o
let (Mg,Lg) be the corresponding dual pair in st . Denote by A the relative Mayer~

Vietoris homomorphism corresponding to the proper inclusion of the triads.

(u,c, 5" 0 e stnm c (L,c,8" N 1,¢ 8" n 1)

and let i : (M*,L*)‘% (M*,L*) be tine inclusion.
0’ o

Now, the lemma which is the main tocl in extending the Alexander type of duality to

the infinite dimensional case.

(3.4) Lemma. The following diagram is commutative :

A
HY(L 0 54) —— 54 (1, 1054)

Dn I%ﬁl

i*
H (1«1*O,L*O;A)—————-» Hn_q(M*,L*;A)

For the proof of (3.4) (based on the results in [14]) we refer to [5] .

4. Duglity in st for compacta

Let A be a spectrum H* = {Hn( sA)}  the continuous cohomology theory on Kﬁn
and H, = {Hn( ;A)} the homology theory with compact supports on T

Now let Y X be a palr of compact subsets of St . Let {Mk} N {Lk} ’ MkID Lk
be approximative sequences for Y and X , respectively, consisting of subcomplexes of

triangulations of S . Let i+ (L qM,) @ (L) denote the inclusjon.

Then, by continuity of IM¥* , we have

BY(%,¥54) & Lin{EYL M 58) 5 i3
St Uty

Without any loss of generality, we may assume that

< @
2 C IR LI C:L§+1, kglMi = Sn—Y,kiILﬁ o

Let jk :(Mk,Lk)'+ (Mk+1’Lk+1) be the inclusion.

Since Hy has compact supports,

H (8",8°%58) ® Lin(H (1,L58)5(3,),) .
k
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By the straightforward passage to the limit, Dn extends uniquely to an isomor—
phisn (still denoted by D)

D : EY(X,7;4) - Hn_q(Sn—Y,Sn-X;A)

defined for all compact subsets Y X of st
Now as a consequence of (3.2) and (3.3) we obtain

(4.1) The duality isonorphisnm Dn satisfies properties similar to those in
(3.2) and (3.3) .

1
Let (X,4A) be a pair of compacta in ' ana (XO,AO) =(Xn shan s .

Denote by A the relative liayer-Vietoris homomorphisn corresponding to the proper

inclusion of the triads

(4,4 N En++1,A n 1 e (x,xn Efrl”,x n B

and by 1 : (Sn---AO,Sn--XO)-—> (Sn+1—A,Sn+1-X) the inclusion.

(4.2) The following diagram is commutative :

A
B ,a50) ——  HYT(x,454)
D D
n n-+1

i*
- +1 +1
Hn_q(Sn—Ao,Sn—X;A) —_— ﬁn_q(sn -4,5 2X;1)
50 Duallt_;! in Rn ™

. . n .
Notation : We choose a scquence {wn} of continuous maps W * RY > % with

the following properties :

i . : n

(i) un+1(x) = un(x) for all xR,

(i) w =~ maps R® houeomorphically onto S'=q ,
1

where q = (-1,0,...,0) € s c B .

R n ~1 n ~1
( lll) (:Jn( R+) c C_i_srl ’ (.Jn< R-) e C-Srl *
If X is a subset of R we let Wy 3 X - 5" denote the rap defined by

we(x) = 6 (x) .
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From now on we assumc that .4 is either the Eilenberg-ilaclane spectrum KGI)

or the spectrum S of spheres. Ve note thet, in cither case, the homomorphism

(@ Jr? H(R7%34) = (870 (1))

is an isomorphism for all g = n-2 .

Assume that (X,Y) is a pair of compacta in R' and g = n-2 . Ve define the

duality map

D (K, Ya) > Hq(Rn-Y,Rn-X;A)
by putting

D =(wn );1 o D o (\,J';()—’! .

(5.1) The duality map Dn is an isomorphism and whenever dcfined satisfies pro-

perties similar to thosc in thce previous section.

6. Duality isomorphism Da

Ve pass now to the infinite dimensional case. By (X,Y,Z) we denote a triple in

H andwe let U=05-X, V=1uY, W=5E7Z.

3 o :
1 4
be in @;{ . If XCE we let XC/ = '&A/(XC/) c Rd(d) and we denote by the same letter

La the homeomorphism from Xc' onto X’OZ given by x - '&O!(X) .

Let {O’a} be a fixed orientation in E ., For each we® 1let ﬁ“o* : ch—é Rd(a)

Now with the aid of L’v , we "transfer" the duality map (defined in the previous

section) from Rd(a’) to Loz .

(6.1) Definition. assuue thot o€ and dle) = ne2 o

We define the duality isomorphism

. (@) . .
Dy ¢+ H (Xcz’Ycz’A> - Hn(vcz’Uc/’ 4)

by imposing the commutativity on the diagram

,"X'
dlev)= . & d{x)-n .
H (CY) n(Xog’YQ';A) - ( ) (XC;:”YC’!,A)
| >
DCY I d(a)
! (2,
o B0 58 (VU8
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Clearly Dd depends only on the orientations 6& of La .
From (5.1) we obtain

(6.2) Let ¢ end d(w) = n+2 . Then the diasram

d{o)=-n . o dle)-n \ LAle)-n . Al o) =
gi() (X ¥ 50) = () (X,0254) = B () (Y2 34) - H (o)-nst (X ,¥ 34)
i
DOZ 1 DCY DCJ i DQ'
Hn(Vo!,UOl;A) - Hn(wa,Vo[;A) - Hn(woz,va;;;) > H (VO[,UCZ; 4)

in which the upper row is part of the cohomology sequence of (X 2 oY ) and the lower

row is a part of the homology seguence of (Wa’va’U ) has two left-hand squares commu—
tative and the third square commutative up to (—1)d(x)+1

(6.3) If o=8 is arrelation in ¢ with d(o) = n+2

—

then the following diagram commutes

A

alo)ny * ale)niy -
H (XQ!,YO{,A) o (XB,YB,A)
i D, Dy
’ (1)
. op ¥ .
B (7,058) ——— 5o g (V,0,50)

Proof. If o =p is elementary, this follows from the property of the duality map in
n.

R, which is analogous to that in (4.2) .
then from the definition of AWB .
(644) If ~ef and d(@) = n+2 then the following diagram commutes

The assertion in the general case follows

h*
dlo) - dl¢)-n
za(e) (%, ) x(¢) (%Y 32)
!
|
D Dy
v h*
Zn(va’Ua) > Hn(va’Ua;Z>

Te The duality in E and the Hopf Theorem

3y passing to the limit in the diagram of (6, 3) we get en isomorphism
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Lin {D} s+ B 7(X,7;4) — Lin {8 (v ,u54) 5 (1))
3 @

Now we define the duality map

D ENX,T;4) - B (V,U34)

by putting
D= Li‘;m {(ia)*} o L_i}m {DO{}
o o
where

Lin {(i,),} ¢ (B (V,,U34) » (10),} — & (v,U34)
(0%

Wow we are ready to state the main result (cf. [14], [10], [13] ) .

(7.1) Theorem., (The Alexander Duality in E ). lLet A be either the spectrum

of spheres S or the Eilenberg-iacLane spectrum X(II) . Then

(i) the duality map D : B (X,Y;4) — B (V,U54) 4is an isomorphism

?

(ii) D maps the sequence of a triple (X,Y,Z) ¢ ® into the homology sequence of

the complementary triple (W,V,U) s 1l.2., the following diagram commutes :

; o - 5 o
e o ERET) o ERRzM) - ETNT,zA) - E(R1) -

LA RS

D D D D

J o

B(V,04)  ~> B (A > H (475) 5,0, 758) 2 ..

(iii) D is natural with respect to the Hopf-Hurewicz map of spectra

h:sS->%k(2z), i.e., the following diagram commutes :

h
7K, Y) = £(x,Y;2)
D D
h*
gn(V,U) — Hn(V,U;Z)

Proof. (1) follows, in view of the definition ~f D , from Lemma (1.7) and

(iii) is an evident consequence of (6.4) .



B-V-12 A, Granas, TopicsS...

To prove (ii) , we recall that & is (by the definition) the composite

I
O]

3
HY,2;4) —— H

(Y34) ——s g0

(x,Y54)
where J* is induced by the inclusion aond 6, 1is the

snboundary homomorphism of
the pair (X,Y) .

According to (IV.2.1) we have

g n+1 n+1 d(a)+1
5 = lin {601 Yoy = () 6(X0/’Yoz)

where Hd(C{)_n'+1

6(XO[,YO[) : Q3A) - <Xa’Ya;d) is the coboundary homo—
morphism of (Xa’Yd) .

Hence, in view of (6.2) , the diagram

PN n+1
By g ) B r )=y ) e, S SRy
\\
p O D
\, 3
Hn(WCY,Ud;A) sm— H_, (VO[,UQ/;A)

is commutative for each «o¢f « This implies the commutativity of the right hand

square. The commutativity of the two left hand squarcs follows clearly from (5.2)
and thus the proof of the theorem is completed.

Next, some corollaries of Theorem (7.1) .

(7.2) (The Alexander—Pontriagin Inveriance in E ).

The relation X 3TY in  © implies that
H O, (Bx3) ™ Hn_1(E-Y;H) .

for any n= 1 and any group of coefficicnts II .

(7.3) (The Sponicr-Whitehead Invariance in B ). The relstion X ﬁfY in ©

implies that for any n = 1

zn__1(5-x) ~ Zn_1(E-Y) .

The following important corollary is an immediate consequence of Theorem (7.1)
and the Hurewicz Theorem in S-theory (cf.[12] =and [13]).
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(7.4) (The Hopf Theorem). For any pair in © the first non-vanishing stable

cohomotopy group is isomorphic to the first non-vanishing cohormclogy group over JZ

Hore precisely, we have

(1) FYUKY) =00 B UX,Y;2) =0 forany O=qg<n .

(i) if ©4X,Y) =0 for O0=q<n ; then the Hopf map

H

h* 3 z?’n(x,y) > B ™NX,Y;Z) is an isomorphism.
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VI. REPRESENTABILITY OF THE STABLE COHOMOTOPY AND CODIMENSION

Consider compact fields from an object X to the open set E = En 1
dimB _,=n-1, and denote by m P(X) the corresponding set of homotopy classes.
fur next aim is to show that there exists a natural isomorphism between "m-n(x) and

the stable cohomotopy group 2°°—n(x) .

Then some applications of this result to the notion of codimension are given.

1. Fields with admissible renge U .

Call an objet U e S admissible provided U is open in E eand its complement is
contained in a finite dimensional subspace ¢f E .

From now on U will stand for an arbitrary tut fixed admissible set end W = BE-U
for its complement.

We shall use the following abtreviations :

6 (X) =6 (x,0) 7 (X) =m (X,0)
Ga(x) = GG(X,U) na(x) = rra(X,U)
S (Xa) =6 (xa,Ua) m (xa) = (Xa,Ua)

Denote Ty J:U the cofinal subset of £ defined by the condition

(1) wel,

ozeS,U i

(ii) U,=1L, -V is connected

and put

Lo o ° 2 T Nt £ i o admigsible with
%, U = 2y n X * The elements of iy, are said to be admissible
respect to X . The elements of o which will appear in the sequel are assumed to

be admissivle with respect to the ovjects under consideration,

(1 +1) Let Xe€p o Then, for each ¢ £y ; the set ”oz(X) is non-empty end
?
the restriction map

Ty ¢ na(X) %n(xa)

given by the assignment

L], = LE,)
ig »ijectives.

The proof is straightforward and is omitted.
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(1.2) Let X e ® and b, ¢ XU Ye a compact homotopy. Then dist(h(X x I,W)) >0
and for each ¢ satisfying

0< e < gist(h(X x I,W))
there is an oO~homotopy h% ¢ X>U such that

I h{,(x) - ht(x) l<e foran (x,8) € Xx1I.
The first assertion is evident and the second follows from the Approximation
Lerma.

From (1.2) we obtain

(1.3) Let £e€©(X) been o-fieldoand g€ G(X) bee B-field. If f and g
are compactly homotopic, then for some Yy sgatisfying o<y , B<y , ve
have f'; g e

2. Homotopy systems {na(x)’iaﬁ} and {n(xoz)’jaﬁ} .

Definition. For each relation o =8 , let
g na(X) —»TrB(X)

be defined by the assignment |f] o [;E]B and

i,¢ WQ(X) - m(X)

by [fja - [f:l .
Clearly, the family {7 (X),i
o

O!B}

is a directed system of sets and {ioz} is a
{na(x),iua} will ve called the homotopy system of X .

direct family of maps 3

(241) Lemma. The map

I%m i} : I%m {m (%) ,iae} - m(X)

is invertible in Ens .
Proof. This is a consequence of (1,2) and (1,3) .

Now for a relation o =f in £XU consider the map
9

s om(x) (X))

o
defined by Lf] o Lf,] end the mep

15t o) (%)
given by Lf]a - | f] .
B

It follows from (1.1) that o

is bijective.
Definition. For every o =B define

jo:ﬁ : TT(XOI) ->n (XB)
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T puttine N
jO(B = iCY o (TQ)
m(x),3 c)43} is called the restricted homotopy system of X

Clearly, {T\’(Xa), jaﬁ} is a directed systen of sets over £X,U .

(2.2) Lemma. The fenily of restriction maps {T o(} defines an isomorphism from the
{na(X),iaB} to {ﬂ(X&),jQB} , iece, for cach @ =B in 'EU,X the following diegren

i

R e o (®)

T T

o B
Jop }
m(%,) ~ (%)

commutes.

3. Continuity of the functor X - m(X,U).

Notation : For a fixed admissible U denote by T en h-functor from £ to the
category of sets which assigns to an object X in & the set m(X) = m(X,U) and to
each field f 3 X— Y assigns

£* 2 m(Y) »m(X).

We denote by s @O - Fns the restriction of T +to &Jo .

Let X€$% and o ¢ XU be a field ; call ¢ inessential provided for any
Ye® with XOY there is a field ¢ : Y > U which extends ® over Y . Any two
inessential fields are homotopic and the homotopy class which contains an inessential
field is denoted by O and called the zero element of ™(X) + One shows easily that
£%(0) = O forany f € $, and tus T nay be considered as an h-functor from
(S’Qo, ~) to the category of based sets Fns™ .

Next we prove that ﬂo is continuous. We begin with two lemmase.

Let Y be an object and {Yk} an approximating family for Y .

(31) Lemma. Let £ : Y>U be an o-field. There exists an index k and an
o-field f': Y —U such thet f=f'| Y.

Proof. Let F : Y - E Yeen opap such that T | Y= F . Clearly the set
o]

C={x€Yk ,T(x):x—ﬁ(x) € W}

is cempact ; consequently, for some k = ko ’ Yk does not intersect C .« Now putting

f1 = f ! Yk , Wwe obtain a required o~field f' .
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(3.2) Lemma. let f,g : Y, U be to o-fields such that f | Yo ¢ | ¥
There exigts an index n = k guch that f Ym ¥ e | Ym .

Proof. Let f,g : Yk%U be an a@-homotopy such that ho =f and h

:g .
On the set : 1

7= (T x {0 ) U (¥x DU (¥ x{1})

define an O~papping H* : T— ch by

F(x) for x ¢ Yk y t=0 3
H*(x,t) = 4 H(x,t) for xe€Y , 0S¢=1 ;
G(x) for x € Yk s, t=1 .

Clearly, we have
x - H¥(x,%) € U for all (x,%) € T .
By extending H* from T over Yk X I , we obtain an oO~mapping H : ¥ x I L .
Clearly, the set
c={(x,1t) e¥, XTI Et(x) € W}

is compact ; therefore, for some m > k the intersection CIN (Ym X I) is empty. Now,

i '=h i o~homot ' Y »T -
putting h! =L | Y , we obtain en o-homotopy ki : ¥ suh that ! =f | Y

and h; =8 ‘ Ym « The proof is completed.

Consider the direct systen {m (Yk) ; 11& } of based sets and the direct family

{ :L; } of based maps, where iz;@ y if are induced by the inclusions

T 3 Y 7 Yy k=4

ik :Y—>Yk

(3.3) Thecren. The map
Lp (2 e 0T 5 1, 1 - ()
k k

is a bijective based map. In other words, the functor m_ : 520 ~> Fns is continuous.

(3.4) Corollary. T is an Ik-functor from ( 9, ~ ) 1o the category of based sets.

4+ Naturel group structure in m(X,U).
Next, we establish that for some U (ealled algebraically admissible) the functor
7 : H-* Ens* nay be converted to a functor to the category of abelian groups.

Definition. &n adnissible objeet U is said to be algebraically admissible pro—
vided there is a cofinal subset ‘ﬁi’l of "T'U such that
(1) for each « € “Cﬁ the assignnent X - n(on’Ua) is an h functor from

(@a, '&') to the cztegory of abelian group ;
(ii) for every relation o =B in £ the nep Jop * TT(Xa) —*n(XB) is an isomor
phisne
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(441) Theorems If U is algebreically admissible, m(X) admits a structure of

an abelian group for all objets X in % . Moreover, an abelian greup structure in
m(X) is natural with respect to maps in © , i.e., the induced mep f*: m(Y) —>m(X)

is a hemomorphism fer any conpact field £ ¢ X—»>Y .

The proof of Theoremn (4.1) wuses (2,1) , (2,2) and the oontinuity of the
functor ™ .

5. The group moR(X) .
Let {Em-n @ En} be a fixed sequence of direct sum decompositions of E as in

the section 1¢1 « For n =1 e let

o) _ > m g .
N1

Clearly, U™ is adnissible and we denote by T ° the corresponding functor from

@ t0 Ens* . ’
Next, we let

,cn:{oze.ﬁ;E cL ;al@)zan+2},

Xd;éO}.

i
R

S0 x = { ve s

ee

Clearly, ‘cn,X is cofinal in £n and £n is cofinal in £ .

For kx>n>0 , the map from Sk“n to Rk— B! given by the assignment

(X1,.'.’x]§-—n+1> d (o,ooo,O,X1,Ooc’Xk~n+1)
is a hometopy equivalence and we dencte by
. ~1 i}
Yk n® Rk-- R - Sk

’

a homotopy inverse of this map.

Let {wa} e a fixed ~rientation in E . For each n = 1 choose zn s En - 7

which represents the crientation of E  and ,@n(x) =4 ,(x) for x¢€ E

n+1
For o ¢ J!n’X choose £, € w, such that ﬁ,a(x) = ,@n_1(x) for all x € En—1

and define a map Y%’n :Uz—n N Sd(OI)-n
ty

Yoz,n(X) =Ya(e)n ° 2 (x)  for x e U:-n 3
Ya,n is a homotouy equivalence and therefore :

(Yo[’n)* . "(XQ,’UZ_II) N ﬂ(xa’sd(a)—n)

is bijectives Moreover, since
din X = d(@) = d(e) + 4(e) - 20 - 2= 2Ad(e)n) - 2 ,
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the set of homotopy classes W(Xa, Sd(a)-n) nay be icentified with tte (d(e)-n)-th
cohorotopy group of X, (and also with the (a(®)-n)-th stable cohcmotopy of X) , iece

(i, K _ d(@niy 52Dy

o
Consequently, W(XQ,UO[ ™) adnits a unique abelian group structure such that (y o n)*
?
is an isomorphism ; this structure is determined only Yy the orientation w, in Loz -

(5+1) Every U g algebraically admissible (n Z 1) . Moreover, for each

Xe$ the fanily (‘Yd n)* where o € £n x Jdefines an isomorphism frem
? b4

Ry L d(¢)=-n
{m(X U, )sdg} to (B () () 180}
Pronfe If X,Y €$H and £ : XY is an o-field, Ole.ﬁnx » then we have a
b
commutative diagram (
Y )-x-
o o)=n
n(Ya,UCEn)) L ) (t,)
* *
£ fy
(Ya,n)*

54(@)-n 4 ) -

n(xd,uén) )

Therefore, the assignment X—»ﬂ(Xa,Ua(n)) is an h-functor fron 8';& to the category
of abelian groupse If o =B is a relation in .i:n x 1 then the following diagranm
?

cormutes .
() Jop X (n)
TT(.XQ,UO[ ) - "(XB!UB )
(YOZ,I].) * ('YB ,n)*

a(a)-n AO@ sd(8)-n

Hence jozB is a homomorphism and the proof is completed.
(542) Qovollary. T  is en h-functor from © to the cetegory of abelian

groups. *)

*) The gfoups ﬂw“n(X) were introduced and considered for the first time by K. Geba
in L2].
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We shall prove next that the fumctors o and ZW-n are naturelly equivalent.
To this end, reca%l)that, in view of (2,1) and (2,2) , we may identify nq‘n(x)
. ] n)y . o .. < o .
with I? {ﬂ<xoz’Uo: ),Jaﬁ} o Uging this identification we let

Yx= 1 (rg p)ad + 772(®) > ()

(5.3) (Representation Theoren). The family Y = {yX} is & natural equivalence
between the functors T = end & = .

Proofe By the definition Yx is en isomorphisn of abelian groups for each
object X in £ o It remains to prove that if £ : XY is amap in 9 +hen the
following diagranm comrmtes

() ——— Ly 5P
2 (g) T 2(s)
() ke S Y

1

In view of the continuity of T and g0 it suffices to prove it for f ¢ S’QO .

Suppose that f is an ozo—field. If o,B € ‘Sn x 1 % ZE o =B then the following
]
diagran commutes ¢

n(x 0l "op » (g, 08)
£ ¥4
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Since we heve identified Lim {n(xa,uc(:‘)),j o43} with ™ 2(X) end under this identi-

Q,

fication ILim {f;} =T (f) +the desired eonclusion followss This completes the proof.
o

Remark : The entire argument can be repeated in the relstive cese. Namely, letting
i (,Q.nﬂ)"1 (RI:H) we obtain a pair (Uw_n,vw'n) of open subsets of E . One
cen prove that for a pair (X,A) in % there exists & naturel isomorphism

¥ s ﬂ(X;A;Um-n ’V°°—n) "’Em—n(X:A) .
Tms Theorem (5.3) remains velied in the relative case.

An immediate consequence of (5.3) is the following :

(5+4) Corollary. For en object X in $ , E- X is eonnected if and only
if eny two compact fields f,g @ X->E- {0} are compactly homotopice.

6. Codimensione.
[~ -,
Let G be an abelien group and H ( 3;G) the corresponding echomology theory

on%‘o

Definitions We define the codimension GodimG(X) Sin an object X with
respect to E as the smallest number n , such that H (X,A) £ O for some
object ACX .

Definitione Let X be an object in & and U € & . We sey that U is an
extension object fer X provided that, given an object AC X and & oompact field

fo:A—*U » there exists a field f : X—» U being an extension of fo over X

We denote by E(U) +the set of ebjects defined by the condition s

X e €(U) ®U is en extension ebject for X and we let

ek _e™¥) .
Definition. For an object X € § we define the codimension Codim X of X
with respect to E +to be the smallest integer n for which o (1)
extension object for X .

is not an

s @) Xee=E) o ks 0,1,00e,m
Codim X = n &
(ii) X é 8w-(k+1) for k=n .

The follewing is en immediate consequence of the definitions :

(6e1) For any two equivalent objects X snd Y in % we have Codim X=Codim Y
and Ondimy(X) = Godimy(Y) .

Now our aim is to prove that COodim X = Codim,(X) « This result(which is
analogrus to the "Pmdamental Theorem in the dimension theory", due to Alexendroff
[ 17), will be established with the aid of the Hopf Theorem, and the Representation
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Theorem after some preliminary lemsase.

First, as a consequence of the Homotopy Extension Lemma, we have the following ¢

(6.2) If the space E ig complete, then for an object X € © the follewing
twe conditions are equivalent :

(i) X ¢ 8°°-(n+1)

(ii) For eny pair of objects A< BC X the restriction mep

. ope 1 an-1
Sp: T (B om T(A)

is an epimorphism.

Next, two lemmas based on the continuity of the functors wnder consideretion ¢

(6.3) Let X be a given object. Assume that for eny pair of ebjects AC BC X
the map

. | Oy
(1) JXB : H (B) » H (4)
O]

is en epimorphism. Then for any object AC X the group H (A) is frivial.

Pronf. Assuming that eur assertion is not true, take & nentrivial element §
O
of the group E (8) .

Per o point x in A , let Y= S(§) be an essential carrier ¢f § with

respect to x o Now, take an additive tried (Y, T, ,Y2) in which both Y, , Y, ere

proper subsets of Y such that x € Yo =Y, n Y, eand consider the correspending
Meyer-Vietoris exact sequence :

e E ) @ B (v 3 F=y ) A2 9 E(1,) © (L),
In view of the definition ef the triad (Y;Y 1,’1’2) we have
(li) JZY(g) é 0 ’ ﬁJXy(g) =0
and therefore by exactness
(1i1) GyE) eIma .

Farther, by the assumtion (i) , the map ¥y is an epimorphism. From here, in

view of (iii) , we infer that for some §'
40 = A v
(onsequently, again by exactness, jXY(g) = 0 , contrary to (ii) .

(6.4) For an object X the follewing two conditions are equivalent :

10 HB(X,4) = 0 for ell objects AC X
2° For any peir of objects AC BC X the map

B2 (8) » 5" (a)

e

o
Jap ¢
induced by the inclusgion jAB :t A-> B is an epimorphism.




B-VI-10 A, Granas, TopicS...
Proof. 1° = 2° : Agsuming 1° we infer, in view of the exactness of the cohomo-
logy sequence of a pair, that both 'jXX end j’}gx are epimorphisms. Since
Jip © Jpx = dpx 5 it follows that i is also an epimorphism.
2° = 1° : Consider the cohomology sequence of the pair (X,A) . Assuming 2° ,

(2]
we infer by (6.3) that H (X) = O end, consequently, by exactness Hw"n(X,A) =0 .
The proof is completed.

Now, from (6.1) , (6.2) , (6+3) , (V.7.4) , and (5.3) , we obtain the follow-
ing ¢

(6.5) Theorem. If the space E is complete, then for every object X in © we
have Codim X = Codimz(X) .

Among other facts which follow easily from the proved theorems, we mention

(6.6) If E is complete and Codim X = 2 , then E - X ig oonnected.

(6.7) (Me Phragmen-Brouwer Theorem in E). For an object X , denote by

'bo(E - X) the number of bounded components of E -~ X « Let E be complete and
(Y;Y1 yY,) e an sdditive triad in © such that Codim Y, N Y,>2 . Then
bo(E -Y) = bo(E - Y1) + bo(E -Y) .

1
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