SÉMINAIRE HENRI CARTAN

BERNARD MORIN

Les classes caractéristiques d'un espace fibré à fibres vectorielles

Séminaire Henri Cartan, tome 12, nº 1 (1959-1960), exp. nº 9, p. 1-43

http://www.numdam.org/item?id=SHC_1959-1960__12_1_A9_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

LES CLASSES CARACTÉRISTIQUES D'UN ESPACE FIBRÉ À FIBRES VECTORIELLES par Bernard MORIN

1. Opérations sur les espaces fibrés.

Sauf indication contraire, tous les espaces fibrés considérés dans cet exposé sont des espaces fibrés localement triviaux à groupe structural. Lorsqu'on parle d'applications fibrées, on suppose toujours qu'il s'agit d'applications compatibles avec les structures définies par la donnée du groupe structural. Par exemple, lorsque X est un espace fibré principal, de groupe structural G, on dit que X' est un sous-fibré de X si X' est un sous-fibré au sens de l'exposé 8 paragraphe 1, et si, de plus, X' est un espace fibré principal de groupe structural G', où G' est un sous-groupe de G, et où les actions de G et G' sur X et X' respectivement sont astreintes à la condition de compatibilité suivante:

$$X^{i} \times G^{i} \longrightarrow X^{i}$$

$$\downarrow j \times i \qquad \downarrow j \qquad \qquad (j \text{ désignant l'injection de } X^{i} \text{ dans } X,$$

$$X \times G \longrightarrow X \qquad \qquad i \text{ l'injection de } G^{i} \text{ dans } G)$$

Soient $X \to B$, $Y \to B$ deux espaces fibrés de groupe structural G. On dit que X est équivalent à Y, et on écrit $X \equiv Y$, s'il existe un isomorphisme d'espaces fibrés $X \to Y$ induisant l'identité sur B.

a. Soit X un espace topologique, G un groupe topologique opérant à droite sur X. On désigne par X/G l'ensemble des orbites de X sous l'action de G, muni de la topologie quotient induite par la topologie de X. Lorsque X est un espace fibré principal, de groupe structural G, X/G s'identifie à la base du fibré X. Far exemple, si G est un groupe de Lie (resp. un groupe classique d'un espace préhilbertien) (cf. exposé 5, paragraphe 2, p. 7 et 10). L'action de tout sous-groupe fermé (resp. admissible) U de G (que l'on fait opérer sur G par translation à droite) définit sur G une structure d'espace fibré principal de groupe structural U et de base G/U.

Plus généralement, si X est un espace fibré principal dont le groupe structural G est un groupe de Lie (resp. un sous-groupe admissible d'un groupe classique d'un espace préhilbertien), la donnée d'un sous-groupe fermé (resp. admissible) U de

G (que l'on fait opérer sur X par l'injection naturelle U \rightarrow G) définit sur X une structure d'espace fibré principal, de groupe structural U et de base X/U . On dira que c'est le fibré principal <u>déduit de X à partir de U</u>.

b. Soient B, C, C', trois espaces topologiques, j: $C \rightarrow B$, j': $C' \rightarrow B$ deux applications continues. En désignant par δ : $B \rightarrow B \times B$ l'application diagonale de B, on appelle produit de C et de C' au dessus de B, et on note $C \times B$ C', le sous-espace

$$(j \times j')^{-1}(\delta(B))$$
 de $C \times C'$ $(j \times j' : C \times C' \rightarrow B \times B')$

On note encore $\mathbf{j} \times^{\mathbf{B}} \mathbf{j}^{*}$ l'application $\mathbf{C} \times^{\mathbf{B}} \mathbf{C}^{*} \to \mathbf{B}$, définie par

$$\delta^{-1} \circ (j \times j') | (C \times^{B} C')$$

1º Image réciproque d'un fibré. - Soient B, B' deux espaces topologiques, $X \stackrel{\pi}{\to} B$ un espace fibré (resp. un espace fibré principal) de groupe structural G, f: B' \to B une application continue; $B \times^B X \to B^!$ est munie d'une structure d'espace fibré (resp. d'espace fibré principal) de groupe structural G qu'on appelle l'image réciproque de X sur B' par l'application f; on note ce fibré $f^*(X)$ et sa projection $f^*(\pi)$. Si B' = B et f = id, alors

$$f^*(X) \equiv X$$

Soit B" un espace topologique et f': B" \rightarrow B' une application continue, on a

$$f'^*(f^*(X)) \equiv (f'^* \circ f^*)(X)$$

2º Produit fibré. - Soient X, X' deux espaces fibrés (resp. deux espaces fibrés principaux) de base B et B', de projection π et π ', et de groupe structural G et G' respectivement. L'espace $X \times X'$ est muni d'une structure d'espace fibré (resp. d'espace fibré principal) de base B × B', de projection $\pi \times^B \pi^!$ et de groupe structural $G \times G^!$.

Lorsque B = B', l'espace $X \times^B X^!$ s'identifie canoniquement à $\delta^*(X \times X^!)$, ce qui permet de le considérer comme un espace fibré (resp. un espace fibré principal) de base B, de projection $\pi \times^B \pi^!$ et de groupe structural $G \times G^!$. On l'appelle le <u>produit fibré de</u> X et de X' et on le note $k(X, X^!)$. A l'aide du numéro 1 ci-dessus, on voit que $k(X, X^!)$ est en outre muni de deux structures d'espace fibré (resp. d'espace fibré principal) obtenues en considérant ces deux structures fibrées images réciproques $\pi^*(X^!)$ et $\pi^{!*}(X)$.

Soient n espaces fibrés (resp. n espaces fibrés principaux) X_1 , X_2 , ..., X_n , de base B, et de groupe structural G_1 , G_2 , ..., G_n respectivement; on définit par récurrence sur n un produit fibré, noté $k(X_1, X_2, \ldots, X_n)$; c'est un espace fibré (resp. un espace fibré principal) de base B et de groupe structural $\prod_{i=1}^n G_i$. Le produit ainsi défini est associatif et commutatif, à une équivalence près. Toute partition (I, J) de l'intervalle [1, n] en sous-ensembles I et J détermine une fibration

$$k(X_1, X_2, ..., X_n) \rightarrow k(X_{i_1}, X_{i_2}, ...)_{i_1, i_2, ... \in I}$$

dont le groupe structural est $\prod_{i \in J} G_i$.

c. <u>Fibrés associés</u>. - Soient X et Y deux espaces topologiques, G un groupe topologique qui opère à droite sur X et à gauche sur Y . On fait opérer G à droite sur X × Y de la façon suivante :

$$(x, y) \cdot g = (xg, g^{-1}y)$$
 $(x \in X, y \in Y, g \in G)$

On désigne par $X \times_G Y$ l'espace quotient $(X \times Y)/G$. Si X est un espace fibré principal de groupe structural G et de base B, $X \times_G Y$ est <u>le fibré associé</u> à X de fibre Y; les sections $S: B \to X \times_G Y$ de ce fibré sont en correspondance bijective avec les applications $f: X \to Y$ telles que

$$f(xg) = g^{-1} f(x)$$
 pour tout $x \in X$ et tout $g \in G$

EXEMPLE. - Le fibré $X \times_G G$, associé à X et obtenu en faisant opérer G sur lui-même par translation à gauche, est muni d'une structure d'espace fibré principal déterminé par les translations à droite de G sur lui-même. L'application $X \to X \times G$, qui associe à tout élément $X \to X \times G$, qui associe à tout élément $X \to X \times G$, définit par passage au quotient un isomorphisme

$$X \xrightarrow{i} X \times_G G$$

comme pour tout $x \in X$ et tout $g \in G$, $(xg, e) \equiv (x, g)$ mod G, l'application i est une équivalence de fibrés principaux. On voit en outre que si U est un gous-groupe de G, i définit un isomorphisme .

X/U est donc un espace fibré de base B, de fibre G/U et de groupe structural G. On l'appelle l'espace fibré quotient par U de l'espace fibré principal X.

Ainsi, soient G un groupe de Lie (resp. un sous-groupe admissible d'un groupe classique d'un espace préhilbertien), V un sous-groupe fermé (resp. admissible)

- de G , U un sous-groupe fermé (resp. admissible) de V ; alors G/U est un espace fibré de base G/V , de fibre V/U et de groupe structural V .
- **d.** Extension et restriction du groupe structural. Soient G et G' deux groupes topologiques et h : $G' \to G$ un homomorphisme de groupes topologiques, X' un espaçe fibré principal de base B et de groupe structural G', alors le fibré $X \equiv X' \times_{G'} G$ est un espace fibré principal de groupe structural G. On dit que X est déduit de X' par agrandissement du groupe structural de G' à G au moyen de l'application G. De l'application canonique

$$X \times_{\mathbf{G}^{\mathbf{I}}} G^{\mathbf{I}} \xrightarrow{\mathbf{id}} X_{\mathbf{G}^{\mathbf{I}}} \overset{\mathbf{h}}{\longrightarrow} X \times_{\mathbf{G}^{\mathbf{I}}} G$$

on déduit une application

$$X^{\bullet} \to X$$

Lorsque G^{\bullet} est un sous-groupe de G , cette application définit X^{\bullet} comme sous-fibré de X .

Inversement, soit X un espace fibré principal de groupe structural G, on dit que le fibré principal X' de groupe structural G' est obtenu par restriction du groupe structural de X à G' au moyen de l'application h, si l'on a

$$X \approx X^{1} \times_{G^{1}} G$$

X étant donné, un tel espace X' n'existe pas nécessairement ; et si X' et X' sont deux espaces obtenus par restriction du groupe structural, on ne peut en conclure que $X^{\bullet} \equiv X^{\bullet}$.

PROPOSITION 1. - Soient G un groupe de Lie (resp. un sous-groupe admissible d'un groupe classique d'un espace préhilbertien), U un sous-groupe fermé (resp. admissible) de G, $X \stackrel{\pi}{\to} B$ un espace fibré principal de groupe structural G, $X/U \stackrel{\rho}{\to} B$ le fibré associé de fibre G/U, $X \stackrel{\sigma}{\to} X/U$ le fibré principal déduit de X à partir de U. Dans ces conditions

$$\rho^*(X) = X \times_U G \cdot$$

En effet l'application $X \times G \xrightarrow{j} X/U \times X$ définie par

$$j(x, g) = (\sigma(x), xg)$$
 $(x \in X, g \in G)$

applique $X \times G$ sur le sous-espace $X/U \times^B X$. De plus, comme $j(xu,g)=j(x,u^{-1}g)$, on en déduit une application

$$X \times_{\Pi} G \rightarrow X/U \times^{B} X$$

C'est l'isomorphisme cherché.

PROPOSITION 2. - Soient G un sous-groupe de Lie (resp. un sous-groupe admissible d'un groupe classique d'un espace préhilbertien), U un sous-groupe fermé (resp. admissible) de G, X un espace fibré de base B et de groupe structural G; les deux conditions suivantes sont équivalentes:

- α . Il existe une restriction X' du groupe structural G de X à U .
- β. Il existe une section s: $B \to X/U$ du fibré $X/U \stackrel{\rho}{\to} B$.

En outre, si les sections s , s' : $B \to X/U$ sont deux applications homotopes entre elles, les restrictions de X associées à s et s' sont équivalentes en tant que fibrés de groupe structural U .

 $\alpha \Longrightarrow \beta \text{.} - L'\text{injection canonique du sous-fibré } X' \text{ dans } X \text{ est une application}$ fibrée pour les structures d'espaces fibrés principaux, déduites de X' et de X respectivement, à partir de U; s s'obtient alors par passage au quotient sur U.

 $\beta \Longrightarrow \alpha$. Puisque ρ o s = id , s*(ρ *(X)) \approx X admet pour restriction le fibré X* = s*(X) = B × $^{X/U}$ X .

Le reste de la proposition est immédiat à partir du théorème de relèvement des homotopies. La proposition est encore vraie si G et U sont des groupes topologiques quelconques. Mais on doit alors prendre garde que $X \to X/U$ n'est en général pas localement trivial. On montre pourtant que $s^*(X)$ est localement trivial.

e. Classes d'équivalence de fibrés principaux. - Soit $X \stackrel{\pi}{\to} B$ un espace fibré principal de groupe structural G. On lui associe un élément $x \in H^1(B, G_c)$ de l'ensemble de cohomologie de B à valeur dans le faisceau G_c des germes d'application continues de B dans G de la façon suivante :

Si $\underline{\mathbb{U}} = (\underline{\mathbb{U}}_i)_{i \in I}$ est un recouvrement ouvert de B, tel que $\pi^{-1}(\underline{\mathbb{U}}_i)$ soit un fibré trivial pour tout $i \in I$, et $(\underline{p}_i)_{i \in I}$ un atlas de X relativement à $\underline{\mathbb{U}}$, le cocycle $(g_{ij})_{i,j \in I}$ $g_{ij}: \underline{\mathbb{U}}_i \cap \underline{\mathbb{U}}_j \to G$ des changements de cartes de (\underline{p}_i) est un représentant de la classe de cohomologie x. Cette classe ne dépend ni du recouvrement $\underline{\mathbb{U}}$, ni du cocycle (g_{ij}) choisis.

Pour que X et Y définissent la même classe de cohomologie $x \in H^1(B,G_c)$, il faut et il suffit que $X \equiv Y$. D'autre part, à tout $x \in H^1(B,G_c)$ on sait associer un fibré principal X de base B et de groupe structural G dont la classe est x.

On identifie dans la suite les classes d'équivalence de fibrés pour la relation \equiv aux éléments de $H^1(B,G_c)$.

 α . Rappelons que l'ensemble de cohomologie $H^1(B,G_c)$ (qui n'est un groupe que lorsque G est abélien) est muni d'un élément distingué e (correspondant à la classe du fibré trivial $B \times G$); relativement à tout recouvrement ouvert $U = (U_i)_{i \in I}$ de B, il admet pour représentant le cocycle

$$(g_{ij}(b) = e)_{i,j \in I}$$
, $b \in U_i \cap U_j$

 β . Si on s'est donné sur G un anti-automorphisme $g \to g$, on définit sur $H^1(B,G_c)$ une involution $x \to x^*$ qui laisse fixe e; si $\mathcal{U} = (U_i)_{i\in I}$ est un recouvrement de B, $(g_{ij})_{i,j\in I}$ un représentant de x subordonné à \mathcal{U} , x^* est la classe du cocycle

$$(g_{ij})^* = (g_{ji})^* = (g_{ij})^*, \quad (i, j \in I)$$

subordonné à U, cette classe ne dépendant ni du recouvrement U, ni du représentant $(g_{i,j})_{i,j\in I}$ choisis.

SCHOLIE. - Soient G et G' deux groupes topologiques, B, B' deux espaces topologiques,

 $h : G^1 \rightarrow G$ un homomorphisme de groupes topologiques,

 $f : B' \rightarrow B$ une application continue.

Considérons les applications :

$$H^1(B^{\bullet}, G_c) \xrightarrow{f^*} H^1(B, G_c)$$

 $H^1(B, G_c) \times H^1(B, G_c^!) \xrightarrow{k} H^1(B, (G \times G^!)_c)$ (définie au moyen de l'identification canonique $k_c : G_c \times G^!_c \to (G \times G_c^!)$)

$$H^1(B, G_c^1) \xrightarrow{h^*} H^1(B, G_c)$$
.

Soient X et X' deux espaces fibrés de base B et de groupe structural G et G' respectivement. On note x et x' leurs classes d'équivalence respectives. Dans ces conditions :

- 1º la classe du fibré f*(X) est égale à f*(x);
- 2º la classe du fibré k(X, X') est égale à k(x, x');
- 3º la classe du fibré h*(X') est égale à h*(x').

REMARQUE. - Pour définir $h^*: H^1(B, G_c) \to H^1(B, G_c')$, il suffit de connaître $h: G' \to G$ à un automorphisme intérieur de G près. En effet, on voit facilemet que si $h': G' \to G$ est défini par

$$h'(g') = g_0 h(g')g_0^{-1}$$
 ($g' \in G'$, $g_0 \in G$)

alors $h^{**} = h^*$.

De même, si U et U' sont deux sous-groupes fermés (resp. admissibles) d'un groupe de Lie (resp. d'un sous-groupe admissible d'un groupe classique d'un espace préhilbertien) G, conjugués l'un de l'autre par un automorphisme intérieur, X/U est isomorphe à X/U' comme espace fibré.

Rappelons enfin le résultat suivant :

PROPOSITION 3. - Soit B un espace paracompact, G un groupe de Lie (resp. un sous-groupe admissible d'un groupe classique d'un espace préhilbertien), U un sous-groupe fermé (resp. admissible) de G, tel que G/U soit contractile, alors l'application

$$H^1(B, U_c) \xrightarrow{h^*} H^1(B, G_c)$$

est un isomorphisme.

En effet, soient $x \in H^1(B, G_c)$, et X un espace fibré principal de base B et de groupe structural G dont la classe est x. D'après c, X/U est un espace fibré de base B et de fibre G/U. Comme B est paracompact et G/U contractile, il existe une section $B \xrightarrow{S} X/U$ de ce fibré, et par suite (d'après la proposition 2) il existe une restriction X' du groupe structural de X à U. Si x' désigne la classe de X', on a, d'après le scholie précédent:

$$h^*(x^*) = x .$$

Si X^n est une autre restriction du groupe structural de X à U , la section

$$s^{\bullet} = B \rightarrow X/U$$

définie par X" étant homotope à s , on en déduit que $X \equiv X^{!}$.

f. Propriétés des espaces classifiants. - Si G est un groupe topologique et $\mathbf{B}_{\mathbf{G}}$ un espace classifiant pour G (cf. exposé 5, paragraphe 4), pour tout espace topologique B, ayant même type d'homotopie qu'un CW-complexe, on peut identifier (de façon naturelle par rapport à B) l'ensemble $\mathbf{H}^1(\mathbf{B},\mathbf{G}_{\mathbf{C}})$ à l'ensemble $\mathbf{n}(\mathbf{B},\mathbf{B}_{\mathbf{G}})$ des classes d'homotopie des applications de B dans $\mathbf{B}_{\mathbf{G}}$, au moyen de l'application

$$x(f) = f^*(x_G), \quad x \in H^1(B, G_c), \quad f \in \pi(B, B_G)$$

où x désigne la classe du fibré universel $X_C \rightarrow B_C$.

Lorsque X est contractile (c'est le cas si G et B_G sont des CW-complexes de type dénombrable), on peut définir cette identification pour tout espace B ayant même type d'homotopie qu'un espace paracompact. Si B_G^1 est un autre classifiant pour le groupe G, il a même type faible d'homotopie que B_G (cf. pour la définition de cette notion, exposé-11, paragraphe 1); le type faible d'homotopie de B_G est donc déterminé par celui de G (c'est une généralisation de la proposition 3). Si G et G' sont deux groupes topologiques, B_G et B_G^1 des espaces classifiants pour ces groupes ayant le type d'homotopie de CW-complexes, X_G , X_G les espaces universels correspondants, h: $G' \to G$ un homomorphisme de groupes topologiques, il existe une application fibrée $X_{G'} \times_{G'} G \to X_G$ à l'aide de laquelle on définit:

$$\stackrel{\sim}{h} : B_{G} \rightarrow B_{G}$$

 \hat{h} est déterminé par h à une homotopie faible près. Si $h' = h_0$ o h, où h_0 est un automorphisme intérieur de G, alors \hat{h}' est homotope à \hat{h} . Lorsque h est faiblement homotope à l'application identique, \hat{h} est faiblement homotope à l'identité.

Soient G" un autre groupe topologique, h': G" \rightarrow G' un homomorphisme de groupes topologiques; alors

$$(h \circ h') = h \circ h$$

Si h : G \to G * est une inclusion, $\stackrel{\sim}{h}$ a le type faible d'homotopie de la fibration $X_G/G^1 \to B_G$.

Si B_G et $B_{G^!}$ sont des espaces classifiants pour les groupes topologiques G et $G^!$ respectivement, $B_G \times B_{G^!}$ est un classifiant pour le groupe $G \times G^!$.

Avec les notations précédentes on a évidemment

$$\mathbf{x}(\mathbf{\hat{h}} \circ \mathbf{f'}) = \mathbf{h}^*(\mathbf{x}(\mathbf{f'}))$$
, $(\mathbf{f} \in \pi(\mathbf{B}, \mathbf{B}_{\mathbf{G'}}), \mathbf{x}(\mathbf{f'}) \in \mathbf{H}^1(\mathbf{B}, \mathbf{G}_{\mathbf{c}}),$

$$\mathbf{x}(\mathbf{\hat{h}} \circ \mathbf{f'}) \in \mathbf{H}^1(\mathbf{B}, \mathbf{G}_{\mathbf{c}}))$$

Lorsque G est muni d'un anti-automorphisme et que B_G est un CW-complexe, on peut munir B_G (à l'homotopie près) d'une involution i telle que

$$x(i \circ f) = x(f^*)$$
 (cf. $e\beta$), ($x \in H^1(B, G_e)$, $f \in \pi(B, B_G)$)

APPLICATION. - Soit G un groupe topologique et B_G un classifiant pour G; la donnée d'un homomorphisme de groupes topologiques .

 $h : G \times G \rightarrow G$ tel que les applications $h_i : G \rightarrow G$ (i = 1, 2)

définies par $h_1(g) = h(g, e)$ et $h_2(g) = h(e, g)$ respectivement, soient faiblement homotopes à l'application identique, munit B_G d'une H-loi faible (cf. exposé 11, paragraphe 1).

2. Cas où le groupe structural est un groupe unitaire.

On désigne dans la suite par A l'un des trois corps usuels :

R: (corps des réels), C (corps des complexes), H (corps des quaternions).

 $\lambda =$ 1, 2, 4 est la dimension de Λ comme espace vectoriel sur $\stackrel{R}{\sim}$.

 $V(p, \Lambda)$ (p entier $\geqslant 0$) (resp. $p = \infty$) est un espace vectoriel (à droite) hilbertien de dimension p (resp. un espace préhilbertien possédant une base algébrique dénombrable).

 $U(p, \Lambda)$ est le groupe des automorphismes (resp. des automorphismes de type fini) de $V(p, \Lambda)$ on prendra pour $V(\infty, \Lambda)$ et $U(\infty, \Lambda)$ la topologie définie dans l'exposé 5, paragraphe 2.

On dit qu'une application

i:
$$U(p, \Lambda) \rightarrow U(p+q, \Lambda)$$
 (p, q entier ≥ 0 ou ∞)

est de type $i_{p,q}$ si on peut la définir en faisant opérer de façon naturelle $U(p,\Lambda)$ sur un sous-espace W de dimension p et de co-dimension q de $V(p+q,\Lambda)$, tel que $V(p+q,\Lambda)=W\oplus W^\perp$, et en prolongeant cette opération à $V(p+q,\Lambda)$ tout entier, en faisant opérer trivialement $U(p,\Lambda)$ sur W^\perp .

Ces applications sont des injections ; elles dépendent du sous-espace W choisi, et se déduisent l'une de l'autre par un automorphisme intérieur de $U(p+q,\Lambda)$. On a vu (exposé 5, paragraphe 3), que, quel que soit q, les applications de type $\mathbf{i}_{\infty,q}$ sont des équivalences d'homotopie faibles.

a. On pose:
$$K_0(B, \Lambda) = \bigcup_{0 \le j \le \infty} H^1(B, U(j, \Lambda)_c)$$
.

On désigne par e_n l'élément distingué de $H^1(B$, U(n , $\Lambda)_c)$, et par $L_0(B$, $\Lambda)$ la réunion des e_n (n entier > 0) .

On définit une application

$$j: \underset{\sim}{\mathbb{N}} \to L_{\mathbb{O}}(\mathbb{B}, \Lambda) \subset K_{\mathbb{O}}(\mathbb{B}, \Lambda)$$

en posant, pour tout $n \in \mathbb{N}$, $j(n) = e_n$.

On considère également l'application

Rg: $K_0(B, \Lambda) \to N$ définie pour tout $x \in K_0(B, \Lambda)$ par Rg(x) = n si $x \in H^1(B, U(n, \Lambda)_c)$.

Rg(x) s'appelle <u>le rang de</u> x et l'on a

$$Rg \circ j = id$$

Le rang Rg(X) d'un fibré X sera par définition le rang de sa classe x . Lorsque $\Lambda \neq H$, en munissant les V(p, Λ) (p entier >0) d'une base, on définit classiquement un opérateur de transposition noté o sur les groupes U(p, Λ) . On munit ainsi K₀(B, Λ) d'une involution x \rightarrow x dont la restriction à l'ensemble des éléments de rang n coı̈ncide avec l'involution $H^1(B, V(n, \Lambda)_c)$, décrite dans le paragraphe 1, e β .

Lorsque $\Lambda = \mathbb{R}$, * se réduit à l'identité.

Lorsque $\Lambda = C$, x^* s'appelle la <u>classe duale</u> de x. Si X est un fibré de classe x, tout fibré X^* de classe x^* est un <u>fibré dual</u> de X.

N. B. - Lorsque $\Lambda = H$, on désigne par $\overline{K}_0(B, H)$ l'ensemble des classes de fibrés principaux (à gauche) de base B, de groupe structural $\overline{U}(n, H)$ (pour tout entier $n \ge 0$), où $\overline{U}(n, H)$ est le groupe des automorphismes de l'espace vectoriel à gauche de dimension n sur le corps H. Dans ce cas, on définit comme précédemment un opérateur o, mais c'est ici un anti-isomorphisme de U(n, H) sur $\overline{U}(n, H)$.

On définit ainsi une application $x \to x^*$ telle que $x^{**} \approx x$

$$K_0(B, \underbrace{H}) \stackrel{\approx}{\rightarrow} \overline{K_0}(B, \underbrace{H})$$

D'après la remarque du paragraphe 1 e, la donnée du type d'application i p,q (p , q entiers > 0 ou ∞) suffit à définir une application

$$\mathbf{1}_{p,q}^*$$
: $H^1(B, U(p, \Lambda)_c) \rightarrow H^1(B, U(p+q, \Lambda)_c)$

On a évidemment

 $i_{p+q,r}^* \circ i_{p,q}^* = i_{p,q+r}^*$ (quels que soient les entiers $p,q,r \ge 0$.

On pose

$$\widetilde{K}_0(B, \Lambda) = \lim_{\longrightarrow} H^1(B, U(n, \Lambda)_0)$$

et on désigne par ψ l'application évidente

$$K_{O}(B, \Lambda) \rightarrow \widetilde{K}_{O}(B, \Lambda)$$

A l'aide de la famille d'applications $(i_{n,\infty}^*)$ (n entier \geqslant 0), on définit l'application

$$\varphi : K_0(B, \Lambda) \rightarrow H^1(B, U(\infty, \Lambda)_c)$$

qui se factorise évidemment par ψ; on pose

$$\varphi = \psi_0 \circ \psi$$
 ;

l'application ψ_0 n'est en général ni injective ni surjective. Si X est un espace fibré principal de base B et de groupe structural $U(n,\Lambda)$, on notera $\phi(X)$ l'espace fibré principal $X \times_{U(n,\Lambda)} U(\infty,\Lambda)$ obtenu en identifiant $U(n,\Lambda)$ à un sous-groupe de $U(\infty,\Lambda)$ au moyen d'une application de type $i_{n,\infty}$; $\phi(X)$ s'appelle le <u>fibré faible</u> associé à X . D'après le scholie du paragraphe 1, si x désigne la classe de X, la classe de $\phi(X)$ est $\phi(X)$.

b. Somme de Whitney. - Soient p, q deux entiers > 0 (resp. $p = \infty$ ou $q = \infty$); on dit qu'une application

h:
$$U(p, \Lambda) \times U(q, \Lambda) \rightarrow U(p+q, \Lambda)$$

est de type h si on peut la définir en faisant opérer

$$U(p, \Lambda) \times U(q, \Lambda) \quad \text{sur} \quad V(p, \Lambda) \oplus V(q, \Lambda)$$

de façon canonique (e désigne la somme directe munie de sa structure naturelle d'espace hilbertien), après avoir identifié, au moyen d'un isomorphisme arbitraire,

$$V(p, \Lambda) \Leftrightarrow V(q, \Lambda) \text{ à } V(p+q, \Lambda)$$

Ces applications sont des injections ; elles dépendent de l'isomorphisme choisi et se déduisent l'une de l'autre par un automorphisme intérieur de $U(p+q,\Lambda)$.

DEFINITION 1. - Soient h: $U(p,\Lambda) \times U(q,\Lambda) \to U(p+q,\Lambda)$ une application de type $h_{p,q}$ (p, q entiers > 0), X et Y deux espaces fibrés principaux de base B et de groupe structural $U(p,\Lambda)$ et $U(q,\Lambda)$ respectivement; on appelle somme de Whitney de X et de Y, et on note $X \Leftrightarrow Y$, le fibré obtenu par extension du groupe structural $U(p,\Lambda) \times U(q,\Lambda)$ du produit fibré k(X,Y) au groupe $U(p+q,\Lambda)$ au moyen de l'application h.

Comme précédemment, on voit que la donnée du type h suffit à définir une application

$$h_{p,q}^*: H^1(B, U(p, \Lambda)_c) \times H^1(B, U(q, \Lambda)_c) \rightarrow H^1(B, U(p+q, \Lambda)_c)$$

Au moyen de la famille d'applications $(h_{p,q}^*)$ (p , q entiers $\geqslant 0$) , on munit

 $K_0(B$, $\Lambda)$ d'une loi de composition encore appelée somme de Whitney et notée \oplus , associative, commutative, et possédant un élément neutre (la classe e_0 des fibrés de rang 0) .

On a évidemment $i_{p,q}^*(x) = x \oplus e_q$ $(x \in K_0(B, \Lambda), Rg(x) = p)$ et pour que $\psi(x) = \psi(y)$, où x, $y \in K_0(B, \Lambda)$, il faut et il suffit qu'il existe deux entiers r et $s \geqslant 0$, tels que $x \oplus e_r = y \oplus e_s$.

Par suite, \oplus induit sur $\tilde{K}_0(B$, $\Lambda)$ une loi de composition associative, commutative, et dont l'élément neutre est $\psi(e_0)$. L'application $h^*_{\infty,\infty}$ munit $H_1(B$, $U(\infty$, $\Lambda)_c)$ d'une loi de composition associative et commutative, dont l'élément neutre est la classe du fibré trivial; noté \oplus ; on appellera encore cette loi somme de Whitney; on le note \oplus , et on a

$$\varphi(x) \oplus \varphi(y) = \varphi(x \oplus y)$$
, $(x, y \in K_0(B, \Lambda))$

D'après le scholie du paragraphe 1, si X et Y sont des espaces fibrés principaux de classe x , y respectivement (x , y \in K(B , \land), Rg(x) = p , Rg(y) = q), et h une application de type h p,q , la classe de X \oplus Y est x \oplus y , celle de $\phi(X \oplus Y) = \phi(X) \oplus \phi(Y)$ est $\phi(X \oplus Y)$.

- N. B. Puisque les applications de type $h_{\infty,\infty}$ vérifient les conditions du paragraphe 1, f (application), on voit que les classifiants $h_{U(\infty,\Lambda)}$ des groupes unitaires infinis sont des H-espaces faibles.
- c. Scindage de fibrés. Soient p , q deux entiers positifs, X un espace fibré principal de base B et de groupe structural $U(p+q,\Lambda)$; on dit que X admet un scindage de type (p,q) s'il existe une restriction du groupe structural de X à $U(p,\Lambda) \times U(q,\Lambda)$ au moyen d'une application de type $h_{p,q}$, c'est-à-dire s'il existe deux fibrés principaux X' et X", de rang h et q respectivement, tels que $X \equiv X' \oplus X''$.

On désigne par $\stackrel{P}{\sim}$ l'ensemble des suites finies d'entiers > 0, muni de la relation d'ordre ainsi définie : soient $\overline{p} = (p_1^{}, p_2^{}, \cdots, p_k^{})$ et $\overline{p} = (p_1^{}, p_2^{}, \cdots, p_k^{})$; on dit que $\overline{p}^{}$ est plus fine que \overline{p} et on écrit $\overline{p}^{}$ $\leq \overline{p}$, s'il existe une surjection croissante

$$f: [1, k'] \rightarrow [1, k]$$

telle que

$$p_{i} = \sum_{j \in \mathbf{f}^{-1}(i)} p_{j}^{t} \qquad (1 \leqslant i \leqslant k)$$

Soit $\overline{p} = (p_1, p_2, \dots, p_k) \in \mathbb{P}$; toute identification de $\downarrow p_1 \setminus V(p_j, \lambda)$ à $V(j=1, p_j, \lambda)$ permet de définir une application h de type $h_{\overline{p}}$

h:
$$U(\overline{p}, \Lambda) = \prod_{i=1}^{k} U(p_i, \Lambda) \rightarrow U(n, \Lambda)$$
.

Soient $\overline{p}^i = (p_1^i, p_2^i, \dots, p_k^i)$ une suite plus fine que \overline{p} , et

$$f: [1, k'] \rightarrow [1, k]$$

1'application croissante pour laquelle on a

$$p_{i} = \sum_{j \in f^{-1}(i)} p_{j}^{t} \qquad (1 \leq i \leq k)$$

A toute collection d'isomorphismes $(u_i)_{1 \le i \le k}$: $j \in f^{-1}(i)$ $V(p_j^i, \Lambda) \to V(p_i, \Lambda)$ on associe une application h de type $h_{\overline{p},\overline{p}}$,

h:
$$U(\overline{p}', \Lambda) \rightarrow U(\overline{p}, \Lambda)$$

Avec ces conventions, on peut considérer les applications de type $\frac{h_{\overline{p}}}{p}$ comme des applications de type $h_{(n)\overline{p}}$ (lorsque $\overline{p}\leqslant(n)$), où (n) désigne la suite réduite au seul entier n . Pour tous \overline{p} , \overline{p}' , \overline{p}'' \in \overline{p} tels que \overline{p}'' $\leqslant \overline{p}$, pour tout h'' de type $h_{\overline{p},\overline{p}''}$, h' o h'' est évidemment de type $h_{\overline{p},\overline{p}''}$.

On dira qu'une application h de type $h_{\overline{p},\overline{p}''}$ est compatible avec h (resp. h'') s'il existe une application h_2 de type $h_{\overline{p}',\overline{p}''}$ (resp. h_1 de type $h_{\overline{p},\overline{p}'}$) telle que

$$h = h' \circ h_2 \quad (resp. h = h_1 \circ h'')$$

Soit $\overline{p}=(p_1^-,p_2^-,\dots,p_k^-)\in P$ tel que $\overline{p}<(n)$; on dit que le fibré principal X de groupe $U(n^-,\Lambda)$ admet un scindage de type \overline{p} s'il existe une restriction du groupe structural de X à $\overline{U(\overline{p}^-,\Lambda)}$ au moyen d'une application de type $h_{\overline{p}}^-$, c'est-à-dire si $X\equiv \bigcup_{j=1}^{k} X_j$ (où $Rg(X_j^-)=p_j^-$). Soit X_1^- un tel scindage. On dira que X_2^- est un sous-scindage de type \overline{p}^+ de X_1^- ($\overline{p}^+\in P_+$, \overline{p}^+ $\leq \overline{p}^-$) si X_2^- est un scindage de type \overline{p}^+ de X_1^- obtenu par restriction du groupe structural de X_1^- à $\overline{U(\overline{p}^+,\Lambda)}$ au moyen d'une application de type $h_{\overline{p},\overline{p}^+}$.

d. Exemples d'espaces fibrés.

1° Soient $\overline{p} \in P$, tel que $\overline{p} \leqslant (n)$, h: $\overline{U(p}$, $\Lambda) \to \overline{U(n}$, $\Lambda)$ une application de type $h_{\overline{p}}$; l'espace $\overline{D(p}$, $\Lambda) = \overline{U(n}$, $\Lambda)/\overline{U(p}$, $\Lambda)$ s'appelle la variété de drapeaux de type \overline{p} .

- α. Lorsque $\overline{p} = (1, 1, ..., 1)$, $D(\overline{p}, \Lambda)$ s'appelle la <u>variété de drapeaux de l'espace</u> $V(n, \Lambda)$.
- β . Lorsque $\overline{p}=(p,q)$ (p+q=n), $D(\overline{p},\Lambda)$ on note encore $G(p,q;\Lambda)$; c'est la grassmannienne des p-plans de l'espace vectoriel de dimension n sur le corps Λ .
- $\gamma.$ Lorsque p = 1 , G(1 , n 1 ; $\Lambda)$ se note P(n 1 , $\Lambda)$: c'est l'espace projectif de dimension n 1 sur le corps Λ .
- 2º Plus généralement, soit X un espace fibré principal de base B et de groupe structural $U(n,\Lambda)$; pour tout $\overline{p}\in P$ tel que $\overline{p}\leqslant (n)$ et toute application

$$h : U(\overline{p}, \Lambda) \to U(n, \Lambda)$$
 de type $h_{\overline{p}}$,

on désigne par D_(X) et on appelle <u>fibré en drapeaux de type</u> \overline{p} l'espace X/U(\overline{p} , Λ). C'est un espace fibré de base B et de fibre D(\overline{p} , Λ) (cf. paragraphe 1, c); sa projection sera notée $\rho_{\overline{p}}$.

- α . $D_{(n)}(X)$ est isomorphe à B .
- β . On note D(X) le fibré D(1 , 1 , ... , 1)(X) ; c'est le fibré en drapeaux associé à X .
- γ . Le fibré $D_{(p,q)}(X)$ se note encore $G_{p,q}(X)$; on l'appelle fibré en grassmanniennes associé à X.
- δ_{\bullet} D(1,n-1)(X) s'appelle fibré en espaces projectifs associé à X , et se note P(X) $_{\bullet}$
- 3° Soient \overline{p} , $\overline{p}' \in \underline{P}$, $\overline{p}' \leqslant \overline{p}$, h et h' des applications de type $h_{\overline{p}}$ et $h_{\overline{p}'}$ respectivement telles que h' soit compatible avec h (au sens de c ci-dessus); soit $D_{\overline{p}'}(X)$ l'esp ce fibré (défini au moyen de l'application h') dont la base est le fibré $D_{\overline{p}'}(X)$ (défini au moyen de l'application h) et dont la fibre est $U(\overline{p}, \Lambda)/U(\overline{p'}, \Lambda)$. La projection de ce fibré se note $\rho_{\overline{p},\overline{p}'}$. Si $\overline{p}'' \in \underline{P}$ est tel que $\overline{p}'' \leqslant \overline{p}'$, si h'' est une application de type $h_{\overline{p}''}$ compatible avec h' et si $D_{\overline{p}''}(X)$ est le fibré défini au moyen de h'', on a

$$\rho_{\overline{p},\overline{p'}} \circ \rho_{\overline{p},\overline{p''}} = \rho_{\overline{p},\overline{p''}}$$

4° Soit $\overline{p}_1 = (p_{j_1}, p_{j_2}, \dots, p_{j_\ell})$ une sous-suite de la suite $\overline{p} = (p_1, p_2, \dots, p_k)$ (définie au moyen d'une application j strictement croissante de l'intervalle $[1, \ell]$ dans l'intervalle [1, k] ($\overline{p}_1 \leqslant (m)$ et $\overline{p} \leqslant (n)$); on note \overline{p}_2 la suite complémentaire de \overline{p}_1 .

La donnée d'une collection $(v_i)_{1 \leqslant i \leqslant \ell}$ d'automorphismes des $V(p_j, \Lambda)$ sur eux-mêmes, détermine une application de $\lim_{i=1}^{\ell} V(p_j, \Lambda)$ dans $\lim_{j=1}^{k} V(p_j, \Lambda)$ qui définit une application i de type $\lim_{p \to p_1} V(p_j, \Lambda)$

i:
$$U(\overline{p}_1, \Lambda) \rightarrow U(\overline{p}, \Lambda)$$

A tout fibré principal X de groupe structural $U(n, \Lambda)$ on associe ainsi une fibration

$$\sigma_{\overline{p},\overline{p}_2} : X/U(\overline{p}_1, \Lambda) \to D_{\overline{p}}(X)$$

dont la fibre est $U(\overline{p}_2, \Lambda)$. C'est un fibré quotient du fibré principal $X \xrightarrow{\sigma \overline{p}, \overline{p}} D_{\overline{p}}(X)$.

En particulier, pour tout entier q, (0 \leq q \leq n), on note $S_{n,q}(X)$ l'espace fibré $X/U(n-q,\Lambda) \to B$ dont la fibre est la variété de Stiefel $V(n,q;\Lambda)$ des q-repères orthonormés de l'espace $V(n,\Lambda) \cdot S_{n,q}(X)$ peut également être considéré comme un espace fibré principal de groupe structural $U(q,\Lambda)$ et de base $G_{q,n-q}(X)$; $\sigma_{n,q}$ sera la projection $S(n,q;\Lambda) \to G(q,n-q;\Lambda)$. On note S(X) le fibré $S_{n,1}(X)$ dont la fibre est la sphère de dimension n-1.

REMARQUE. - Avec les notations et conventions précédentes, les fibrés

$$D_{\overline{p}}(X) \xrightarrow{\rho_{\overline{p}}} B$$
, $D_{\overline{p}}(X) \xrightarrow{\rho_{\overline{p}}} B$ et $X/U(\overline{p}_1, \Lambda) \xrightarrow{\rho_{\overline{p}} \circ \overline{p}, \overline{p}_1} B$

ne dépendent pas de l'ordre des entiers p_1 , p_2 , ..., p_k , p_1' , p_2' , ..., p_k' ni de l'application j choisie pour définir $\overline{p_1}$ comme sous-suite de \overline{p} ; seules, les classes d'équivalence des filtrations $\sigma_{\overline{p},\overline{p_1}}$ et $\rho_{\overline{p},\overline{p}}$, dépendent de j et des ordres choisis.

5° On voit, en appliquant la proposition 1, que si X est un espace fibré principal de groupe structural $U(n,\Lambda)$, et si $p=(p_1,p_2,\ldots,p_k)$ est une suite d'entiers $\geqslant 0$ telle que $\sum_{j=1}^k p_j = n$, l'espace fibré principal $p_p^*(X)$ dont la classe est $D_p^*(X)$ admet un scindage canonique

$$X_{\overline{p}} = \int_{j=1}^{k} X_{j}$$
 $(Rg(X_{j}) = P_{j})$.

Soit \overline{p} une suite plus fino que \overline{p} ; le scindage $X_{\overline{p}}$ est un sous-scindage du scindage $\rho_{\overline{p},\,\overline{p}}^*$ de $X_{\overline{p}}$. Ainsi $\rho^*(X)$ (où ρ est la projection du fibré $D(X) \to B$)

est équivalent à un fibré $X_1 \oplus X_2 \oplus \ldots \oplus X_n$, où les X_i ($1 \leqslant i \leqslant n$) sont des fibrés de rang 1 isomorphes, mais non équivalents entre eux. C'est un sous-scindage de tous les scindages $\rho_p^{\perp *}(X_p)$ (pour toute suite $\overline{p} \leqslant (n)$), $\rho_p^{\perp *}$ désignant la projection de D(X) sur $D_p(X)$.

e. Application: construction du classifiant Bu(∞, Λ)

1° Espaces classifiants pour les CW-complexes de dimension finie. - On a vu (exposé 3) que $\pi_{\mathbf{i}}(S(p+q,p;\Lambda)) = 0$ pour tout entier i tel que $0 \le i \le \lambda_{\mathbf{q}-2}$ et $\pi_{\lambda \mathbf{q}-1}(S(p+q,p;\Lambda)) = \sum_{\mathbf{z} \in \mathbb{Z}} \text{si } \Lambda \ne \mathbb{R}$ Que $\sum_{\mathbf{z} \in \mathbb{Z}} \text{ou } \sum_{\mathbf{z} \in \mathbb{Z}} \text{lorsque } \Lambda = \mathbb{R}$

Il s'ensuit que les espaces $G(p,q;\Lambda)$ sont des classifiants pour le groupe $U(p,\Lambda)$ lorsque B est homéomorphe à un CW-complexe de dimension $\leq \lambda q-2$.

2° Les applications $g_{rs;pq}$ • - Pour chaque entier p>0 (ou $p=\infty$) on munit $V(p,\Lambda)$ d'une base $(\epsilon_i^p)_{1\leqslant i\leqslant p}$ • On identifie la grassmannienne $G(p,q;\Lambda)$ à l'espace des p-plens de l'espace vectoriel $V(p,\Lambda)\oplus V(q,\Lambda)$ • Pour tout entier r>p, on a une application linéaire

$$u_{r,p} : V(p, \Lambda) \rightarrow V(r, \Lambda)$$

telle que $u_{r,p}(\epsilon_i^p) = \epsilon_i^r \quad (1 \le i \le p)$

Pour tout couple d'entiers (r , s) (r \geqslant p , s \geqslant q) , l'application u r,p × u s,q détermine une application

$$g_{rs,pq} : G(p, q; \Lambda) \rightarrow G(r, s; \Lambda)$$

telle qu'on a les identités suivantes entre fibrés

$$g_{rs;pq}^*(S(rs,s;\Lambda)) \equiv S(p+q,q;\Lambda) \times_{U(q,\Lambda)} U(s,\Lambda)$$

$$g_{rs;pq}^*(S(r+s,r;\Lambda)) \equiv S(p+q,p;\Lambda) \times U(p,\Lambda)$$
 U(r, \Lambda)

(les extensions étant prises au moyen d'applications de type $i_{q,s-q}$ et $i_{p,r-p}$ respectivement), et que, si (r',s') est un couple d'entiers pour lequel $r'\geqslant r$, $s'\geqslant s$,

$$g_{r's',rs} \circ g_{rs,pq} = g_{r's',pq}$$

On définit ainsi un système inductif dont la limite est la grassmannienne $G(\infty,\infty;\Lambda)$ des plans de dimension et de codimension infinie de $V(\infty,\Lambda)$; c'est le classifiant $B_{U(\infty,\Lambda)}$. On note $S(\infty,\infty;\Lambda)$ le fibré universel correspondant.

On peut également considérer les limites inductives $G(p, \infty; \Lambda)$ (grassmannienne des p-plans de l'espace $V(\infty, \Lambda)$) des systèmes d'applications $g_{ps,pq}$ (p entier > 0 fixé, r > q); ce sont des classifiants pour les groupes $U(p, \Lambda)$, les fibrés universels correspondants étant notés $S(\infty, p; \Lambda)$. On a par conséquent $\lim_{n \to \infty} B_U(p, \Lambda) = B_{\lim_{n \to \infty} U(p, \Lambda)}$

En particulier, on note $P(\infty, \Lambda) = \lim_{n \to \infty} P(n, \Lambda)$ l'espace projectif de dimension infinie (la limite étant prise au moyen des applications $g_{1,m;1,n} = g_{m,n}$ (m, n entiers ≥ 0 , $m \geq n$)), et l'on a la fibration

 $S_{\infty} \approx S(\infty, 1; \Lambda) \rightarrow P(\infty, \Lambda)$ où S_{∞} est la sphère de dimension infinie .

3º <u>Les applications</u> $f_{pq,rs}$. - Pour tout couple d'entiers $p, r \geqslant 0$, on dé-

$$\begin{array}{c} v_{p,r}: \quad \mathbb{V}(p\ ,\ \wedge) \oplus \mathbb{V}(r\ ,\ \wedge) \rightarrow \mathbb{V}(p+r\ ,\ \wedge) \\ \\ \text{telle quas:} \quad v_{p,r} \quad (\epsilon_{\mathbf{i}}^{p} \oplus 0) = \epsilon_{2\mathbf{i}}^{p+r} \qquad (\ 1 \leqslant \mathbf{i} \leqslant r\) \\ \\ v_{p,r} \quad (\epsilon_{r+\mathbf{j}}^{p} \oplus 0) = \epsilon_{2r+\mathbf{j}}^{p+r} \qquad (\ 1 \leqslant \mathbf{j} \leqslant p-r \ \ \text{si} \ \ p > r\) \\ \\ v_{p,r} \quad (0 \oplus \epsilon_{\mathbf{i}}^{r}) = \epsilon_{2\mathbf{i}-1}^{p+r} \qquad (\ 1 \leqslant \mathbf{i} \leqslant r\) \\ \\ v_{p,r} \quad (0 \oplus \epsilon_{p+\mathbf{j}}^{r}) = \epsilon_{2p+\mathbf{j}}^{p+r} \qquad (\ 1 \leqslant \mathbf{j} \leqslant r-p \ \ \text{si} \ \ r > p\) \end{array}$$

finit de même une application

Si p , q , r , s sont quatre entiers \geqslant 0 , l'application v , r \times v q , s détermine une application .

 $f_{pq,rs}: G(p , q ; \Lambda) \times G(r , s ; \Lambda) \to G(p + r , q + s ; \Lambda)$ qui rend commutatif le diagramme suivant pour tous entiers p , q , r , $s \geqslant 0$ ($p \leqslant r$, $q \leqslant s$)

$$G(p, p; \Lambda) \times G(q, q; \Lambda) \xrightarrow{f_{pp;qq}} G(p + q, p + q; \Lambda)$$

$$\downarrow^{g_{rr,pp} \times g_{ss,qq}} \qquad \downarrow^{g_{r+s,r+s;p+q,p+q}}$$

$$G(r, r; \Lambda) \times G(s, s; \Lambda) \xrightarrow{f_{rr;ss}} G(r + s, r + s; \Lambda)$$

On en déduit par passage à la limite une application

f:
$$B_{U(\infty,\Lambda)} \times B_{U(\infty,\Lambda)} \rightarrow B_{U(\infty,\Lambda)}$$

Or, les applications f sont telles que

$$f_{pq,rs}^*(S(p+q+r+s,p+r); \Lambda) \equiv S'(p+q,p; \Lambda) \oplus S'(r+s,r; \Lambda)$$

(où S'(p+q,p; Λ), S'(r+s,r; Λ) sont les fibrés

$$S(p+q,p;\Lambda) \times G(r,s;\Lambda) \xrightarrow{\sigma_{p+q,p} \times id} G(p,q;\Lambda) \times G(r,s;\Lambda)$$

$$G(p, q; \Lambda) \times S(r+s, r; \Lambda) \xrightarrow{id \times \sigma_{r+s,r}} G(p, q; \Lambda) \times G(r, s; \Lambda)$$

(et ainsi de suite). On voit ainsi que l'application f n'est autre que la H-loi faible (définie au paragraphe 2, b) sur $B_{U(\infty,\Lambda)}$.

4° Pour tout couple d'entiers p , q >0 on a des isomorphismes canoniques $G(p , q ; \Lambda) \overset{\theta}{\approx} G(q , p ; \Lambda) .$

En considérant les fibrations

 $S(n, p; \Lambda) \xrightarrow{\sigma_{n,p}} G(p, q; \Lambda)$, $S(n, q; \Lambda) \xrightarrow{\theta_{p,q}} \sigma_{n,q} G(p, q; \Lambda)$ (representation on voit que $S(n, p; \Lambda) \oplus S(n, q; \Lambda)$ est équivalent au fibré trivial $U(n, \Lambda) \times G(p, q; \Lambda)$. En d'autres termes, $f_{pq,qp} \circ (id \times \theta_{q,p})$ est homotope à l'identité. Pour tout entier r > p on a

$$g_{rr,pp} \circ \theta_{pp} = \theta_{rr,pp}$$

On en déduit par passages à la limite une application

$$\theta : B_{U(\infty, \Lambda)} \rightarrow B_{U(\infty, \Lambda)}$$

telle que l'application

$$f \circ (id \times \theta)$$

soit homotope à l'application constante. Ainsi $B_{U(\infty,\Lambda)}$ est un presque-groupe au sens de Hopf.

5° D'après ce qu'on a vu au paragraphe 1, f, si $\overline{p} = (p_1, p_2, \dots, p_k)$ est une suite finie d'entiers > 0, telle que $\sum_{j=1}^k p_j = n$, les classifiants

$$B_{\overline{U}(\overline{p},\Lambda)} = V(\infty, n; \Lambda)/\overline{U(\overline{p}, \Lambda)} \text{ et } B_{\overline{U}(\overline{p},\Lambda)}^{i} = \prod_{j=1}^{k} G(p_{j}, \infty; \Lambda)$$

ont même type d'homotopie.

f. Produit tensoriel. - On suppose $\Lambda \neq H$. Soient deux entiers p, q > 0; on dit qu'une application

$$\ell$$
: $U(p, \Lambda) \times U(q, \Lambda) \rightarrow U(pq, \Lambda)$

est de type $\ell_{p,q}$ si on peut la définir en faisant opérer de façon canonique $U(p,\Lambda)\times U(q,\Lambda)$ sur $V(pq,\Lambda)$, identifié à $V(p,\Lambda)\otimes_{\Lambda}V(q,\Lambda)$ au moyen d'un isomorphisme arbitraire.

DÉFINITION 2. - Soient p, q deux entiers > 0,

$$\ell$$
: U(p, Λ) × U(q, Λ) \rightarrow U(pq, Λ)

une application de type $\ell_{p,q}$, X et Y deux espaces fibrés principaux de base B et de groupe structural $U(p,\Lambda)$ et $U(q,\Lambda)$ respectivement; on appelle produit tensoriel du fibré X et du fibré Y, et on note $X \otimes Y$, le fibré obtenu par extension du groupe structural $U(p,\Lambda) \times U(q,\Lambda)$ du produit fibré k(X,Y) au groupe $U(pq,\Lambda)$ au moyen de l'application ℓ .

Si ℓ ' est une application de type $\ell_{p,q}$, il existe un automorphisme intérieur ℓ_0 de U(pq, $\Lambda)$ tel que ℓ : = ℓ_0 o ℓ , et par suite la donnée du type d'application $\ell_{p,q}$ définit entièrement la classe du fibré $X\otimes Y$. Cette classe ne dépend que des classes des fibrés X et Y, d'où une application

$$\ell_{p,q}^*: H^1(B, U(p, \Lambda)_c) \times H^1(B, U(q, \Lambda)_c) \rightarrow H^1(B, U(pq, \Lambda)_c)$$

La famille $(l_{p,q}^*)$ (p, q entiers > 0) définit sur $K_0(B, \Lambda)$ une loi de composition, que l'on note également \otimes , associative, commutative, distributive par rapport à \oplus , et possédant un élément neutre (la classe e des fibrés triviaux de dimension 1). Le scholie du paragraphe 1 montre encore que si x désigne la classe du fibré X, y la classe du fibré Y (x, y $\in K_0(B, \Lambda)$, la classe du fibré $X \otimes Y$ est $X \otimes Y$.

REMARQUE. - L'application

$$\ell_{1,1}^* : H^1(B, U(1, \Lambda)_c) \times H^1(B, U(1, \Lambda)_c) \rightarrow H^1(B, U(1, \Lambda)_c)$$

munit $H^1(B, U(1, \Lambda)_c)$ d'une structure de groupe abélien, l'inverse x^{-1} d'un élément $x \in H^1(B, U(1, \Lambda)_c)$ étant x^* (cf. paragraphe 2, a). Mais, puisque $\Lambda \neq H$, $U(1, \Lambda)$ est un groupe abélien et $H^1(B, U(1, \Lambda)_c)$ est un groupe de cohomologie. En remontant à la définition de $\ell_{1,1}^*$ et à la définition de la loi de composition dans les groupes de cohomologie de Cech, on voit immédiatement que ces deux structures de groupe coı̈ncident.

N. B. - Lorsque $\Lambda = H$, on définit avec les notations du paragraphe 2, a (N. B.) une application

$$K_O(B, \underbrace{H}) \times \overline{K}_O(B, \underbrace{H}) \underset{\bigotimes}{\times} K_O(B, \underbrace{R})$$

obtenue en identifiant

$$V(p, \underbrace{H}) \underset{\sim}{\otimes}_{H} \overline{V}(q, \underbrace{H})$$
 à $V(4pq, \underbrace{R})$

g. Le groupe de Grothendieck d'un espace topologique B.

DEFINITION 3. - Soit B un espace topologique connexe; on appelle groupe de Grothendicck de B pour le corps Λ , et l'on note $K(B,\Lambda)$, le quotient du groupe des combinaisons linéaires formelles d'éléments de $K_0(B,\Lambda)$ par le sous-groupe engendré par les éléments de la forme

$$(x \oplus y) - x - y$$
 pour tous $x, y \in K_0(B, \Lambda)$

On note + la loi de composition de ce groupe ; O désigne l'élément neutre. L'application $\phi_0: K_0(B,\Lambda) \to K(B,\Lambda)$ n'est pas injective en général, car de la relation

$$x \oplus y = x' \oplus y$$
, $x \cdot x' \in K_{\cap}(B \cdot \Lambda)$

on ne peut déduire x=x'. Toutefois l'application \otimes étant distributive par rapport à l'addition, lorsque $\Lambda \neq \overset{H}{\longleftarrow}$ on peut la définir sur l'image de $K_0(B,\Lambda)$, et par suite l'étandre en une opération (que l'on notera \otimes) de $K(B,\Lambda)$, qui se trouve ainsi muni d'une structure d'anneau commutatif possédant un élément unité noté 1.

L'application j (resp. Rg), définie en a, induit pour $K(B, \Lambda)$ une application définie (resp. à valeurs dans Z); c'est un homomorphisme d'anneaux encore noté j (resp. Rg).

On désigne par $\widetilde{K}(B, \Lambda)$ le groupe $K(B, \Lambda)/L(B, \Lambda)$, où $L(B, \Lambda)$ est l'image de l'application j . On a la suite exacte suivante

$$0 \rightarrow Z \xrightarrow{j} K(B, \Lambda) \xrightarrow{\pi} \widetilde{K}(B, \Lambda) \rightarrow 0$$

et puisque Rg o j = id , on peut identifier $\widetilde{K}(B$, $\Lambda)$ au sous-groupe des éléments de K(B , $\Lambda)$ dont le rang est nul. π s'écrit alors

$$\pi(x) = x - Rg(x) - 1 \qquad \bullet$$

Lorsque $\Lambda \neq H$, $\widetilde{K}(B, \Lambda)$ est en outre un idéal de $K(B, \Lambda)$ et l'on a

$$\pi(x) \otimes \pi(y) = \pi(x \otimes y) - Rg(y) \cdot x - Rg(x) \cdot y$$

L'application $(x, y) \rightarrow x \otimes y - Rg(y) \cdot x - Rg(x) \cdot y$ s'appelle le <u>produit tensoriel</u> réduit.

La construction de la définition 3 s'appliquant à tout espace topologique B, connexe ou non, on désignera par $K^{\bullet}(B$, $\Lambda)$ le groupe précédemment défini lorsque B est un espace topologique quelconque.

Soit V l'ensemble des partitions V de B en ensembles v à la fois ouverts et fermés. A tout $V \in V$ on associe le groupe

$$K(V, \Lambda) = \prod_{v \in V} K'(v, \Lambda)$$

Si $V' \in V$ est plus fine que V, on a une application canonique

$$K(V, \Lambda) \rightarrow K(V', \Lambda)$$

qui fait de la famille $K(V, \Lambda)_{(V \in V)}$ un système inductif.

Soit B un espace topologique quelconque; on appelle groupe de <u>Grothendisck</u> pour le corps Λ , et l'on note K(B, $\Lambda)$, la limite inductive de ce système. Cette définition coı̈ncide évidemment avec la définition 3 lorsque B est connexe. On a des définitions analogues pour $\widetilde{K}(B$, $\Lambda)$. L'application j s'étend à l'anneau de cohomologie au sens de Čech $H^0(B$, Z). On a alors la suite exacte

$$0 \to H^{\mathbb{O}}(\mathbb{B}, \mathbb{Z}) \xrightarrow{j} K(\mathbb{B}, \Lambda) \xrightarrow{\pi} \widetilde{K}(\mathbb{B}, \Lambda) \to 0$$

On peut ainsi définir l'application Rg qui prend alors ses valeurs dans $H^0(B, \underline{Z})$, et l'on a encore : Rg o j = id , et par suite $\widetilde{K}(B, \Lambda)$ s'identifie comme précédemment à un sous-groupe de $K(B, \Lambda)$. Lorsque $\Lambda \neq \underline{H}$, $K(B, \Lambda)$ est muni d'une structure d'anneau, et $K(B, \Lambda)$ est l'idéal des éléments dont le rang est nul.

D'après le scholie du paragraphe 1 et paragraphe 1 b, numéro 1, on voit immédiatement que

$$\widetilde{K}_{\Lambda}$$
: B \rightarrow K(B , Λ) (resp. K_{Λ} : B \rightarrow K(B , Λ))

est un foncteur défini sur la catégorie des espaces topologiques; lorsque $\Lambda = H$, ce foncteur prend ses valeurs dans la catégorie des groupes abéliens ; lorsque $\Lambda \neq H$, il prend ses valeurs dans la catégorie des anneaux commutatifs (resp. des anneaux commutatifs avec élément unité).

PROPOSITION 4. - Soit B un CW-complexe de dimension finie ; le monoïde abélien $\widetilde{K}_0(B,\Lambda)$ défini au paragraphe 2, b est isomorphe au groupe abélien $\widetilde{K}(B,\Lambda)$ définicieu paragraphe $\widetilde{K}(B,\Lambda) \to H^1(B,U(\varpi)_c)$ définie au paragraphe 2, a est un isomorphisme de groupes abéliens.

En effet, soit $\hat{x} \in K_0(B, \Lambda)$. On choisit $x \in K_0(B, \Lambda)$ tel que $\psi(x) = \hat{x}$ et on pose n = Rg(x). Pour tout entier p tel que $\lambda p \geqslant \dim B + 2$, il existe alors une application continue

f:
$$B \rightarrow G(n, p; \Lambda)$$

telle que le fibré

$$X = f^*(S(n + p, n; \Lambda))$$

soit un représentant de x . La classe x' du fibré $X' = f^*(S(n + p , p ; \Lambda))$ est telle que

$$x \cdot x' = e_{n+p}$$

et par suite $\psi(x^*)$ est un inverse pour \hat{x} . De plus, puisque

$$B_{U(\infty,\Lambda)} = \lim_{\to} B_{U(n,\Lambda)}$$

on a

$$\psi_{0}: \widetilde{K}_{0}(B, \Lambda) = \lim_{\longrightarrow} H^{1}(B, U(n, \Lambda)_{c}) \approx \lim_{\longrightarrow} \pi(B, B_{U(n, \infty)}) \approx \pi(B, B_{U(\infty, \Lambda)})$$

$$\approx H^{1}(B, U(\infty, \Lambda)_{c})$$

De la remarque du paragraphe 2, c, on déduit alors que ψ_0 est un isomorphisme de groupes abéliens.

COROLIAIRE. - Si B est un CW-complexe de dimension finie, le groupe de Grothendieck de B pour le corps Λ est isomorphe au groupe des classes d'homotopie d'applications continues de B dans le H-espace $B_{U(\infty,\Lambda)} \times \frac{Z}{\infty}$, produit du classifiant du groupe unitaire infini pour le corps Λ , par l'anneau Z muni de la topologie discrète.

3. La cohomologie des espaces fibrés en drapeaux.

Dans la suite, A désigne l'anneau Z si $\Lambda = C$ ou H, et l'anneau Z_2 si $\Lambda = R$. Quand on parlera de cohomologie à valeurs dans A ou dans un système local de A-modules unitaires, on sous-entendra qu'il s'agit de cohomologie singulière, tandis que les cohomologies à valeurs dans des faisceaux de germes de fonctions continues seront toujours prises au sens de Čech. Toutefois, lorsque des confusions seront à craindre, on désignera par H_c^* la cohomologie au sens de Čech et H_s^* la cohomologie singulière.

Lorsque $\Lambda \neq \mathbb{R}$, $U(n, \Lambda)$ est connexe; donc, pour tout espace fibré X de base B, de groupe structural $U(n, \Lambda)$ (n entier > 0) et de fibre F, le système

local (cf. exposé 8) $H^*(F, A)$ est trivial; lorsque $\Lambda = R$, U(n, A) a deux composantes connexes; il en résulte que le système local $H^*(F, A)$ est encore trivial. Nous le noterons donc $H^*(F, A)$, comme s'il s'agissait d'un groupe.

a. Cas où la fibre est une sphère. - Soit $X \stackrel{\pi}{\to} B$ un espace fibré au sens de SERRE dont la fibre est la sphère S_n ; et soit $\gamma \in H^{n+1}(B,A)$ (où A est de caractéristique 2 lorsque n=0) la classe fondamentale du fibré X (exposé 8, définition 2). On a, d'après l'exposé 8 (proposition 2 et corollaire de la proposition 3) la suite exacte:

(1) ... $\rightarrow H^{i}(B, A) \xrightarrow{UY} H^{i+n+1}(B, A) \xrightarrow{\pi^{*}} H^{i+n+1}(X, A) \rightarrow H^{i+1}(B, A) \rightarrow ...$ (valable pour tout entier i à condition de poser $H^{i}(B, A) = 0$ pour tout i < 0), où le premier homomorphisme s'obtient par multiplication à droite par la classe γ · Ainsi $H^{*}(X, A)$ est isomorphe à une extension de l'annulateur de γ dans $H^{*}(B, A)$ par $H^{*}(B, A)/(\gamma)$ (ou (γ) désigne l'idéal de $H^{*}(B, A)$ engendré par γ). On a en particulier

$$\operatorname{Ker} (\pi^*) = (\gamma)$$

Plus généralement, on voit par récurrence sur j que si X $\stackrel{\pi}{\rightarrow}$ B est un espace fibré au sens de SERRE dont la fibre F est un produit $\stackrel{\pi}{\text{II}}$ S (p_i entier $\geqslant 0$), c'est-à-dire si X est équivalent à un fibré $k(X_1, X_2, \dots, X_j)$ (où les X_i sont des fibrés en sphères de dimension p_i , de base B), le noyau de π^* est engendré par les classes fondamentales $\gamma_i \in H^i$ (B , A) (où A est de caractéristique 2 lorsque $p_i = 0$ pour un i au moins) des fibrés X_i : pour tout entier $j^* < j$, on a en effet une fibration

$$k(X_1, X_2, ..., X_{j'+1}) \rightarrow k(X_1, X_2, ..., X_j)$$

dont la fibre est $S_{p_{j+1}}$ et dont la classe caractéristique est π_{j}^{*} (γ_{j+1}) (cf. exposé 8, paragraphe 2, d, Remarque), où π_{j} , désigne la projection du fibré $\mathbf{k}(X_1, X_2, \dots, X_j) \to \mathbf{B}$.

EXEMPLES. -

1° Soit X un espace fibré principal de base B et de groupe structural U(1 , Λ) \approx S_{λ -1}; la suite (1) est exacte, et comme la classe fondamentale ne dépend évidemment que de la classe x du fibré X , on en déduit une application

$$\gamma : H^{1}(B, U(1, \Lambda)_{c}) \rightarrow H^{\lambda}(B, \Lambda)$$

telle que, si B' est un espace topologique et $f : B' \to B$ une application continue, on a :

$$f^* \circ \gamma = \gamma \circ f^*$$
.

2° En particulier, lorsque $X = S(\infty, 1; \Lambda)$ est la sphère de l'espace $V(\infty, \Lambda)$ et $B = P(\infty, \Lambda)$ l'espace projectif de dimension infinie sur le corps Λ , on voit à l'aide de (1) que $H^*(P(\infty, \Lambda), \Lambda)$ est une algèbre de polynômes engendrée par la classe fondamentale γ de $S(\infty, 1; \Lambda)$. De même

$$H^*(P(n-1, \Lambda), A) \approx A[\gamma_{n-1}]/(\gamma_{n-1}^n)$$

où γ_{n-1} désigne la classe fondamentale du fibré

$$S(n, 1; \Lambda) \approx S_{\lambda_{n-1}} \rightarrow P(n-1, \Lambda)$$

et '(γ_{n-1}^n) l'idéal engendré par γ_{n-1}^n . Avec les notations du paragraphe 2, e 2, pour tout entier n>0 , l'application

$$g_{m,n} : P(n, \lambda) \rightarrow P(m, \lambda)$$

identifie $B(n,\lambda)$ à un n-plan de l'espace projectif $P(m,\lambda)$. Le cycle fondamental de l'hyperplan $g_{n,n-1}(P(n-1,\lambda))$ définit un élément de $H_{\lambda(n-1)}(P(n,\lambda),\lambda)$ dont l'élément homologue par la dualité de Poincaré sur la variété $P(n,\lambda)$ (munie de l'orientation naturelle lorsque $\lambda \neq R$) est $-\gamma_n$. En désignant par $g_{\infty,n}$ l'application canonique $P(n,\lambda) \to P(\infty,\lambda)$, $g_{\infty,n}^*$ est un isomorphisme pour les groupes de cohomologie de degré λ (lorsque n > 1) et l'on a

$$g_{\infty,n}^*(\gamma) = \gamma_n$$
 •

Pour tout entier m > n on a de même

$$g_{m,n}^*(\gamma_m) = \gamma_n$$

3° Soit X un espace fibré principal de base B et de groupe structural $U(n,\Lambda)$; soit σ la projection de X sur l'espace D(X) des drapeaux de X; on a : $X \equiv k(X_1,X_2,\ldots,X_n)$ (où les X_i , $1 \leqslant i \leqslant n$, sont des espaces fibrés de base D(X) et de fibre. $U(1,\Lambda)$; le noyau de l'application $f(x) = H^*(D(X),\Lambda) \to H^*(X,\Lambda)$ est engendré par les classes fondamentales $Y_i \in H^{\lambda}(D(X),\Lambda)$ des fibrés X_i .

PROPOSITION 5. - On suppose $\Lambda \neq H$; soient B un espace topologique, $H^1(B, U(1, \Lambda)_c)$ le groupe de cohomologie de degré 1 (au sens de Čech) de B à valeurs dans le faisceau des germes d'applications continues de B dans le groupe abélien $U(1, \Lambda)$; soit $H^{\Lambda}(B, \Lambda)$ le groupe de cohomologie singulière de degré λ de B à valeurs dans A; l'application γ de l'exemple 1, qui associe à chaque élément $x \in H^1(B, U(1, \Lambda)_c)$ sa classe fondamentale $\gamma(x)$, est

un homomorphisme de groços abéliens. Lorsque B est un CW-complexe, l'application γ est un isomorphisme.

DEMONSTRATION.

 α . Lorsque $\Lambda = \mathbb{R}$, on a U(1, Λ) = \mathbb{Z}_2 et par suite la proposition résulte immédiatement du lemme suivant :

LEMME. - Soient B un espace topologique, |B| la réalisation topologique du complexe singulier de B, f l'application canonique de |B| sur B; on identifie entre elles la cohomologie au sens de Čech $H_c^*(|B|, A)$, la cohomologie singulière $H_s^*(|B|, A)$ et la cohomologie singulière $H_s^*(B, A)$ (qui sont, comme on sait, isomorphes entre elles) et on désigne par \overline{f} l'application

$$H_c^*(B,A) \rightarrow H_s^*(B,A)$$

définie au moyen de l'application

$$f^*: H_c^*(B, Z_2) \to H_c^*(|B|, A)$$

et de ces identifications. Dans ces conditions, si γ désigne comme précédemment l'application définie dans l'exemple 1, on a

$$\gamma(x) = \overline{f}(x)$$
 pour tout $x \in H^1(B(U(1, \mathbb{R})_c))$.

Il suffit de démontrer le lemme lorsque B est un CW-complexe; mais alors $H^1(B,U(1,\Lambda)_c)$ s'identifie à $\pi(B,B_{U(1,\Lambda)})$, où $B_{U(1,\Lambda)}$ est l'espace projectif $P(\infty,\Lambda)$ de dimension ∞ sur le corps Λ . Il suffit donc de montrer que la classe x du fibré $X \to P(\infty,R)$ défini dans l'exemple 2 est égale au générateur γ de $F(\infty,R)$, $F(\infty,R)$

 β . $\Lambda = C$. D'après la définition de γ , il suffit de démontrer le lemme lorsque B est connexe par arco. Soient x_1 , $x_2 \in H^1(B$, $U(1,C)_c)$, X_1 et X_2 des représentants de x_1 et x_2 respectivement, ϵ_1 et ϵ_2 les classes fondamentales (cf. exposé 8, paragraphe II D) des fibrés X_1 et X_2 . Considérons l'application

$$K(X_1, X_2) \rightarrow X_1 \otimes X_2$$

(obtenue en appliquant $U(1,\underline{C}) \times U(1,\underline{C})$ sur $U(1,\underline{C})$ au moyen de la loi de composition de $U(1,\underline{C})$). Elle induit un homomorphisme d'algèbres différentielles graduées

$$E_2(X_1 \otimes X_2, A) \xrightarrow{\ell^*} E_2(k(X_1, X_2), A)$$

On considère également les applications

$$E_2(X_1, A) \xrightarrow{\pi_1} E_2(k(X_1, X_2), A)$$

et

$$E_2(X_2, A) \xrightarrow{\pi_2^*} E_2(k(X_1, X_2), A)$$

obtenues à l'aide des fibrations (paragraphe 1, b 2) $k(X_1, X_2) \xrightarrow{\Lambda_1} X_1$ et $k(X_1, X_2) \xrightarrow{\Lambda_2} X_2$ respectivement. Soient ϵ_1' , ϵ_2' les images de ϵ_1 et ϵ_2 dans $E_2^{0,2}(X_1, A)$ et $E_2^{0,2}(X_2, A)$ respectivement. $E_2^{0,2}(k(X_1, X_2), A)$ est engendré par $\pi_1(\epsilon_1')$ et $\pi_2(\epsilon_2')$. En désignant par ϵ la classe fondamentale de la fibre $X_1 \otimes X_2$ et par ϵ' son image dans $E_2^{0,2}(X_1 \otimes X_2, A)$, on voit immédiatement que $\ell^*(\epsilon') = \pi_1^*(\epsilon_1') + \pi_2^*(\epsilon_2')$. Comme la transgression commute avec ℓ^* , π_1^* et π_2^* , on en déduit que

$$\tau(\varepsilon) = \tau(\varepsilon_1) + \tau(\varepsilon_2)$$

ce qui démontre la première partie de la proposition, compte tenu de la proposition 5 de l'exposé 8. Lorsque B est un CW-complexe, on a les isomorphismes suivants :

$$H^1(B, U(1, C)) \stackrel{\sim}{\Rightarrow} \pi(B, P(\infty, C))$$

et

$$\pi(B, P(\infty, C)) \stackrel{\approx}{\rightarrow} H^2(B, Z)$$

puisque $P(\infty, C)$ est un classifiant pour le groupe U(1, C) et un espace K(Z, 2). On achève la démonstration en remarquant que γ s'obtient alors en comparant les deux isomorphismes précédents.

b. Cas où la fibre est un espace projectif : le polynôme caracté ristique d'un espace fibré de groupe structural $U(n, \Lambda)$.

Soit X un espace fibré principal de base B et de groupe structural $U(n, \Lambda)$; soit $P(X) \overset{Q}{\hookrightarrow} B$ l'espace fibré associé de fibre $P(n-1, \Lambda)$; on désigne par X_1 et X' respectivement les fibrés de rang 1 et n-1 provenant du saindage canonique de $\rho^*(X)$. Donc $X_1 \overset{Q}{\hookrightarrow} P(X)$ est un fibré principal de groupe structural $U(1, \Lambda)$. La classe fondamentale du fibré $X_1 \overset{P(X)}{\rightarrow} P(X)$ sera notée ξ . Le fibré $X_1 \overset{P\circ \circ}{\rightarrow} D$ est isomorphe au fibré en sphères S(X) associé à X. En considérant l'application fibrée

$$S(n, 1; \Lambda) \xrightarrow{\overline{1}} S_{n,1}(X) \equiv X_{1}$$

$$\downarrow \sigma$$

$$P(n-1, \Lambda) \xrightarrow{\underline{1}} P(X)$$

on voit que l'injection i de la fibre $P(n-1,\Lambda)$ dans P(X) est telle que $i^*(\xi) = \gamma_{n-1}$ (où γ_{n-1} est le générateur de l'algèbre $H^*(P(n-1,\Lambda),\Lambda)$ définie dans l'exemple 2 ci-dessus); et puisque i^* est un homomorphisme d'anneaux, on en déduit que la fibre de P(X) est totalement non homologue à zéro.

D'autre part on a :

THEORÈME de Lerzy-Hirsch. - Soit $F \stackrel{i}{\to} X \stackrel{\pi}{\to} B$ un espace fibré au sens de SERRE, dont la fibre F est connexe et totalement non homologue à zéro, c'est à dire telle que

$$i^*$$
 $H^*(X , A) \rightarrow H^*(F , A)$

soit surjective. On suppose en outre que le système local $\mathbb{H}^*(F, A)$ est trivial et que $\mathbb{H}^q(F, A)$ est un A-module libre de dimension finie pour tout entier $q \geqslant 0$. Dans ces conditions, l'application

$$\pi^*: H^*(B, A) \rightarrow H^*(X, A)$$

est surjective et munit H*(X, A) d'une structure de H*(B, A)-module libre; on a

$$H^*(X,A) \approx H^*(B,A) \otimes_A H^*(F,A)$$

et le noyau de i* est l'idéal engendré par les éléments de $\pi^*(\text{Ker }(\epsilon))$, où est l'augmentation pour la cohomologie de B à valeurs dans A .

LEMME. - Soit $H = \bigoplus_{i \ge 0} H^i$ une A-algèbre unitaire graduée, munie d'une filtration

décroissante d'idéaux bilatères $(F^p H)_{p \gg 0}$, $M = \bigoplus_{i > 0} M^i$ un H-module unitaire à

gauche gradué et filtré par une famille de H-modules unitaires décroissants $(F^p M)_{p\geqslant 0}$ tels que, pour tout couple d'entiers p, $q\geqslant 0$, on ait

$$F^p \text{ H.}F^q \text{ H } \subset F^{p+q} \text{ H}$$
 et $F^p \text{ H.}F^q \text{ M } \subset F^{p+q} \text{ M}$

On suppose les graduations et les filtrations de H et de M compatibles entre elles, c'est-à-dire que pour tout entier i il existe deux entiers p(i) et q(i) tels que

 $F^p H^i = F^p H \cap H^i = 0$ si p > p(i) et $F^q M^i = F^q M \cap M^i$ si q > q(i) . Comme $\bigcap F^i H = 0$ et $\bigcap F^i M = 0$, à tout élément non nul $h \in H$ (resp. i > 0 i > 0 $m \in M$), on peut associer l'entier p(h) (resp. p(m)) défini par la relation :

$$h \in F^{p(h)} H$$
, $h \notin F^{p(h)-1} H$ (resp. $m \in F^{p(m)} M$, $m \notin F^{p(m)-1} M$).

Soient G(H) et G(M) les graduées associés à H et M respectivement ; soit ϕ l'application (non additive en général) $H \to G(H)$ (resp. $M \to G(M)$) qui assoccie à tout $h \in H$ (resp. $m \in M$) son image canonique dans

$$F^{p(h)}_{H/F}^{p(h)+1}_{H} = G^{p(h)}_{(H)}$$
 (resp. dans $F^{p(m)}_{M/F}^{p(m)+1}_{M} = G^{p(m)}_{(M)}$).

Comme $\phi(H)$ et $\phi(M)$ engendrent les A-modules G(H) et G(M) respectivement et que $\phi(hh')$ et $\phi(hm)$ (h, h' \in H, m \in M) ne dépendent que de $\phi(h)$, $\phi(h')$, $\phi(m)$, on munit G(H) d'une structure de A-algèbre et G(M) d'une structure de G(H)-module en posant :

 $\phi(h).\phi(h^*) = \phi(hh^*) \text{ et } \phi(h).\phi(m) = \phi(hm) \text{ (pour tous } h \text{ , } h^* \in H \text{ , } m \in M \text{)}$ Dans ces conditions, si G(M) est un G(H)-module libre, alors M est un H-module libre, et l'image par ϕ d'une base de M est une base de G(M) .

DÉMONSTRATION du lemme. - Soit (\overline{m}_j) (j entier >0) une G(H)-base de G(M), (m_j) une famille d'éléments de M telle que $\phi(m_j) = \overline{m}_j$ pour tout j. Soit M' le H-module libre gradué et filtré engendré par les m_j ; les m_j engendrent M qui s'identifie par suite à un quotient de M'. L'application $M' \to M$ induit sur les gradués associés un isomorphisme $G(M') \to G(M)$. On en déduit que M est isomorphe à M', ce qui démontre le lemme.

THÉORÈME 1. - Soit X un espace fibré principal de base B et de groupe structural $U(n,\Lambda)$; soit $P(X) \stackrel{\rho}{\to} B$ le fibré de fibre $P(n-1,\Lambda)$ associé à X. Alors l'algèbre de cohomologie $H^*(P(X),\Lambda)$ est isomorphe au quotient de l'algèbre des polynômes à une indéterminée t, $H^*(B,\Lambda)[t]$, par l'idéal engendré par un polynôme de la forme

$$\chi(t) = \sum_{i=0}^{n} a_i t^{n-i} \qquad (a_0 = 1, a_i \in H^{\lambda_i}(B, A) \quad 1 \leqslant i \leqslant n)$$

Cet isomorphisme s'obtient en appliquant la classe - ξ sur le générateur t, c'est-à-dire qu'on a $\chi(-\xi) = 0$. Enfin on a

$$\rho^*(h) = h \cup 1$$
 pour tout $h \in H^*(B, A)$

En effet, compte tenu des hypothèses faites sur A , le système local $H^*(P(n-1,\Lambda),A)$ est trivial, et d'après le paragraphe 3 a, exemple 2 , $H^1(P(n-1,\Lambda),A)$ est un module libre de dimension finie pour tout entier $i \geqslant 0$. Avec les notations de la démonstration du théorème précédent, et puisque

i* est surjective, on a un isomorphisme

f *
$$H^*(P(X), A) \stackrel{\approx}{\to} H^*(B, A) \otimes_A H^*(P(n-1, A), A)$$
.

Si l'on pose $\overline{m}_j = 1 \otimes \gamma_{n-1}^j$, on peut choisir les m_j de façon que $f(\xi^j) = 1 \otimes \gamma_{n-1}^j$, et puisque $\xi \in \text{Ker }(\rho^*)$, c'est un élément homogène de degré λn de l'idéal engendré par Ker (ϵ) ; d'où le théorème.

COROLLAIRE. - Soit χ'(t) un polynôme unitaire de degré n, de la forme

$$t^{n} + a_{1}^{i} t^{n-1} + ... + a_{n-1}^{i} t + a_{n}^{i}$$
 ($a_{1}^{i} \in H^{\lambda i}(B, A)$)

tel que $\chi'(-\xi) = 0$; on a

$$a_{i}^{!} = a_{i}$$
 (1 \leq i \leq n)

En effet, s'il en était autrement, les coefficients du polynôme $\chi'(t) - \chi(t)$ de degré n - 1 ne seraient pas tous nuls, et comme on a $\chi(-\xi) - \chi'(-\xi) = 0$, cela exprimerait que les ξ^{i} $(0 \le i \le n)$ seraient liés par une relation linéaire à coefficients dans $H^*(B,A)$, ce qui contredirait le théorème 1.

DÉFINITION 4. - Soit X un espace fibré principal de base B et de groupe structural $U(n,\Lambda)$; soit P(X) l'espace fibré associé de fibre $P(n-1,\Lambda)$, $\xi \in H^{\lambda}(P(X),\Lambda)$ la classe fondamentale du fibré $S(X) \to P(X)$. L'unique polynôme unitaire de degré n

$$\sum_{i=0}^{i=n} a_i t^{n-i} \qquad (a_0 = 1, a_i \in H^{\lambda i}(B, A))$$

tel que $\chi(-\xi)=0$, s'appelle le polynôme caractéristique de X et se note $\chi_{x}(t)$, ou simplement $\chi(t)$ lorsqu'aucune confusion n'est à craindre ; le i-ième coefficient a_{i} de $\chi(t)$ s'appelle la i-ième classe caractéristique de X ; pour tout i>n, on posera $a_{i}=0$.

c. Polynôme caractéristique et somme de Whitney.

THÉORÈME 2. - Soient X_1 et X_2 deux espaces fibrés principaux de base B et de groupe structural $U(p, \Lambda)$, $U(q, \Lambda)$ respectivement; le polynôme caractéristique de la somme de Whitney de X_1 et de X_2 est égal au produit des polynômes caractéristiques de X_1 et de X_2 .

$$X = \int_{j=1}^{k} X_{j}$$

Le polynôme caractéristique $\chi(X)$ est égal au produit $\lim_{j \to 1} \chi(X_j)$ des polynômes caractéristiques des fibrés X_j .

Le corollaire se déduit du théorème 2 par récurrence sur k , en considérant les fibrations définies au paragraphe 1, b, 2 .

LEMME 1. - Avec les hypothèses du théorème 2, soient $P(X_1)$, $P(X_2)$, $P(X_1 \oplus X_2)$ les espaces fibrés associés à X_1 , X_2 et $X_1 \oplus X_2$, de fibres $P(p-1, \Lambda)$, $P(q-1, \Lambda)$, $P(p+q-1, \Lambda)$; il existe des injections naturelles

$$i_1: P(X_1) \rightarrow P(X_1 \oplus X_2)$$

$$i_2 : P(X_2) \rightarrow P(X_1 \oplus X_2)$$

telles que

$$\operatorname{Im} (P(X_1)) \cap \operatorname{Im} (P(X_2)) = 0$$

En outre il existe deux sous-espaces fibrés fermés P_1 et P_2 régulièrement plongés dans $P(X_1 \oplus X_2)$, tels que $P_1 \cup P_2 = P(X_1 \oplus X_2)$ et que $P(X_1)$ soit un rétracte par déformation de P_1 (i = 1, 2).

DÉMONSTRATION du lemme 1. - Rappelons qu'un sous-espace fermé d'un espace topologique est dit <u>régulièrment plongé</u> s'il est rétracte par déformation d'un de ses voisinages.

Soit $U(p, \Lambda) \times U(q, \Lambda) \to P(p+q-1, \Lambda)$ l'action du groupe structural de $X_1 \oplus X_2$ sur la fibre de $P(X_1 \oplus X_2)$. On définit ainsi dans $P(n-1, \Lambda)$ une famille d'orbites que l'on peut paramétrer à l'aide de $P(1, \Lambda) \approx S_{\lambda}$. Toutes ces orbites sont homéomorphes entre elles, à l'exception de deux orbites singulières O_1 et O_2 , respectivement homéomorphes à $P(p-1, \Lambda)$, $P(q-1, \Lambda)$. On construit ainsi dans $P(X_1 \oplus X_2)$ deux champs d'orbites singulières qui définissent les sous-fibrés $P(X_1)$ et $P(X_2)$. Soient S_1 , S_2 les points de S_{λ} correspondant à O_1 et O_2 qu'on peut supposer diamétralement opposés; soient S_1 et S_2 deux boules fermées de dimension S_1 , de centres S_1 et S_2 respectivement, telles que $S_1 \cup S_2 = S_{\lambda}$; on pose

$$P_{i} = \bigcup_{s \in B_{i}} O_{s}$$
 (i = 1, 2)

 0_s orbite associée à s par la correspondance définie ci-dessus. On voit alors que P_1 et P_2 vérifient les propriétés du lemme 1.

LEMME 2. - Soient X un espace topologique, X_1 , X_2 deux sous-espaces fermés de X. On considère les homomorphismes usuels

$$i_1: H^*(X, X_1; A) \to H^*(X, A)$$
 $i_2: H^*(X, X_2; A) \to H^*(X, A)$
 $i_{1,2}: H^*(X, X_1 \cap X_2; A) \to H^*(X, A)$

Dans ces conditions, si $x \in Im(\widetilde{i}_1)$ et $x_2 \in Im(\widetilde{i}_2)$, alors $x_1 \cup x_2 \in Im(\widetilde{i}_{1,2})$. En effet, soit z_i (i = 1, 2) un cycle de la classe x_i nul sur toute chaîne de X_i . Le cup-produit $z_i \cup z_2$ est évidemment nul sur $X_1 \cup X_2$, et par suite la classe $x \cup x_2$ de $z_1 \cup z_2$ est dans l'image de $\widetilde{i}_{1,2}$.

DÉMONSTRATION du théorème 2.

On désigne par ξ , ξ_1 et ξ_2 les classes fondamentales des fibrations

$$S(X_1 \oplus X_2) \rightarrow P(X_1 \oplus X_2)$$
, $S(X_1) \rightarrow P(X_1)$, $S(X_2) \rightarrow P(X_2)$

Avec les notations du lemme 1, on a

$$i_1^*(\xi) = \xi_1$$
, $i_2^*(\xi) = \xi_2$

et par suite, comme i_1^* et i_2^* sont des homomorphismes d'anneaux,

$$\chi_1(-\xi) \in \text{Im}(\hat{i}_1), \qquad \chi_2(-\xi) \in \text{Im}(\hat{i}_2)$$

D'autre part, comme P_1 et P_2 se rétractent sur $P(X_1)$ et $P(X_2)$, on a les diagrammes commutatifs :

$$H^{*}(P(X_{1} \oplus X_{2}), P_{1}; A) \xrightarrow{\widetilde{j}_{1}} H^{*}(P(X_{1} \oplus X_{2}), A)$$

$$\approx \qquad \qquad \widetilde{i}_{1}$$

$$H^{*}(P(X_{1} \oplus X_{2}), P(X_{1}); A)$$

$$H^{*}(P(X_{1} \oplus X_{2}), P_{2}; A) \xrightarrow{\widetilde{j}_{2}} H^{*}(P(X_{1} \oplus X_{2}), A)$$

$$\approx \qquad \qquad \widetilde{i}_{2}$$

$$H^{*}(P(X_{1} \oplus X_{2}), P(X_{2}); A)$$

D'après le lemme 2, on voit que :

$$\chi_1(-\xi) \cup \chi_2(-\xi) \in \text{Im } H^*(P(X_1 \oplus X_2), P_1 \cup P_2; A)$$

et puisque $P_1 \cup P_2 = X$, cette image se réduit à $\{0\}$ et par suite

$$\chi_1(-\xi) \cup \chi_2(-\xi) = 0$$

Or, $\chi_1(t)$ o $\chi_2(t)$ étant unitaire, on conclut en appliquant le corollaire du théorème 1.

d. Le foncteur caractéristique.

THÉORÈME 3. - Soient B un espace topologique, et $K_0(B, \Lambda)$ le monoïde défini au paragraphe 2, a, b; il existe une application et une seule

a :
$$K_0(B, \Lambda) \rightarrow H^*(B, \Lambda)$$

várifiant les conditions suivantes :

 α . En désignant par h_i la projection de $H^*(B,A)$ sur sa composante homogène $H^i(B,A)$ de degré i, on a, pour tout $x \in K_0(B,A)$,

 $(h_0 \circ a)(x) = 1$, $(h_i \circ a)(x) = 0$ pour tout $i \neq \lambda j$, j entier quelconque > 0

 β . a <u>est une transformation naturelle de foncteurs, c'est-à-dire que si</u> B' est un espace topologique quelconque et f: B' \rightarrow B <u>une application continue, on a, pour tout $x \in K_0(B, \Lambda)$,</u>

$$(a \circ f^*)(x) = (f^* \circ a)(x)$$

- $\gamma \cdot \underline{\text{Pour tous}} \quad x , y \in K_0(B, \Lambda) \underline{\text{on a}} \quad a(x \oplus y) = a(x) \cup a(y)$
- δ. En désignant par γ l'application du paragraphe 3 a (exemple 1), définie sur les éléments de rang 1 de $K_0(B, \Lambda)$,

$$a(x) = 1 + \gamma(x)$$
, $x \in K_0(B, \Lambda)$, $Rg(x) = 1$

DEMONSTRATION. -

1° Existence. Soient $x \in K_0(B, \Lambda)$, et X un fibré principal de base B dont la classe est x; on pose $a(x) = \chi_X(1) = \frac{Rg(x)}{1} a_1$, où a_1 désigne la i-ième

classe caractéristique de X . Il est clair que a(x) ne dépend pas du choix de X , car quel que soit $X' \equiv X$, $H^*(P(X'),A) \approx H^*(P(X),A)$ comme anneau et comme $H^*(B,A)$ -module ; par cet isomorphisme $\xi^j(X)$ s'applique sur $\xi^j(X')$ ($0 \leqslant j \leqslant Rg(x)$), $\xi(X)$ et $\xi(X)$ désignant les classes fondamentales des fibrations $S(X) \to P(X)$, $S(X') \to P(X')$ respectivement).

 α . Puisque χ_X est unitaire, on voit immédiatement que $h_0(a(x))=1$. D'autre part, comme deg $a_j=\lambda j$, on voit aussi que $h_i(a(x))=0$ pour tout $i\neq \lambda j$ (j entier >0).

 β . La donnée de f permet de définir une application fibrée

$$\overline{f}$$
: $P(f^*(X)) \equiv f^*(P(X)) \rightarrow P(X)$

telle que

$$\overline{f}^*: H^*(P(X), A) \rightarrow H^*(P(f^*(X)), A)$$

applique la classe fondamentale $\xi \in H^{\lambda}(P(X), A)$ de la fibration $S(X) \to P(X)$ sur la classe fondamentale x' de la fibration $S(f^*(X)) \to P(f^*(X))$.

En outre, pour tout $h \in H^*(P(X), A)$ et tout $a \in H^*(B, A)$, on a $\overline{f}^*(ah) = \overline{f}^*(a).\overline{f}^*(h)$, de sorte que

$$\overline{f}^*(\chi_X(h)) = f^*(\chi_X)(\overline{f}^*(h)) \qquad \text{pour tout } h \in H^*(P(X), A)$$

Comme $f^*(\chi_{\chi})(t)$ est un polynôme de la forme

$$t^{n} + a_{1}^{i} t^{n-1} + \dots + a_{n-1}^{i} t + a_{n}^{i}$$
, $(n = Rg(x), a_{1}^{i} \in H^{\lambda_{i}^{i}}, L)$

et que $f^*(\chi_{\chi})(\xi^{!}) = 0$, la propriété résulte du corollaire du théorème 1.

γ. Soit Y un fibré de classe y ; d'après le théorème 2, on a

$$\chi_{X \oplus Y}(1) = \chi_{X}(1) \cup \chi_{Y}(1)$$
 .

 δ . Lorsque $\Re g(x) = 1$, P(X) = B, S(X) = X, soit $\gamma(x)$ la classe fondamentale de X; le polynôme $t + \gamma(x)$ vérifie les conditions du corollaire du théorème 1, et par suite

$$\chi_{X}(t) = t + \gamma(x)$$
,

d'où la condition cherchée.

2º Unicité. Soit a': $K_0(B,\Lambda) \to H^*(B,\Lambda)$ une application définie pour tout espace topologique B et vérifiant les conditions α à δ . Soient donnés un espace topologique B et une classe $x \in K_0(B,\Lambda)$; on pose Rg(x) = n; soient X un espace fibré principal de base B dont la classe est x, $P(X) \not\supseteq B$ l'espace fibré associé dont la fibre est l'espace projectif de dimension n-1 sur le corps Λ , $\xi \in H^{\lambda}(P(X),\Lambda)$ la classe fondamentale de la fibration $S(X) \to P(X)$, (où S(X) est l'espace fibré en sphères associé à X). On va montrer par récurrence sur le rang n de x, que $a^{x}(x)$ est égal à l'application a(x) définie dans la première partie de la démonstration. Si Rg(x) = 1, $a^{x}(x) = a(x)$ en vertu de δ .

D'après γ et δ , on a a' $(\rho^*(x)) = (1 + \xi)$ a' $(x^!)$ (où x' désigne la classe du fibré de rang n-1 provenant du scindage canonique de $\rho^*(X)$). Or, en vertu de l'hypothèse de récurrence, a' $(x^!) = a(x^!)$. On en déduit que a' $(\rho^*(x)) = a(\rho^*(x))$, et on conclut en appliquant β et en utilisant le fait que ρ^* est une injection.

La classe a(x) d'un fibré X de base B et de classe x s'appelle <u>la classe</u> caractéristique totale, ou plus simplement la classe caractéristique du fibré X.

Posons:

$$H^{**}(B, A) = \prod_{i=0}^{\infty} H^{i}(B, A)$$
;

on a $H^*(B,A) \subset H^{**}(B,A)$ et on étend de façon évidente le cup-produit de $H^*(B,A)$ à $H^{**}(B,A)$. D'après α , a(x) est inversible dans $H^{**}(B,A)$ pour tout $x \in K_0(B,\Lambda)$, et par suite, si $x' \in K_0(B,\Lambda)$ est tel qu'il existe $y \in K_0(B,\Lambda)$ vérifiant $x \oplus y = x' \oplus y$, on a a(x) = a(x').

Ceci permet de définir l'application γ du paragraphe 3, a (exemple 1) pour les éléments de rang 1 du groupe de Grothendieck K(B, Λ) de l'espace B pour le corps Λ et, plus généralement, de considérer une application

$$\overline{a}$$
: K(B, Λ) \rightarrow H**(B, A)

On peut ainsi énoncer :

THÉORÈME 3'. - Soient B un espace topologique, K(B, Λ) le groupe de Grothendieck de B pour le corps Λ; on pose

$$H^{**}(B, A) = \prod_{i=0}^{\infty} H^{i}(B, A)$$

muni de sa structure naturelle d'anneau, Alors il existe une application et une seule

$$\overline{a}$$
: K(B, Λ) \rightarrow H**(B, A)

vérifiant les conditions suivantes :

 α En désignant par h_i la projection de $H^{**}(B, A)$ sur $H^{i}(B, A)$, on a, pour tout $x \in K(B, A)$:

 $h_0(a(x)) = 1$, $h_i(a(x)) = 0$ pour tout $i \neq \lambda j$, j entier quelconque > 0.

- β_{ullet} a est une transformation naturelle de foncteurs ;
- Y. Pour tous x, $y \in K(B, \Lambda)$ on a $a(x + y) = a(x) \cup a(y)$;
- δ . Pour tout $x \in K(B, \Lambda)$ tel que Rg(x) = 1, $a(x) = 1 + \gamma(x)$.

e. Cas où la fibre est une variété de drapeaux.

PROPOSITION 6. - Soit X un espace fibré principal de base B , de groupe structural U(n , Λ); soit D(X) $\stackrel{\tau}{\rightarrow}$ B l'espace fibré en drapeaux associé à X; H*(D(X) , Λ) est isomorphe au quotient de l'algèbre des polynômes H*(B , Λ)[t₁ , t₂ , ... , t_n] à n variables t₁ , t₂ , ... , t_n (où les t₁ sont de degré Λ) par l'idéal engendré par des éléments de la forme $c_1(t_1, t_2, \ldots, t_n) - a_1(t_1, t_2, \ldots, t_n) - a_1(t_1, t_2, \ldots, t_n) - a_1(t_1, t_2, \ldots, t_n)$ désignent les fonctions symétriques élémentaires de n variables, et $a_1 \in H^{\lambda_1}(B, \Lambda)$ est la i-ième classe caractéristique de X . Si ξ_1 , ξ_2 , ... , ξ_n désignent les classes fondamentales des fibrés x_1 , x_2 , ... x_n provenant du scindage canonique de l'image réciproque de X sur D(X), l'isomorphisme précédent s'obtient en appliquant ξ_1 sur t_1 ($1 \le i \le n$) , et l'on a

$$\tau^*(h) = h \cup 1$$
 pour tout $h \in H^*(B, A)$.

En effet, la proposition est triviale pour n=0. Supposons-la démontrée pour tout fibré de rang n-1. Soit X un espace fibré de rang n; on désigne par X_1 et X' respectivement les fibrés de rang 1 et n-1 provenant du scindage canonique de l'image réciproque de X sur P(X). Le fibré en drapeaux $D(X^1)$ associé à X' est isomorphe au fibré $D(X) \stackrel{\tau}{\to} P(X)$, et

$$\tau^{**}: H^*(P(X), A) \rightarrow H^*(D(X), A)$$

est une injection. D'après l'hypothèse de récurrence, $H^*(D(X^!), A)$ est une $H^*(P(X), A)$ -algèbre engendrée par les classes fondamentales ξ_2 , ξ_3 , ..., ξ_n des fibrés X_2 , X_3 , ... X_n provenant du scindage canonique de l'image réciproque de $X^!$ dur $D(X^!)$. On a les relations

$$\sigma_{i}(\xi_{2}, \xi_{3}, \ldots, \xi_{n}) = a_{i}$$

($1 \le i \le n-1$, $\sigma_i^!$ désignant la fonction symétrique élémentaire de n-1 variables, et $a_i^!$ la i-ième classe caractéristique de $X_i^!$). Or, d'après le théorème 2, on a, en désignant par ρ la projection $\rho(X) \to B$

$$\chi(x) = \chi_{p*}(x) = \chi_{\chi}(t) = (t + \xi)_{\chi_{\overline{\chi}!}}(t)$$

où ξ désigne la classe fondamentale de X_1 ; par suite la i-ième classe caractéristique téristique a_i de X est égale à $a_i^!+\xi a_{i-1}^!$, et puisque la classe caractéristique de $\tau^*(X)$ est $\tau^*(a_i)=a_i$ et que $\tau^*(X)=\tau^{!*}(X_1)+\tau^{!*}(X^!)$, on en déduit que $a_i=\sigma_i^!(\xi_2\ ,\,\xi_3\ ,\, \cdots\, ,\,\xi_n)+\xi_1\ \sigma_{i-1}^!(\xi_2\ ,\,\xi_3\ ,\, \cdots\, ,\,\xi_n)=\sigma_i(\xi_1\ ,\,\xi_2\ ,\, \cdots\, ,\,\xi_n)$,

où l'on a posé

$$\xi_1 = \tau^*(\xi) \qquad \bullet$$

On voit ainsi que τ^* est une injection et que $H^*(D(X), A)$ est engendré comme $H^*(B, A)$ -algèbre, par ξ_1 , ξ_2 , ..., ξ_n . Enfin le système de relations

$$\{\chi_{X}(-\xi_{1}) = 0, a_{1}^{!} = \sigma_{1}^{!}(\xi_{2}, \xi_{3}, ..., \xi_{n})\}_{1 \le i \le n}$$

où les $a_i^!$ sont les éléments de la sous-algèbre $H^*(P(X)$, A) définis par les équations $a_i = a_i^! + \xi_1 a_{i-1}^!$, est équivalent au système de relations

$$\{a_i = \sigma_i(\xi_1, \xi_2, \dots, \xi_n)\}_{1 \le i \le n}$$

$$\chi^{\bullet}(t) = \prod_{j=1}^{k} (\chi_{X}(j) (t) - \chi_{X}(t)) .$$

D'après le corollaire du théorème 2, les coefficients de $\chi^{\bullet}(t)$ sont bien nuls. D'autre part, D(X) est un fibré de base $D_{\overline{p}}(X)$ et de fibre $\lim_{j=1}^{K} D(P_{j}, \Lambda)$. Far récurrence sur j, on montre alors, compte tenu du paragraphe 1 b, 2, et du thérème 2, que $H^{*}(D(X), \Lambda)$ s'obtient en adjoignant à $H^{*}(D_{\overline{p}}(X), \Lambda)$ des éléments $\xi_{1}^{j}(1 \le j \le k, 1 \le i \le p_{j})$ de degré λ , assujettis aux seules relations $\sigma_{i}(\xi_{1}^{(j)}, \xi_{2}^{(j)}, \dots, \xi_{p_{i}}^{(j)}) = a_{i}^{(j)}$.

Or on a évidemment :

$$\xi_i^{(j)} = \xi_t$$
, avec $t = \sum_{h=1}^{j} p_h^{+i}$

et par suite $H^*(D_{\overline{p}}(X)$, A) est une sous-algèbre de $H^*(D(X)$, A). Montrons d'abord qu'elle est engendrée comme $H^*(B,A)$ -algèbre par les a . En effet, soit a $\in H^*(D_{\overline{p}}(X,A))$ tel que

$$a \notin H^*(B, A)[a_1^{(1)}, a_2^{(1)}, \dots, a_{p_1}^{(1)}; a_1^{(2)}, \dots, a_{p_k}^{(k)}]$$
;

comme $a \in H^*(D(X,A))$, il existe un polynôme $P(t_1,t_2,\ldots,t_n)$ à coefficients dans $H^*(B,A)$ tel que $P(\xi_1,\xi_2,\ldots,\xi_n)=a$. On voit alors que $P(\xi_1,\xi_2,\ldots,\xi_n)=a$ n'appartient pas à l'idéal des relations liant les générateurs ξ_i de la $H^*(D_{\overline{p}}(X),A)$ -algèbre $H^*(D(X),A)$, ce qui contredit la proposition 6.

Désignons par H la H*(B , A)-algèbre engendrée par des éléments $t_{\bf j}^{({\bf j})}$ ($1\leqslant {\bf j}\leqslant k$, $1\leqslant {\bf j}\leqslant p_{\bf j}$) assujettis aux relations

$$a_h = \sum_{i \in P_h} {k \choose n} t_{ij}^{(j)}$$
 (1 \leq h \leq n, a_i désignant la i-ième classe caractéristique de X

où $\overline{i} = (i_1, i_2, \dots, i_k)$ est une suite de k entiers $\geqslant 0$, et P_h désigne l'ensemble des suites \overline{i} telles que $\sum_{j=1}^{k} i_j = h$.

D'après ce qui précède, il existe un homomorphisme de H*(B , A)-algèbre surjectif θ : H \rightarrow H*(D-(X) , A) qui applique les $t_{\bf i}^{(j)}$ sur les $a_{\bf i}^{(j)}$. Montrons que Ker (θ) = 0 , ce qui achèvera la démonstration du théorème 4 :

Soit $a \in H$ tel que $\theta(a) = 0$; on a

$$a = P(t_1^{(1)}, t_2^{(1)}, \dots, t_{p_1}^{(1)}; t_1^{(2)}, \dots, t_{p_k}^{(k)})$$

où P est un polynôme à coefficients dans $H^*(B, A)$.

Pour que $a \neq 0$, il faut que P n'appartienne pas à l'idéal engendré par les polynômes de la forme

$$\sum_{\mathbf{i} \in P_h} \left(\prod_{j=1}^k a_{\mathbf{i}j}^{(j)} \right) - a_h \qquad (1 \le h \le n)$$

Remplaçons alors dans P les $t_i^{(j)}$ (1 < j < k, $1 < i < p_j$) par $\sigma_i(t_1, t_2, \ldots, t_n)$; on définit ainsi un polynôme P'(t_1, t_2, \ldots, t_n) à coefficients dans H*(B, A) qui n'appartient pas à l'idéal engendré par les polynômes $\sigma_h(t_1, t_2, \ldots, t_n)$ - a_h (1 < h < n). L'hypothèse $\theta(a) = 0$ contredit alors la proposition 6.

APPLICATION. - Soit \overline{p} une suite d'entiers p_1 , p_2 , ..., p_k telle que $p_1 + p_2 + \cdots + p_k = n$. Le théorème 4 permet de calculer la cohomologie $H^*(D(\overline{p}, \Lambda), \Lambda)$ de la variété de drapeaux de type \overline{p} sur le corps Λ . Posons en effet $B = \{b\}$; les a_i sont alors tous nuls pour $i \geqslant 1$, et $H^*(D(\overline{p}, \Lambda), \Lambda)$ est alors une Λ -algèbre engendrée par k groupes de variables $a_i^{(j)}$ ($1 \leqslant j \leqslant k$, $1 \leqslant i \leqslant p_j$) assujetties aux n relations:

$$\sum_{i_1+i_2+\dots+i_k=h}^{i_1+i_2+\dots+i_k=h} \prod_{j=1}^{i_1} a_j^{(j)} = 0 (1 \le h \le n)$$

f. <u>Cohomologie de</u> $^BU(\infty,\Lambda)$. - Nous venons de voir que la cohomologie $^*(G(p,q;\Lambda),\Lambda)$ de la grassmannienne de type (p,q) sur le corps Λ est engendrée par deux groupes de variables

(a_j) (1
$$\leq$$
 i \leq p), (a'_j) (1 \leq j \leq q) (deg a_j = λ i, deg a'_j = λ j) assujetties aux p + q relations $\sum_{i+j=h}$ a_i a'_j = 0.

On peut exprimer les a' à l'aide des q premières relations, et l'on voit ainsi que $H^*(G(p,q;\Lambda),A)$ est une A-algèbre engendrée par les a_i ($1 \le i \le p$) assujettis aux p relations obtenues en remplaçant dans les expressions

 $\sum_{i+j-q=k}a_ia_j^i=0$ ($1\leqslant k\leqslant p$) les a_j^i par leurs valeurs en fonction des a_i .

Soient r, s deux entiers tels que r > p, s > q. Désignons par b_i ($1 \le i \le r$), b_j^i ($1 \le j \le s$) les générateurs de $H^*(G(r,s;\Lambda),\Lambda)$; on déduit alors du théorème 3, en utilisant les identifications entre fibrés (établies au paragraphe 2, e 2), que

$$g_{rs;pq}^{*}(b_{i}) = a_{i}$$
 (1 \leq i \leq p), $g_{rs;pq}^{*}(b_{i}) = 0$ (p \leq i \leq r)
 $g_{rs;pq}^{*}(b_{j}) = a_{j}^{*}$ (1 \leq j \leq q), $g_{rs;pq}^{*}(b_{j}) = 0$ (q \leq j \leq s)

Il s'ensuit que $H^{i}(G(p,q;\Lambda),A)$ ne dépend pas des entiers p, q lorsque p et q>i, et par conséquent que $H^{*}(G(\infty,\infty;\Lambda),A)$ s'identifie à la limite projective des $H^{*}(G(p,q;\Lambda),A)$ prise à l'aide des applications $g^{*}_{rs;pq}$. Cette cohomologie est donc isomorphe à la A-algèbre engendrée par des éléments a_{i} et a_{i}' de degré λ i (i entier >0), assujettis aux relations

$$\sum_{i+j=h} \overline{a}_i \overline{a}_j' = 0$$
 (h entier $\geqslant 0$)

Les k premières relations du type précédent étant équivalentes aux k expressions $a_j' = P_j(\overline{a_1}, \overline{a_2}, \cdots, \overline{a_j})$ ($1 \le j \le k$), on en déduit que les $\overline{a_j'}$ s'expriment en fonction des $\overline{a_j}$ quel que soit l'entier $j \ge 0$; on voit également que les générateurs $\overline{a_j}$ ne sont alors soumis à aucune relation.

Soient maintenant p, q, r, s quatre entiers quelconques $\geqslant 0$. On désigne par a_i , a_j^i ; b_i , b_j^i ; c_i , c_j^i les générateurs canoniques de $H^*(G(p,q;\Lambda),A)$, $H^*(G(r,s;\Lambda),A)$, $H^*(G(p+r,q+s;\Lambda),A)$ respectivement; on peut identifier $H^*(G(p+q;\Lambda)\times G(r,s;\Lambda),A)$ à $H^*(G(p,q;\Lambda),A)\otimes H^*(G(r,s;\Lambda),A)$.

Avec les notations du paragraphe 2 \circ 3°, les classes caractéristiques de $S(p + q; \Lambda)$ et de $S'(q + s, s; \Lambda)$ s'écrivent alors

$$a_{i}^{!} \otimes 1$$
 et $1 \otimes b_{j}^{!}$ respectivement

On a alors, d'après les théorèmes 2 et 3 et les propriétés des applications f_{pq;rs},

$$f_{pq,rs}^*(c_k) = \sum_{i+j=k} a_i \otimes b_j$$
 (1 $\leq k \leq p + r$)

$$f_{pq;rs}^*(c_{\ell}^!) = \sum_{i+j=\ell} a_i^! \otimes b_j^! \qquad (1 \leq \ell \leq q + s) \qquad \bullet$$

En utilisant le diagramme de compatibilité du paragraphe 2, d, nº 6, on peut alors calculer l'application

$$f^*: H^*(G(\infty, \infty, \Lambda), A) \to H^*(G(\infty, \infty; \Lambda), A) \otimes_A H^*(G(\infty, \infty; \Lambda), A)$$

déduite de l'application limite qui n'est autre que la H-loi définie au paragraphe 2, b sur le classifiant $B_{U(\infty,\Lambda)}$. En revenant à des notations plus classiques, nous pouvons donc énoncer le théorème suivant

THÉORÈME 5.

α. L'algèbre de cohomologie $H^*(B_0; \mathbb{Z}_2)$ de l'espace classifiant B_0 du groupe orthogonal infini $O(\infty)$ est une algèbre de polynômes engendrée par des éléments W_i (i entier >1) de degré i , et l'on a, en désignant par δ l'application diagonale de cette algèbre de Hopf, $\delta(W_k) = \sum_{i+j=k} W_i \otimes W_j$.

 β . Soit de même β_U l'espace classifiant du groupe unitaire infini $U(\infty)$; alors $H^*(\beta_U, Z)$ est une algèbre de polynômes engendrée par des éléments C_i (i entier $\geqslant 1$) de degré 2i, et on a

$$\delta(C_k) = \sum_{i+j=k} C_i \otimes C_j$$
 (où δ désigne l'application diagonale)

y. Enfin, si B_{SP} désigne le classifiant du groupe symplectique infini $SP(\infty)$, $H^*(B_{SP},Z)$ est une algèbre de polynômes engendrée par des éléments H_i (1 entier ≥ 1) de degré 4i; l'application diagonale s'écrit

$$\delta(H_{k}) = \sum_{i+j=k} H_{i} \otimes H_{j}$$

On voit de même que $H^*(G(p, \infty, \mathbb{R}), \mathbb{Z}_2)$ (resp. $H^*(G(p, \infty, \mathbb{C}), \mathbb{Z})$, $H^*(G(p, \infty; \mathbb{H}), \mathbb{Z})$) est une algèbre de polynômes engendrée par des éléments W_i (resp. C_i , H_i) ($1 \le i \le p$) de degré i (resp. 2i, 4i). Les W_i du théorème 5 sont appelés classes de Stiefel-Whitney universelles ; de même les C_i (resp. H_i) sont appelés classes de Chern universelles (resp. classes symplectiques universelles).

Plus généralement, la i-ième classe caractéristique d'un espace fibré principal X de groupe structural O(p) (resp. U(p), SP(p)), s'appelle la <u>i-ième classe</u> de Stiefel-Whitney (resp. <u>de Chern</u>, symplectique) de X.

On parle aussi de classe de Stiefel-Whitney totale, (resp. classe de Chern, classe symplectique totale).

REMARQUE. - Le théorème 5 parmet d'associer aux espaces fibrés principaux de base B et de groupe structural $U(\infty, \Lambda)$ des classes caractéristiques a (i entier ≥ 0) telles que la classe

$$\sum_{i=0}^{\infty} a_i \in H^{**}(B, A)$$

vérifie les propriétés analogues aux propriétés α à γ du théorème 3. On les définit d'abord pour les fibrés dont la base est un CW-complexe, on passe ensuite au cas où la base est un espace topologique quelconque en utilisant les considérations développées dans le lemme de la démonstration de la proposition 5. Si X est un espace fibré de groupe structural U(n, $\Lambda)$, la classe caracteristique totale du fibré faible associé à X (cf. paragraphe 2, a) est égale à la classe caractéristique totale de X.

g. Classes caractéristiques et produit tensoriel.

THÉORÈME 6. - On suppose $\Lambda \neq H$; soient B un espace topologique, X et Y des espaces principaux de base B et de groupe structural $U(p,\Lambda)$, $U(q,\Lambda)$ respectivement; a, b leurs classes caractéristiques totales; on écrit formellement

$$a = \prod_{i=1}^{p} (1 + \alpha_i)$$
 et $b = \prod_{j=1}^{q} (1 + \beta_j)$.

La classe caractéristique c du fibré $X \otimes Y$ est déterminée par a et b; elle s'exprime symboliquement en fonction des α_i et des β_j par la formule suivante :

$$c = \prod_{1 \leq i \leq p, 1 \leq j \leq q} (1 + \alpha_i + \beta_j) \qquad .$$

En effet, soit $D(X) \stackrel{\tau}{\to} B$ l'espace fibré en drapeaux associé à X; on a vu (proposition 6) que la $H^*(B,A)$ -algèbre engendrée par les α_i s'identifie à $H^*(D(X),A)$. Comme on a, en désignant par $D(Y) \stackrel{\tau}{\to} B$ l'espace fibré en drapeaux associé à Y, $D(X) \times^B D(Y) \equiv D(\tau^*(Y))$, on voit de même que $H^*(D(X) \times^B D(Y),A)$ s'identifie à la $H^*(B,A)$ -algèbre engendrée par les α_i et les β_j assujettis aux relations énoncées dans le théorème. Si $\overline{\tau}$ désigne la projection sur B de $D(X) \times^B D(Y)$, on a alors les scindages canoniques

$$\overline{\tau}^*(X) = \bigcup_{i=1}^p X_i$$

$$\overline{\tau}^*(Y) = \int_{j=1}^q Y_j$$

où les X_i et les Y_j sont des fibrés de rang 1, de classes fondamentales respectives α_i , β_j . De même le fibré $\overline{\tau}^*(X \otimes Y) \equiv \overline{\tau}^*(X) \otimes \overline{\tau}^*(Y)$ admet le scindage canonique

$$\overline{\tau}^*(X \otimes Y) = \bigoplus_{1 \leq i \leq p, 1 \leq j \leq q} (X_i \supset X_j) \qquad \bullet$$

Or, on a vu (proposition 5) que la classe fondamentale de $X_i \otimes X_j$ est $\alpha_i + \beta_j$ • On voit aussi (théorème 2) que

$$\overline{\tau}^*(c) = \prod_{1 \leq i \leq p, 1 \leq j \leq q} (1 + \alpha_i + \beta_j) ,$$

et on conclut en utilisant le fait que τ^* et τ^{**} sont injectives, ce qui entraîne que $\overline{\tau}^*$ l'est aussi.

APPLICATION. - On a vu (paragraphe 2 f, Remarque) que si X est un fibré de groupe structural U(1, C), X^* un fibré dual de X (cf. paragraphe 2, a), le fibré $X \otimes X^*$ est trivial.

PROPOSITION 7. - Soit X un espace fibré principal de base B et de groupe structural U(n,C), $a(X)=\sum_{i=0}^{n}a_i$ la classe caractéristique totale de X; dans ces conditions, la classe caractéristique totale d'un fibré dual X^* de X est

$$a(x^*) = \sum_{i=0}^{n} (-1)^i a_i$$

h. Les classes caractéristiques et l'obstruction.

PROPOSITION 8. - Soit X $\stackrel{\pi}{\to}$ B un espace fibré principal de groupe structural U(n , Λ); le noyau de l'application π^* : H*(B , Λ) \to H*(X , Λ) est l'idéal engendré par les classes caractéristiques a (1 \leq i \leq n) de X .

En effet, considérons la fibration $X \stackrel{\sigma}{\to} D(X)$ de X sur l'espace fibré en drapeaux $D(X) \stackrel{\rho}{\to} B$ associé à X. Comme ρ^* est injective,

$$\text{Ker } (\pi^*) \approx \text{Ker } (\sigma^*) \cap \text{Im } (\rho^*)$$

On a vu, (paragraphe 3, a exemple 3) que Ker (σ^*) est l'idéal engendré par les générateurs canoniques ξ_1 , ξ_2 , ..., ξ_n de la H*(B, A)-algèbre H*(D(X), A).

Ainsi, compte tenu des relations entre les ξ_i , données dans la proposition 6, on voit que Ker (σ^*) \cap Im (ρ^*) est bien l'idéal engendré par les a_i .

C. Q. F. D.

THÉORÈME 7. - Soit X un espace fibré principal de base B et de groupe structural U(n, Λ), S_{n,q}(X) (1 \leq q \leq n) l'espace fibré des i-repères associés à X; alors la classe fondamentale (cf. exposé 8, définition 2) \overline{a}_q du fibré S_{n,q}(X) (éventuellement réduite mod 2) est égale à la (n - q + 1)-ième classe caractéristique a_{n-q+1} de X.

En effet, d'après les résultats de l'exposé 3 sur la cohomologie des variétés de Stiefel, la classe \overline{a}_q est de dimension $\lambda(n-q+1)$; comme d'autre part le groupe des automorphismes de l'anneau Z est un groupe à 2 éléments, lorsque le (n-q)-ième groupe d'homotopie de S(n,q;R)=Z, le système local $H_{n-q}(S(n,q;R),Z)\otimes_{Z}Z_2$ est constant, et on peut réduire modulo 2 la classe \overline{a}_q .

Désignons par π_q la projection de $S_{n,q}(X)$ sur B; montrons que a_{n-q+1} engendre le sous-groupe des éléments de Ker (π_q) de degré $\lambda (n-q+1)$ on a : $\pi_q = \sigma_q$ o ρ_q , où σ_q et ρ_q désignent les projections des fibrations $S_{n,q}(X) \to G_{n-q,q}(X)$ et $G_{n-q,q}(X) \to B$.

On a vu (théorème 4) que ρ_q^* est une injection et que (paragraphe 3, f) $H^*(G_{n-q,q}(X), A)$ est engendrée comme $H^*(B, A)$ -algèbre par q éléments b_i ($1 \leqslant i \leqslant n-q$) de degré λ_i assujettis à q relations de la forme

$$a_{j} = P_{j}(b_{1}, b_{2}, ..., b_{q}) \quad (n - q \leq j \leq n)$$

où les P_j sont des polynômes de poids λ_j en les variables b₁, b₂, ..., b_q, pondérées par leur degré. D'autre part, il résulte de la proposition 8 que Ker (σ_q^*) est l'idéal engendré par les b₁ et par suite que Ker (π_q^*) est l'idéal engendré par les a₁ (q < i \leq n). Comme le noyau de π_q^* est l'image de la transgression dans $S_{n,q}(X)$ et que a_{n-q+1} engendre le groupe des éléments de degré $\lambda(n-q+1)$ de cette image, on voit, à l'aide de la proposition 5 de l'exposé 8, que la classe fondamentale \overline{a}_q de $S_{n,q}(X)$ est \overline{a}_{n-q+1} . Lorsque $\Lambda \neq \mathbb{R}$, il reste à déterminer le signe de \overline{a}_q . Il suffit de le calculer pour un espace fibré particulier, par exemple pour

$$S(n + 1, q; \Lambda) \equiv S(n + 1, n; \Lambda) \times_{U(n, \Lambda)} S(n, q; \Lambda) \rightarrow G(1, n; \Lambda)$$

$$= P(n, \Lambda)$$

ce qui ne présente aucune difficulté. On trouve en effet que la classe d'homologie duale correspondant à \overline{a}_q par la dualité de Poincaré est portée par le sous-espace projectif $P(q-1,\Lambda)$, en d'autres termes que

$$\overline{a}_q = (-\gamma)^{n-q+1} = a_{n-q+1}$$
 (cf. paragraphe 3, a, exemple 2)

i. Remarques terminales.

1° D'après la proposition 3, si X est un espace fibré principal dont le groupe structural est le groupe linéaire $\operatorname{GL}(n,\Lambda)$ de l'espace vectoriel de dimension n sur le corps Λ , et dont la base B est un espace paracompact, on peut associer à X un élément unique $\mathbf{x} \in \mathrm{K}_0(\mathsf{B},\Lambda)$ de rang n qu'on peut encore appeler la classe de X . Par suite, toutes les définitions et constructions de cet expesé peuvent s'appliquer à X . En particulier, si Y est un espace fibré principal de base B et de groupe $\operatorname{GL}(p,\Lambda)$, on peut définir la somme de Whitney $\mathrm{X} \oplus \mathrm{Y}$ de X et de Y . La classe $\mathrm{a}(\mathrm{x})$ est appelée classe caractéristique de X et vérifie les propriétés α à δ du théorème 3. En ce qui concerne la propriété δ , il convient de remarquer que $\mathrm{U}(1,\Lambda) = \Lambda_*$ (où $\Lambda_* = \Lambda - \{0\}$ désigne le groupe multiplicatif de Λ) se rétracte sur $\mathrm{S}_{\lambda-1}$ et que par suite la classe fondamentale de X est de dimension λ .

2° Soit \overline{X} un espace fibré de base B associé à l'espace fibré principal X de base B et de groupe structural $U(n,\Lambda)$. On appelle classe caractéristique de \overline{X} la classe caractéristique a de X. Ainsi, lorsque B est un espace paracompact connexe, soit $X \stackrel{\pi}{\to} B$ un espace fibré tel qu'il existe deux applications fibrées $k(\overline{X},\overline{X}) \to \overline{X}$ et $\Lambda \times \overline{X} \to \overline{X}$ qui munissent chaque fibre de \overline{X} d'une structure d'espace vectoriel sur le corps Λ : on dit alors que \overline{X} est un espace à fibres vectorielles de base B. On voit que la donnée de \overline{X} définit une classe \overline{X} de fibrés de base B et de groupe structural $\operatorname{GL}(n,\Lambda)$, où n désigne la dimension (constante puisque B est connexe) de la fibre de \overline{X} . Soit $\overline{X} \in K_0(B,\Lambda)$ la classe de $U(n,\Lambda)$ -fibré associé à \overline{X} . La classe a(x) s'appelle la classe caractéristique du fibré \overline{X} . Soit \overline{Y} un autre espace fibré à fibres vectorielles dont la classe (dans $K_0(B,\Lambda)$) est y; le fibré

$$k(\overline{X}, \overline{Y}) = \overline{X} \oplus \overline{Y}$$

est muni d'une structure de fibré à fibres vectorielles et s'appelle <u>la somme de Whitney</u> de \overline{X} et \overline{Y} . La classe de ce fibré est $x \oplus y$. On définit encore un produit tensoriel $\overline{X} \otimes \overline{Y}$, un fibre dual \overline{X}^* , et ainsi de suite : ces notions correspondent aux notions analogues définies dans cet exposé pour les fibrés principaux X et Y auxquels sont associés \overline{X} et \overline{Y} .