SÉMINAIRE HENRI CARTAN

JOHN C. MOORE

Compléments sur les algèbres de Hopf

Séminaire Henri Cartan, tome 12, nº 1 (1959-1960), exp. nº 4, p. 1-12

http://www.numdam.org/item?id=SHC_1959-1960__12_1_A4_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1959-1960, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

COMPLÉTENTS SUR LES ALGÈBRES DE HOPF par John C. MOORE

NOTATIONS et CONVENTIONS. - K désigne un anneau commutatif. Si B est une algèbre de Hopf sur K, on note I(B) le noyau de $\mathcal{E}: B \longrightarrow K$, et J(B) le conoyau de $\eta: K \longrightarrow B$; rappelons que l'application canonique $J(B) \longrightarrow I(B)$ est un isomorphisme. On écrira souvent I au lieu de I(B), et J au lieu de J(B). On note I^2 l'image de $I \otimes I \longrightarrow I$ par la multiplication, et J^2 la co-image de $J \longrightarrow J \otimes J$ par l'application diagonale. On a donc les suites exactes

$$I \otimes I \longrightarrow I^2 \longrightarrow 0$$
, $0 \longrightarrow I^2 \longrightarrow I \longrightarrow Q(B) \longrightarrow 0$, $0 \longrightarrow J^2 \longrightarrow J \otimes J$, $0 \longrightarrow P(B) \longrightarrow J \longrightarrow J^2 \longrightarrow 0$

Extension de l'anneau de base : soit L une algèbre commutative (de degré 0) sur K . Soit B une K-algèbre de Hopf, de multiplication Φ et d'application diagonals Δ . Définissons sur B \otimes L une structure d'algèbre par l'application

$$\Phi_{\mathsf{L}}: (\mathsf{B} \otimes \mathsf{L}) \otimes_{\mathsf{L}} (\mathsf{B} \otimes \mathsf{L}) \longrightarrow \mathsf{B} \otimes \mathsf{L}$$
 induite par Φ

et définissons sur B & L une structure de coalgèbre par l'application :

$$\triangle_{L} : B \otimes L \longrightarrow (B \otimes L) \otimes_{L} (B \otimes L)$$
 induite par \triangle

PROPOSITION 1. - Sous les hypothèses précédentes :

- 1° B \otimes L , muhie de $\mathring{\Phi}_L$ et de \triangle_L , est une algèbre de Hopf ;
- 2° I(B \otimes L) = I(B) \otimes L;
- 3° $Tor_1(I(B), L) \longrightarrow Tor_1(Q(B), L) \longrightarrow I^2(B) \otimes L \longrightarrow I^2(B \otimes L) \longrightarrow \Theta$ est une suite exacte;
 - 4° J(B \otimes L) = J(B) \otimes L;
- 5° $\operatorname{Tor}_1(J(B) \otimes J(B)$, L) $\longrightarrow \operatorname{Tor}_1((J(B) \otimes J(B))/J^2(B)$, L) $\longrightarrow J^2(B \otimes L) \longrightarrow 0$ est une suite exacte.

Les démonstrations sont immédiates.

COROLLAIRE 1. -
$$Q(B \otimes L) = Q(B) \otimes L$$
.

COROLLAIRE 2. - Si $Tor_1(J(B), L)$ et $Tor_1(J(B) * J(B), L)$ sont nuls, on a une suite exacte

$$0 \longrightarrow \operatorname{Tor}_{1}(J^{2}(B) , L) \longrightarrow P(B) \otimes L \longrightarrow P(B \otimes L) \longrightarrow \operatorname{Tor}_{1}((J(B) \otimes J(B))/J^{2}(B) , L) \longrightarrow 0$$

DÉFINITION. - Si B est une K-algèbre de Hopf, on note $P_2(B)$ le noyau de l'application naturelle $P(B) \longrightarrow Q(B)$, et $Q_2(B)$ son conoyau.

PROPOSITION 2. - Soit K un anneau intègre de caractéristique nulle, et soit B une K-algèbre de Hopf sans torsion (comme K-module). Alors $P_2(B) = 0$ si et seulement si la multiplication de B est associative et anticommutative.

DÉMONSTRATION. - Soit F le corps des fractions de K . Dans l'algèbre de Hopf B \otimes F , on a $P_2(B \otimes F) = 0$ si et seulement si la multiplication est associative et anticommutative (cf. l'exposé 2, proposition 3.5 et remarque 3.6). Considérons les suites exactes

$$0 \longrightarrow P_2(B) \longrightarrow P(B) \longrightarrow Q(B) \longrightarrow Q_2(B) \longrightarrow 0$$

et

$$0 \longrightarrow P_2(B) \otimes F \longrightarrow P(B) \otimes F \longrightarrow Q(B) \otimes F \longrightarrow Q_2(B) \otimes F \longrightarrow 0$$

comme $P(B \otimes F) = P(B) \otimes F$ et $Q(B \otimes F) = Q(B) \otimes F$ (corollaires 1 et 2 de la proposition 1), on en déduit

$$P_2(B \otimes F) = P_2(B) \otimes F$$
, $Q_2(B \otimes F) = Q_2(B) \otimes F$.

Or $P_2(B)$, sous-module d'un module sans torsion, est sans torsion; donc la relation $P_2(B \otimes F) = 0$ équivaut à $P_2(B) = 0$, ce qui prouve la proposition.

DÉFINITION. - Si K est un anneau d'intégrité, les <u>corps standard associés</u> à K sont, par définition :

10 le corps des fractions F de K;

2° les corps K/M, où M parcourt l'ensemble des idéaux maximaux de K .

CONVENTIONS. - Toutes les algèbres de Hopf B sur K sont désormais supposées à multiplication associative.

Par algèbre graduée Λ sur K, on entendra une algèbre graduée associative telle que $\Lambda_0 = K$; alors l'augmentation naturelle $\Lambda \longrightarrow K$ définit K comme Λ -module (à droite ou à gauche). Si Lest une K-algèbre commutative de degré 0, alors

 Λ \bullet_K L est une algèbre graduée sur L. De plus, si M est un Λ -module gradué, M \bullet_K L est un (Λ \bullet_K L)-module gradué. Si M est un Λ -module gradué, une <u>résolution projective</u> de M sur Λ est une suite de Λ -modules gradués P_q , de Λ -homomorphismes $\alpha_q: P_q {\longrightarrow} P_{q-1}$ de degré zéro (pour q > 1), et d'un Λ -homomorphisme $\alpha_0: P_0 {\longrightarrow} M$ de degré zéro, tels que la suite

$$\cdots \rightarrow P_{q} \rightarrow P_{q-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0$$

soit une suite exacte. Ici Λ -module signifie Λ -module à gauche. Si A est un Λ -module à droite, alors ${\rm Tor}_q^\Lambda(A$, M) est le K-module gradué, quotient du noyau de

$$i_{A} * \alpha_{q} : A *_{\Lambda} P_{q} \xrightarrow{A} *_{\Lambda} P_{q-1}$$

par l'image de $i_A \circ \alpha_{q+1}$: $A \circ \bigwedge_q P_{q+1} \longrightarrow A \circ \bigwedge_q P_q$. En particulier,

$$Tor_0^{\Lambda}(A, M) = A \otimes_{\Lambda} M$$

PROPOSITION 3. - Seit Λ une algèbre graduée sur K, et seit M un module gradué sur Λ ; alors M=0 équivaut à $K *_{\Lambda} M=0$.

DÉMONSTRATION. - Soit I(Λ) l'idéal des éléments de degré > 0 de Λ . La condition K $*_{\Lambda}$ M = 0 équivaut à M = IM . Si M = IM , supposons que M = 0 pour q < r ; alors M = I $_1$ M $_{r-1}$ = 0 , donc M = 0 pour q < r , et par suite M = 0 .

PROPOSITION 4. - Soit \(\Lambda \) une algèbre graduée sur \(\mathbb{K} \), et soit \(\M \) un \(\Lambda \)-module gradué. Pour que \(\M \) soit \(\Lambda \)-projectif, il fout et il suffit, que \(\text{Tor}_1^{\lambda}(K \), \(M \) = 0 et que \(K \) soit \(K \)-projectif.

DÉMONSTRATION. - Les conditions sont évidenment nécessaires. Supposons maintenant que $\operatorname{Tor}_1^{\Lambda}(K\ ,M)=0$, et que $N=K\otimes_{\Lambda}M$ soit K-projectif. Soit $\mathfrak{N}:M\to N$ l'application naturelle. Choisissons $f:N\to M$, homomorphisme de K-modules gradués tel que $\mathfrak{N}f$ soit l'identité. Soit $P=\Lambda\otimes_KN$, qui est Λ -projectif. Soit \mathfrak{F} l'application Λ -linéaire $P\to M$ induite par f. Si C désigne le conoyau de f, $K\otimes_{\Lambda}C$ est O puisque, par construction, $i_K\otimes f:K\otimes_{\Lambda}P\to K\otimes_{\Lambda}M$ est un épimorphisme. Donc C=O (proposition 3), et f est un épimorphisme. Soit A le noyau de f: $P\to M$; on a des suites axactes

$$0 \longrightarrow A \longrightarrow P \longrightarrow M \longrightarrow 0$$

$$0 \longrightarrow \text{Tor}_{1}^{\Lambda}(K, M) \longrightarrow K \otimes_{\Lambda} A \longrightarrow K \otimes_{\Lambda} P \longrightarrow K \otimes_{\Lambda} M \longrightarrow 0$$

Puisque $Tor_1^{\Lambda}(K, M) = 0$, et que $K \otimes_{\Lambda} P \xrightarrow{\cong} K \otimes_{\Lambda} M$, on a $K \otimes_{\Lambda} A = 0$, d'où A = 0, et par suite M est projectif.

CONVENTIONS. - On supposera désormais que l'anneau de base K est un anneau de Dedekind. Il y a deux raisons à cela : d'abord, si A est un K-module, on a A=0 si et seulement si $\operatorname{Tor}_1^K(L,A)$ et $L\otimes_K A$ sont nuls pour tout corps standard L associé à K . D'autre part, si A est un K-module, une condition nécessaire et suffisante pour que A soit plat (ou, ce qui est équivalent, soit sans torsion) est que $\operatorname{Tor}_1^K(L,A)=0$ pour tout corps standard L associé à K .

PROPOSITION 5. - Soit Λ une K-algèbre graduée, qui est plate comme K-module; soit M un module gradué sur Λ , plat comme K-module. Alors les propriétés suivantes sont équivalentes :

- 1° M est un Λ -module plat ;
- 2° $\operatorname{Tor}_{1}^{\Lambda}(K, M) = 0$, et $K \otimes_{\Lambda} M$ est K-plat;
- 3° M $*_{\rm K}$ L est un (Λ $*_{\rm K}$ L)-module libre, quel que soit le corps standard L associé à K .

DÉMONSTRATION. - 1° entraîne 2°, car, pour tout K-module A, on a un isomorphisme $\operatorname{Tor}_n^\Lambda(A,M) \approx \operatorname{Tor}_n^K(A,K*_{\Lambda}M)$ si M est Λ -plat (cf. [1], chapitre VI, proposition 4.1.2). Soit maintenant P une résolution projective de M sur Λ ; puisque Λ et M sont K-plats, P ** L est une résolution projective de M ** L sur Λ ** L, quel que soit le corps standard L associé à K . En outre, puisque L est un corps, L **_{\Lambda \otimes L}(M ** L) est L-projectif (en fait, L-libre). Or

$$H(K \otimes_{\Lambda} P) = Tor^{\Lambda}(K, M)$$
, et $H(L \otimes_{\Lambda} \otimes_{L}(P \otimes L)) = Tor^{\Lambda \otimes L}(L, M \otimes L)$

D'autre part, L $\otimes_{\bigwedge \otimes L}$ (P \otimes L) = (K \otimes_{\bigwedge} P) \otimes L . On a donc une suite exacte

$$0 \longrightarrow \operatorname{Tor}_{q}^{\Lambda}(K , M) \times L \longrightarrow \operatorname{Tor}_{q}^{\Lambda \otimes L}(L , M \otimes L) \longrightarrow \operatorname{Tor}_{1}^{K}(\operatorname{Tor}_{q-1}^{\Lambda}(K , M) , L) \longrightarrow 0$$

pour tout entier $q \ge 0$. Faisons maintenant l'hypothèse 2°: puisque $\operatorname{Tor}_1^{\Lambda}(K,M) = 0$ et que $K *_{\Lambda} M$ est K-plat, on a $\operatorname{Tor}_1^{\Lambda \otimes L}(L,M *_{\Lambda} L) = 0$, et la proposition 4 dit que $M *_{\Lambda} L$ est projectif sur $\Lambda *_{\Lambda} L$. En fait, puisque L est un corps, $M *_{\Lambda} L$ est libre sur $\Lambda *_{\Lambda} L$ (en vertu de [1], chap. VIII, theorem 6.1). Ainsi 2° entraîne 3°.

Enfin, supposons 3°. Soit A un Λ -module à droite gradué, qui est plat sur K . On a :

$$(A \otimes L) \otimes_{\bigwedge \otimes L} (P \otimes L) = (A \otimes_{\bigwedge} P) \otimes L \qquad ,$$

d où une suite exacte pour tout entier $q \ge 0$:

$$0 \longrightarrow \operatorname{Tor}_{q}^{\Lambda}(A , M) \otimes L \longrightarrow \operatorname{Tor}_{q}^{\Lambda} \otimes L , M \otimes L) \longrightarrow \operatorname{Tor}_{1}^{K}(\operatorname{Tor}_{q-1}^{\Lambda}(A , M) , L) \longrightarrow 0$$

Ainsi $\operatorname{Tor}_1^K(\operatorname{for}_{q-1}^\Lambda(A\ ,\ M)\ ,\ L)=0$ pour q>0, et $\operatorname{Tor}_q^\Lambda(A\ ,\ M)$ est un K-module plat pour tout $q\geqslant 0$. D'autre part $\operatorname{Tor}_q^\Lambda(A\ ,\ M)$ & L=0 pour q>0. Par suite $\operatorname{Tor}_q^\Lambda(A\ ,\ M)=0$ pour q>0. Alors, étant donné n'importe quel Λ -module à droite A'', on a une suite exacte de Λ -modules à droite

$$0 \longrightarrow A^1 \longrightarrow A \longrightarrow A^{11} \longrightarrow 0$$

telle que A' et A seient K-plats. On a donc une suite exacte

$$\cdots \longrightarrow \operatorname{Tor}_{\mathbf{q}}^{\Lambda}(\mathbb{A}' , \mathbb{M}) \longrightarrow \operatorname{Tor}_{\mathbf{q}}^{\Lambda}(\mathbb{A} , \mathbb{M}) \longrightarrow \operatorname{Tor}_{\mathbf{q}}^{\Lambda}(\mathbb{A}'' , \mathbb{M}) \longrightarrow \operatorname{Tor}_{\mathbf{q}-1}^{\Lambda}(\mathbb{A}' , \mathbb{M}) \longrightarrow \cdots$$

Comme $\operatorname{Tor}_q^{\Lambda}(A^{\bullet}, M)$ et $\operatorname{Tor}_q^{\Lambda}(A, M)$ sont nuls pour q>0, on a $\operatorname{Tor}_q^{\Lambda}(A^{\bullet}, M)=0$ pour q>1, et on a une suite exacte

$$(1) \quad 0 \longrightarrow \text{Tor}_{1}^{\Lambda}(A^{\parallel}, M) \longrightarrow A^{\parallel} \otimes_{\Lambda} M \longrightarrow A^{\parallel} \otimes_{\Lambda} M \longrightarrow A^{\parallel} \otimes_{\Lambda} M \longrightarrow 0$$

Considérons le cas particulier où A', A et A" sont des K-modules ; alors la suite exacte

$$0 \longrightarrow \text{Tor}_{1}^{K}(A^{\text{"}}, K \otimes_{\Lambda} M) \longrightarrow A^{\text{"}} \otimes (K \otimes_{\Lambda} M) \longrightarrow A \otimes (K \otimes_{\Lambda} M) \longrightarrow A^{\text{"}} \otimes (K \otimes_{\Lambda} M) \longrightarrow 0$$

peut être identifiée avec la suite exacte (1) ; puisqu'on a déjà prouvé que $K \otimes_{\bigwedge} M = \operatorname{Tor}_0^{\bigwedge}(K , M)$ est K-plat, $\operatorname{Tor}_1^{\bigwedge}(A^{\text{"}}, M) = \operatorname{Tor}_1^{K}(A^{\text{"}}, K \otimes_{\bigwedge} M)$ est nul.

Soit alors B n'importe quel Λ -module à droite ; I^p B/ I^{p+1} B est un K-module, de sorte que ${\rm Tor}_1^K(I^p$ B/ I^{p+1} B , M) = 0 . Ainsi

$$Tor_1(I^{p+1} B, M) \longrightarrow Tor_1(I^p B, M)$$

est un isomorphisme. Si nous rappelons que $B_q=0$ pour q<0, on a $(I^pB)_q=0$ pour q< p, et puisque $Tor_1(I^pB,M) \approx Tor_1(B,M)$, on a $Tor_1(B,M)_q=0$ pour q < p, quel que soit l'entier p. Ainsi $Tor_1(B,M)=0$, ce qui achève de prouver que 3° entraîne 1°.

Ainsi la proposition 5 est démontrée.

Nouvelles CONVENTIONS et REMARQUE. - On supposera désormais que toutes les algèbres de Hopf, les algèbres graduées, les coalgèbres, etc. sont des K-modules plats. Comme un sous-module d'un module plat est plat (K étant un anneau de Dedekind), les conditions

du corollaire 2 sont toujours remplies ; et par suite, si B est une K-algèbre de Hopf, et L une K-algèbre, nous avons une suite exacte

$$0 \longrightarrow P(B) \otimes L \longrightarrow P(B \otimes L) \longrightarrow Tor_1^K((J(B) \otimes J(B))/J^2(B), L) \longrightarrow 0$$

PROPOSITION 6. - Soient B une K-algèbre de Hopf, et A une sous-algèbre de Hopf de B. Les conditions suivantes sont équivalentes:

- 1º B est plat comme A-module;
- 2° pour tout corps standard L associé à K , $P(A \otimes L) \longrightarrow P(\hat{B} \otimes L)$ est un monomorphisme.

Réciproquement, supposons 2°. Alors A & L est une sous-algèbre de Hopf de B & L, et par suite B & L est libre comme (A & L)-module (cf. [2], theorem 2.5). D'après la proposition 5, B est A-plat, ce qui achève la démonstration.

DÉFINITION. - On dit qu'une algèbre graduée B possède une multiplication strictement anticommutative si :

- 1º la multiplication est anticommutative;
- 2° le carré de tout élément de degré impair est nul.

On notera que si la caractéristique de K est $\neq 2$, et si la multiplication est anticommutative, elle est strictement anticommutative.

PROPOSITION 7. - Soit B une algèbre de Hopf sur K, avec une multiplication strictement anticommutative (rappelons que la multiplication a été supposée associative, une fois pour toutes). Alors les composantes de degré impair de Q(B) sont des K-modules plats.

DÉMONSTRATION. - Soit n le plus petit entier impair tel que $Q(B)_n \neq 0$; alors on a évidemment $P(B)_n = B_n = Q(B)_n$. Soit A la sous-algèbre de Hopf de B engendrée par B_n ; A est l'algèbre extérieure engendrée par B_n . D'après la proposition 6, B est un A-module plat. Or

$$C = K \otimes_A B = B //A$$

est une K-algèbre de Hopf à multiplication strictement anticommutative. La suite exacte

$$Q(A) \longrightarrow Q(B) \longrightarrow Q(C) \longrightarrow 0$$

montre que $C_n=0$ et $Q(B)_r\approx Q(C)_r$ pour $r\neq n$. La proposition suit alors d'une application répétée du procédé précédent.

THÉORÈME 1 (SAMELSON-LERAY). - Soit B une algèbre de Hopf à multiplication strictement anticommutative (et associative), dont l'application diagonale soit associative. Si $Q(B)_r = 0$ pour r pair, alors :

- 1° $P(B) \rightarrow Q(B)$ est un isomorphisme;
- 2º l'application diagonale est anticommutative ;
- 3° si A est l'algèbre extérieure de P(B), et f: A→B l'applivation canonique, alors f est un isomorphisme d'algèbres de Hopf.

DEMONSTRATION. - Pour tout corps standard L associé à K , $P(B \approx L) \rightarrow Q(B \approx L)$ est un isomorphisme (cf. l'exposé 2, démonstration du théorème 5.1). Considérons les suites exactes

$$0 \longrightarrow P_2(B) \longrightarrow P(B) \longrightarrow Q(B) \longrightarrow Q_2(B) \longrightarrow 0$$

$$0 \longrightarrow P_2(B) \otimes F \longrightarrow P(B) \otimes F \longrightarrow Q(B) \otimes F \longrightarrow Q_2(B) \otimes F \longrightarrow 0$$

où F désigne le corps des fractions de K . On voit que $P_2(B)$ \otimes F et $Q_2(B)$ \otimes F sont nuls, donc $Q_2(B)$ et $P_2(B)$ sont des modules de torsion, et comme $P_2(B)$ est sans torsion, $P_2(B) = 0$. Appliquons le corollaire 2 : la suite

$$0 \longrightarrow P(B) \otimes L \longrightarrow P(B \otimes L) \longrightarrow Tor_1((J(B) \otimes J(B))/J^2(B), L) \longrightarrow 0$$

est exacte. De plus on a la suite exacte

$$0 \rightarrow \text{Tor}_1(\mathbb{Q}_2(B), L) \rightarrow P(B) \otimes L \rightarrow \mathbb{Q}(B) \otimes L \rightarrow \mathbb{Q}_2(B) \otimes L \rightarrow 0$$

car, en vertu de la proposition 7, Q(B) est plat. En comparant les deux suites exactes, et compte tenu du fait que Q(B) & L s'identifie à $Q(B \otimes L)$, on voit que $Tor_1(Q_2(B), L) = 0$ pour tout corps standard associé L . Ainsi $Q_2(B)$ est plat, c'est-à-dire sans tersion, et comme on a vu que $Q_2(B)$ est un module de torsion, on a finalement $Q_2(B) = 0$.

Ceci établit l'assertion 1° de l'énoncé. L'assertion 2° suit aussitôt de 1°; et puisque $Q(a) \approx Q(B)$ et $P(A) \approx P(B)$, f est aussi bien un isomorphisme.

REMARQUE. - Au cours de la démonstration, nous avons prouvé que

$$Tor_1((J(B) \otimes J(B))/J^2(B), L) = 0$$
,

ce qui signifie que (J & J)/J² est plat.

DÉFINITION et CONSTRUCTION. - Soit B une K-algèbre de Hopf à multiplication strictement anticommutative. Soit A^1 la sous-algèbre de Hopf engendrée par $B_1 = P(B)_1$. Soit B^1 l'algèbre quotient B/A^1 , et soit A^2 la sous-algèbre de Hopf de B^1 engendrée par $(B^1)_3 = P(B^1)_3$. Soit $B^2 = B^1/\!/A^2$. En continuant par récurrence, supposons A^r et B^r définies pour $r \le n$, A^r étant la sous-algèbre de Hopf de B^r engendrée par $(B^r)_{2r+1}$, et supposons que $B^{r+1} = B^r/\!/A^{r+1}$ pour r < n. Soit alors A^{n+1} la sous-algèbre de B^n engendrée par $(B^n)_{2n+1}$, et soit $B^{n+1} = B^n/\!/A^{n+1}$. Nous avons la situation suivante :

1º A^n est une algèbre extérieure pour tout entier n > 0;

2°
$$P(A^{n+1}) = Q(A^{n+1}) = (B^n)_{2n+1} = Q(B)_{2n+1}$$
;

3° Bⁿ est un module plat sur Aⁿ⁺¹;

4° si $f^n: B^n \longrightarrow B^{n+1}$ est l'application naturelle, alors

$$Q(f^n) : Q(B^n)_r \longrightarrow Q(B^{n+1})_r$$

est un isomorphisme pour $r \neq 2n+1$, et $Q(B^n)_r = 0$ pour r impair < 2n+1. Soit $B^0 = B$, et soit $f^0 : B \longrightarrow B^1$ l'application naturelle. Soit $g^n : B \longrightarrow B^{n+1}$ l'application composée $f^n f^{n-1} \dots f^0$. Alors g^n est une application d'algèbres de Hopf à multiplication strictement anticommutative. De plus

$$Q(g^n) : Q(B)_r \rightarrow Q(B^{n+1})_r$$

est un isomorphisme pour r pair, ou r > 2n + 1.

Soit $C = \lim_{h \to 0} B^h$, et soit $g : B \to C$ l'application naturelle d'algèbres de Hopf à multiplication strictement anticommutative. On a $Q(C)_r = 0$ pour r impair, et $Q(g) : Q(B)_r \to Q(C)_r$ est un isomorphisme pour r pair. L'algèbre de Hopf C est appelée l'algèbre de Hopf paire associée à l'algèbre de Hopf C Noter que $C_r = 0$ pour C impair.

Soit E^n la sous-algèbre $B \setminus B^n$, c'est-à-dire formée des $x \in B$ tels que l'application composée n-1

envois x dans $x \circ 1$. Alors E^n est une sous-algèbre strictement anticommutative de B, et on a :

- 1° B est un Eⁿ-module plat;
- $2^{\circ} E^{1} = A^{1}$:
- 3° $B/\!\!/E^n = B^n$;
- 4° $Q(E^n)_r = 0$ pour r pair;
- 5° $Q(E^n)_r \xrightarrow{\otimes} Q(B)_r$ pour r impair $\leq 2n 1$.

Spit $E = \lim_{n \to \infty} E^n$. L'algèbre E est appelée <u>l'algèbre impaire associée à B</u>; elle s'identifie à une sous-algèbre de B. On a :

- 1° B est un E-module plat;
- 2° B/E = C;
- 3° $Q(E)_r = 0$ pour r pair;
- 4° $Q(E)_r \xrightarrow{\approx} Q(B)_r$ pour r impair.

THÉORÈME 2. - Soit B une K-algèbre de Hopf à multiplication strictement anticommutative, telle que B soit un K-module de type fini dans chaque degré.

Soit E l'algèbre impaire associée à B, et soit C l'algèbre de Hopf paire
associée à B. Alors:

- 1° comme algèbre graduée, E est isomorphe à l'algèbre extérieure du K-module Q(E);
 - 2° B est isomorphe, comme algèbre graduée, au produit tenscriel E o C .

DÉMONSTRATION. - Tout d'abord, puisque B est un K-module plat et de type fini dans chaque degré, B est un K-module projectif. Il en est de même de C. Donc B est projective comme E-module (cf. [2], theorem 2.5). Il s'ensuit que B est isomorphe à E & C comme E-module.

Observons maintenant que $Q(E)_r = Q(B)_r$, pour r impair, est un K-module plat de type fini ; donc si $\pi: I(E) \longrightarrow Q(E)$ est l'application naturelle, il existe une application K-linéaire $f: Q(E) \longrightarrow I(E)$ telle que πf soit l'identité. Or E^2 est un E^1 -module plat, $E^1 = A^1$ est une algèbre extérieure, et puisque $E^2 /\!\!/ E^1$ est un K-module projectif, E^2 est un E^1 -module projectif. De plus $E^2 /\!\!/ E^1 = A^2$ est une algèbre extérieure, donc E^2 est isomorphe à l'algèbre extérieure enrandrée par $Q(E^2)$, et cet isomorphisme est induit par $f: Q(E^2) \longrightarrow E^2$. Observons que f applique $Q(E^n)$ dans E^n .

Supposons démontré que $f: \mathbb{Q}(E^n) \longrightarrow E^n$ induit un isomorphisme de l'algèbre extérieure de $\mathbb{Q}(E^n)$ sur l'algèbre E^n . Alors E^{n+1} est un E^n -module projectif, $E^{n+1} /\!\!/ E^n = A^{n+1}$, et $f: \mathbb{Q}(E^{n+1}) \longrightarrow E^{n+1}$ induit un isomorphisme de l'algèbre extérieure de $\mathbb{Q}(E^{n+1})$ sur l'algèbre E^{n+1} . En passant à la limite, on obtient l'assertion 1° de l'énoncé.

Ecrivons maintenant $Q(E^n)$ come some directe de modules de rang un :

$$Q(E^n) = \sum_{j=1}^{r} X^j ,$$

où X^j est de rang 1. Soit \bigwedge^j l'algèbre extérieure engendrée par X^j , et soit $h_j: B \longrightarrow \bigwedge^j$ l'application telle que $f_j(1) = 1$, f_j étant définie, dans les degrés > 0, comme la composée de $\pi: I(B) \longrightarrow Q(B)$ et de la projection $Q(B) \longrightarrow X^j$. Il est clair que f_j est un homomorphisme de K-algèbres. Soit $\bigwedge_r: B \longrightarrow B \otimes \ldots \otimes B$ (r facteurs) l'une des applications diagonales (qui est unique si \bigwedge est associative). Soit

$$h^n : B \longrightarrow \bigoplus_{j=1}^r \Lambda^j = E^n$$

l'application composée

Alors h^n est une rétraction de l'algèbre B sur l'algèbre E^n . Il est clair que h^n est composée de h^{n+1} et de la rétraction évidente $E^{n+1} \longrightarrow E^n$. A la limite, on obtient $h: B \longrightarrow E$, rétraction de l'algèbre B sur l'algèbre E . Soit $h^n \to E$ © C l'application composée

$$B \xrightarrow{\Delta} B \otimes B \xrightarrow{h \otimes g} E \otimes C$$

On voit facilement que λ est un isomorphisme d'algèbres, et le théorème est démontré.

DÉFINITION. - On dit qu'une K-algèbre de Hopf B possède une application diagonale strictement anticommutative si l'algèbre $\operatorname{Hom}_K(B, F)$ a une multiplication strictement anticommutative, F désignant le corps des fractions de K.

On dit que la K-algèbre de Hopf B est strictement anticommutative si sa multiplication et son application diagonale sont strictement anticommutatives.

THÉORÈME 3. - Soit B une K-algèbre de Hopf strictement anticommutative, dont l'application diagonale soit as ociative (ainsi que la multiplication). Soit E

l'algèbre de Hopf impaire associée à B, et C l'algèbre de Hopf paire associée à B. Alors:

- 1° E est une sous-algèbre de Hopf se B;
- 2° il existe un unique homomorphisme f : $B \longrightarrow E$ de K-algèbres de Hopf, tel que Q(f) : $Q(B) \longrightarrow Q(E)$ soit l'identité dans les degrés impairs ;
- 3° si on considère E comme algèbre de Hopf quotient de B au moyen de f, et si B' = B & E, l'application naturelle B'->C est un isomorphisme d'algèbres de Hopf;
 - 4° l'ap lication naturelle E ⊗ B' → B est un isomorphisme d'algèbres de Hopf.

DÉMONSTRATION. - Pour tout corps standard L associé à K, on a

$$P(B \otimes L)_r \xrightarrow{\otimes} Q(B \otimes L)_r$$
 pour r impair

Donc la suite $0 \longrightarrow P(B)_r \longrightarrow Q(B)_r \longrightarrow Q(B)_r \longrightarrow Q_2(B)_r \longrightarrow 0$ est exacte pour r impair; comme dans le théorème de SAMELSON-LERAY, on montre que $Q_2(B)_r = 0$ pour r impair, d'où l'assertion 1° de l'énoncé.

Si nous avons une rétraction f : B - E d'algèbres de Hopf, alors

$$B \xrightarrow{\Delta} B \otimes B \xrightarrow{f \otimes g} E \otimes C$$

est un homomorphisme d'algèbres de Hopf, g désignant l'application naturelle ; de plus (f \otimes g) o \triangle : B $\xrightarrow{\cong}$ E \otimes C , et par suite le théorème sera démontré si nous prouvons l'existence d'une telle rétraction f .

Pour cela, il suffit de le faire lorsque B est de type fini, puisque f est naturelle. Pour tout K-module M, posons $M^* = \operatorname{Hom}_K(M,K)$; soit A^* la sous-algèbre de Hopf impaire de l'algèbre de Hopf B^* . L'application d'inclusion j^* ; $A^* \longrightarrow B^*$ induit un homomorphisme $j: B \longrightarrow A$ d'algèbres de Hopf. Si $i: E \longrightarrow B$ est l'injection naturelle, l'application $ji: E \longrightarrow A$ est un isomorphisme d'algèbres de Hopf, et l'existence de f est démontrée.

DÉFINITION. - Pour un K-module gradué X tel que $X_0 = 0$, notons A(X) l'algèbre strictement anticommutative universelle du module X.

THEORÈME 4. - Si K est de caractéristique nulle, alors une K-algèbre de Hopf anticommutative B est isomorphe, comme algèbre, à A(Q(B)) si et seulement s'il existe une application K-linéaire f: $Q(B) \longrightarrow I(B)$ telle que $\pi f: Q(B) \longrightarrow Q(B)$ soit l'identité.

DÉMONSTRATION. - Si f existe, alors Q(B) est plat, et A(Q(B)) est plat ;il existe un unique homomorphisme d'algèbres $f: A(Q(B)) \rightarrow B$ qui prolonge f. La propriété universelle de A(Q(B)) permet de choisir une application diagonale pour A(Q(B)), telle que f devienne un homomorphisme d'algèbres de Hopf. Il est évident que f est un épimorphisme ; d'après la proposition 2, f est un monomorphisme, donc un isomorphisme. Inversement, si B est isomorphe, comme algèbre, à une algèbre anticommutative universelle, l'existence de f est évidente.

COROLLAIRE. - Si B est de type fini, alors B est isomorphe à une algèbre universelle anticommutative si et seulement si Q(B) est K-projectif.

BIBLIOGRAPHIE

- [1] CARTAN (Henri) and EILENBERG (S.). Homological algebra. Princeton, Princeton University Press, 1956 (Princeton mathematical Series, 19).
- [2] MILNOR (J. W.) and MOORE (J. C.). On the structure of Hopf algebras Princeton, 1959 (multigraphié).