SÉMINAIRE HENRI CARTAN

HENRI CARTAN

Opérations cohomologiques secondaires (suite)

Séminaire Henri Cartan, tome 11, n° 2 (1958-1959), exp. n° 14, p. 1-12 http://www.numdam.org/item?id=SHC_1958-1959_11_2_A5_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1958-1959, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

OPÉRATIONS COHOMOLOGIQUES SECONDAIRES (Suite)

par Henri CaRTAN

1. Enoncé de résultats.

Rappelons brièvement de quoi il s'agit. La cohomologie est toujours prise à coefficients dans Z_p , p premier. On se donne deux matrices (a_s,r) et (b_t,s) d'opérations cohomologiques primaires (stables); le degré de a_s , est j_s - i_r , celui de $b_{t,s}$ est k_t - j_s . On suppose que b a = 0, c'est-à-dire

$$\sum_{s}^{t} b_{t,s} a_{s,r} = 0$$
 pour tout r et tout t.

On définit, pour tout ensemble simplicial X, et pour tout entier m, l'application

$$a_{s,r}^{m}: H^{m+i}r(X) \longrightarrow H^{m+j}s(X)$$

en convenant que $a_{s,r}^{m} = (-1)^{m(j_s-i_r)} a_{s,r}$, de sorte que l'on a

De même pour $b_{t,s}^m$. On en déduit des applications linéaires

$$a^{m}: \sum_{r} H^{m+i}r(X) \longrightarrow \sum_{s} H^{m+j}s(X)$$

$$b^{m}: \sum_{s}^{m+j} H^{s}(X) \longrightarrow \sum_{t}^{m+k} t(X)$$

qui commutent avec la suspension, et satisfont à b^m o $a^m = 0$.

Le théorème fondamental de l'exposé 13 dit que, pour de telles données, il existe une suite d'opérations cohomologiques secondaires Φ^m (une pour chaque valeur de l'entier m), qui soit stable par suspension, chaque Φ^m envoyant, pour chaque X, Ker a^m dans Coker b^{m-1} , et cela de façon "compatible avec δ " (cf. exposé 13, condition (ii)). De plus une telle suite (Φ^m) est unique à l'addition près d'une opération cohomologique primaire stable. Les Φ^m sont linéaires.

Ayant choisi une telle suite de $\Phi^{\,\mathrm{m}}$, nous les noterons $\Phi^{\,\mathrm{m}}(\mathrm{b}$, a) , pour rappeler

qu'elles sont relatives à la donnée des deux matrices a et b (telles que b o a = 0), et nous noterons $\Phi(b, a)$ la collection des $\Phi^m(b, a)$. Ainsi $\Phi(b, a)$ est une opération stable par suspension, mais <u>n'est définie qu'à l'addition près d'une opération primaire</u>, stable par suspension, une telle opération primaire étant prise, pour chaque m, sur le novau de a^m , et ses valeurs étant réduites modulo l'image de b^{m-1} .

On démontrera les propositions suivantes :

PROFOSITION 1. - Supposons boa = 0. On a alors

(1) Φ (b , a o a') = Φ (b , a) o a' modulo une opération primaire stable; ceci signifie qu'une fois choisie une collection de Φ (b , a o a') stable par suspension, et une fois choisie une collection de Φ (b , a o a') stable par suspension, il existe une collection d'opérations primaires c stables par suspension, telle qu' l'on ait, pour chaque m ,

$$\Phi^{m}(b, a \circ a^{\dagger}) = \overline{\Phi}^{m}(b, a) \circ a^{\dagger^{m}} + c^{m}$$

(égalité de deux applications de Ker (a^m o a'^m) dans Coker b^{m-1}).

PEOPOSITION 1 bis. - Supposons boa = 0 . On a alors

(1 bis) Φ (b' o b , a) = b' o Φ (b , a) modulo une opération primaire stable; ceci signifie qu'une fois choisies deux collections Φ (b , a) et Φ (b' o b , a) stables par suspensio , il existe une collection d'opérations primaires c stable par suspension, telle que l'on ait, pour chaque m ,

$$F^{m}(b' \circ b, a) = b^{m-1} \circ F^{m}(b, a) + c^{m}$$

(égalité de deux applications de Ker a dans Coker (b' -1 o b -1).

PROPOSITION 2. - Supposons c o b o a = 0 . Alors les deux applications Ker $a^m \rightarrow Coker c^{m-1}$

induites p.r $\Phi^m(c \circ b, a)$ et par $\Phi^m(c, b \circ a)$ sont égales modulo une opération primaire stable.

PROPOSITION 3. - Soit $a = \sum_h \lambda_h a_h$ (où $\lambda_h \in Z_p$, chaque $(a_h)_{s,r}$ ayant le même degré que $a_{s,r}$). Supposons b o $a_h = 0$ pour chaque indice h. Alors les deux applications

$$\bigcap_{h} \operatorname{Ker} (a_{h})^{m} \longrightarrow \operatorname{Coker} b^{m-1}$$

PROPOSITION 3 bis. - Soit $b = \sum_{h} \lambda_{h} b_{h}$ (où $\lambda_{h} \in Z_{p}$, chaque $(b_{h})_{t,s}$

ayant le même degré que $b_{t,s}$). Supposons que b_h o a = 0 pour chaque indice b_h . Alors les deux applications

 $\text{Ker a}^{m} \longrightarrow (\text{quotient de } \sum_{\mathbf{t}}^{m-1+k} \mathbf{t}(\mathbf{X}) \text{ par la somme des images des } (\mathbf{b}_{\mathbf{h}})^{m-1})$

induites par $\Phi^m(b, a)$ et par $\sum_h \lambda_h \Phi^m(b_h, a)$ sont égales modulo une opération primaire stable.

REMARQUE. - Les propositions 3 et 3 bis exp iment, en somme, la <u>linéarité</u> de Φ (b , a) par rapport à a et par rapport à b .

2. Démonstration des propositions précédentes.

Les propositions 1 et 1 bis résultent immédiatement du théorème fondamental d'existence et d'unicité (exposé 13, fin du n° 2). En effet, soient a et b deux matrices telles que b o a=0; soit ($\mbox{$\Phim) une collection d'opérations cohomologiques secondaires relatives à a et b, stable par suspension, et compatibles avec $\mbox{$\delta$}$ (condition (ii) du n°2 de l'exposé 13). Soit

$$\Phi^{m} = \Phi^{m} \circ a^{m} : \text{Ker } (a^{m} \circ a^{m}) \longrightarrow \text{Coker } b^{m-1}$$

il est immédiat que la famille des Φ est stable par suspension et compatible avec δ , ce qui établic la proposition 1. La proposition 1 bis se prouve de la même manière.

Démontrons la proposition 2. Supposons c o b o a = 0 . La matrice a définit, pour caque m , une application

$$\alpha^{m}: G^{m} \longrightarrow F^{m}$$

et la matrice b définit

$$\beta^{m}: F^{m} \longrightarrow F^{m}$$

Soit E^{m-1} le fibré induit du fibré acyclique L^{m-1} (de base F^m et de fibre F^{m-1}) par l'application χ^m ; E^{m-1} a pour base G^m et pour fibre F^{m-1} . Soit E^{m-1} le fibré induit du fibré acyclique L^{m-1} (de base F^{m} et de fibre

 F^{m-1}) par l'application β m o α m; E^{m-1} a pour base G^m et pour fibre F^{m-1} . La matrice b définit une application du fibré L^{m-1} dans le fibré L^{m-1} , qui induit l'application β m des bases de cas fibrés; on a donc une application fibrée

$$\rho^{m-1}: E^{m-1} \longrightarrow E^{m-1}$$

qui induit l'application identique de la base commune G^m , et se réduit à β^{m-1} sur les fibres. Soit alors, pour chaque m, un élément $\eta_!^{m-1} \in H^*(E^{m-1})$ définissant une collection d'opérations Φ^{m} constituant une $\Phi(c, b, a)$. On voit facilement que la collection des $\eta^{m-1} = (\rho^{m-1})^* \eta_!^{m-1}$ définit une collection d'opérations Φ^m constituant une $\Phi(c, b, a)$. Soit alors $u \in H^*(X)$ tèl que $a^m(u) = 0$; il existe une application $g: X \longrightarrow E^{m-1}$ telle que $g^*(\xi^m) = u$; si $g' = \rho^{m-1}$ o g, on a $g'^*(\xi^{m}) = u$, et par suite:

donc si l'on réduit $\Phi^m(u)$ dans Coker c^{m-1} , on trouve la même chose que $\Phi^{m}(u)$. La proposition 2 est démontrée.

Passons à la proposition 3. La collection des matrices a_h (lorsque l'indice h varie) définit, pour chaque m , une application linéaire

$$\sum_{\mathbf{i}} H^{\mathbf{m+r}} \mathbf{i}(X) \longrightarrow \sum_{\mathbf{j}, \mathbf{h}} H^{\mathbf{m+s}} \mathbf{j}, \mathbf{h}(X)$$

où $s_{j,h} = s_j$ pour tout h. Ceci est une opération primaire que nous noterons a^{im} ; on définit ainsi une matrice a^i . Soit d'autre part

$$\sum_{\mathbf{j},\mathbf{h}} H^{\mathbf{m}+\mathbf{s}}\mathbf{j},\mathbf{h}(\mathbf{X}) \longrightarrow \sum_{\mathbf{j}} H^{\mathbf{m}+\mathbf{s}}\mathbf{j}(\mathbf{X})$$

que nous noterons λ . On voit que l'on a

$$a = \lambda \circ a'$$

Le novau de a' n'est autre que \bigcap_h Ker $(a_h)^m$; d'après la proposition 2, les deux applications

Ker
$$a^{m} \longrightarrow Coker b^{m-1}$$

définies par $\Phi^m(b \circ \lambda, a')$ et $\Phi^m(b, a)$ sont égales modulo une opération primaire stable. Pour obtenir la proposition 3, il suffit alors d'observer que la collection des $\sum_h \lambda_h \Phi^m(b, a_h)$ est une $\Phi(b \circ \lambda, a')$, car elle est stable par suspension et compatible avec δ .

La proposition 3 bis se démontre de la même manière.

3. Nullité de \$\bar{\Pi}(b, a) .

PROPOSITION 4. - Soient toujours a et b tels que b o a = 0 . Pour que $\Phi(b, a) = 0$ (ou, plus exactement, pour que $\Phi(b, a)$ soit une opération primaire), il faut et il suffit qu'al existe une matrice triangulaire $c = (c_{s,s'})$ (s et s' parcourant le même ensemble d'indices, avec

$$c_{s,s'} \in s^{j_s-j_{s'}}$$
) telle que
(2) boc = 0 , coa = a

DÉMONSTRATION. - Cette condition est suffisante, car d'après la proposition 2 les opérations $\Phi^m(b \circ c, a)$ et $\Phi^m(b, c \circ a)$ induisent des applications Ker $a^m \longrightarrow Coker \ b^{m-1}$ qui ne diffèrent que par une opération primaire (stable); d'après (2), cela revient à dire que $\Phi^m(0, a)$ et $\Phi^m(b, a)$ ne diffèrent que par une opération primaire stable. Or on peut prendre $\Phi^m(0, a) = 0$ pour tout m, car ceci définit bien une opération cohomologique compatible avec δ .

Montrons que la condition (2) est nécessaire. Avec les notations du n° 2 de l'exposé 13, il doit exester, pour chaque entier m, un élément

$$\eta^{m-1} \in \sum_{t}^{m-1+k} H^{m-1}(E^{m-1}) \text{ qui soit dans l'image de}$$

$$\sum_{s}^{m-1+j} H^{m-1+k}(E^{m-1}) \xrightarrow{b^{m-1}} \sum_{t}^{m-1+k} H^{m-1+k}(E^{m-1})$$

et satisfasse à

$$(i^{m-1})^* \gamma^{m-1} = b^{m-1} \gamma^{m-1}$$
 dans $\sum_{t} H^{m-1+k} t(F^{m-1})$.

Il doit donc exister $\zeta^{m-1} \in \sum_{s} H^{m-1+j} s(E^{m-1})$ tel que

(3)
$$b^{m-1}[(i^{m-1})^* 5^{m-1} - \phi^{m-1}] = 0$$

Or, pour m as ez grand, l'image de (i^{m-1})* est le noyau de l'application composée

$$\sum_{s} \overset{m-1+j}{H}^{s}(F^{m-1}) \xrightarrow{\sigma^{-1}} \sum_{s} \overset{m+j}{H}^{s}(F^{m}) \xrightarrow{(\alpha^{m})^{*}} \sum_{s} \overset{m+j}{H}^{s}(G^{m}) .$$

Soit $5^m = \sigma^{-1}(5^{m-1})$; puisque $\psi^m = \sigma^{-1}(\psi^{m-1})$, on voit que l'élément $\tau^m = \phi^m - (i^m)^* 5^m$ satisfait à. (4) $b^m \tau^m = 0$, $(\alpha^m)^* \tau^m = (\alpha^m)^* \psi^m$.

(4)
$$b^m \tau^m = 0$$
 , $(\alpha^m)^* \tau^m = (\alpha^m)^* \varphi^m$

Pour m assez grand, il existe une matrice triangulaire c et une seule telle que

$$\tau^{m} = e^{m} \varphi^{m}$$
,

puisque ψ^m est la "classe fondamentale" de F^m (produit de complexes d'Eilenberg-MacLane). D'autre part (exposé 13, relation (1')), on a

$$(\boldsymbol{\kappa}^{m})^{*} \boldsymbol{\varphi}^{m} = a^{m} \boldsymbol{\chi}^{m}$$

 χ^m désignant la classe fondamentale de G^m . Les relations (4) donnent donc

$$b^m c^m \phi^m = 0$$
 , $c^m a^m \gamma^m = a^m \gamma^m$

ce qui, pour m grand, entraîne b o c=0, c o a=a. Ceci achève la démonstration.

EXEMPLE. - Considérons le cas où les i dices r et t ne prennent qu'une seule valeur, avec $i_r = 0$, $k_t = k$. Ecrivons a_s au lieu de a_s , et b_s au lieu de b_t , a_s est de degré j_s , b_s de degré $k - j_s$, et on a $\sum_s b_s a_s = 0$.

Supposons en outre qu'il existe un s jouissant des propriétés suivantes

$$\begin{cases} j_s, < j_s \text{ pour tout } s' \text{ distinct de } s; \\ b_s \neq 0; \end{cases}$$

n'appartient pas à l'idéal à gauche engendré par les as relatifs aux $s' \neq s$.

Alors \oint (b, a) ne se réduit pas à une opération primaire. (Supposons en effet qu'il existe une matrice $c = (c_{s,s'})$ telle que boc = 0, coa = a. Choisissant s comme ci-dessus, on trouve $\sum_{s'}$ b_s, c_{s,s'} = 0, et comme c_{s,s'} = 0

pour s' \neq s, pour des raisons de degré, et que par hypothèse $b_s \neq 0$, on trouve $c_{s,s} = 0$; alors la relation $\sum_{s'} c_{s,s'} a_{s'} = a_s$ montre que a_s appartient à l'idéal è gauche engendré par les $a_{s'}$ pour $s' \neq s$, contrairement à l'hypothèse).

4. Définition des opérations \$\Psi_{i,j}\$ d'Adams.

LEMME. - Pour chaque couple d'entiers i , $j \ge 0$ tels que i = j ou $i \le j - 2$, il existe dans l'algèbre de Steenrod S* (relative au nombre premier p = 2) une relation

(5)
$$\operatorname{Sq}^{2^{i}} \operatorname{Sq}^{2^{j}} = \sum_{\substack{0 \le s \le i}} b_{s}^{(i,j)} \operatorname{Sq}^{2^{s}}$$
,

les bs(i,j) étant des éléments homogènes de S*..

DÉMONSTRATION. - Reportons-nous aux relations d'Adem (cf. [2])

$$Sq^{k} Sq^{h} = \sum_{t} [h - k - 1 + t, k - 2t] Sq^{k+h-t} Sq^{t}$$
 pour $k < 2h$,

en désignant toujours par [u , v] le coefficient binomial $\frac{(u+v)!}{u! \ v!}$, réduit modulo 2 . Prenons d'abord $k=2^j$, $h=2^j$; puisque

 $[-1,2^j]=0$, le second membre ne contient pas $\operatorname{Sq}^{2^{j+1}}\operatorname{Sq}^0$, donc **il** appartient à l'idéal à gauche engendré par les Sq^t pour $1 \le t < 2^j$, qui est aussi l'idéal à gauche engendré par les Sq^{2^S} pour Sq^t (en effet Sq^t , pour $1 \le t < 2^j$,

appartient à la sous-algèbre engendrée par les Sq² pour s < j , d'après l'exposé 12, paragraphe 3, exemple 2).

D'autre part, on a

$$[2^{j} - 2^{i} - 1, 2^{i}] = 1$$
 pour $i < j$,
 $[2^{j} - 2^{i+1} - 2^{i} - 1, 2^{i+1}] = 1$ pour $i + 1 < j$,

et la relation d'Adem montre alors que

$$\operatorname{Sq}^{2^{i}}\operatorname{Sq}^{2^{j}} + \operatorname{Sq}^{2^{i}+2^{j}}$$
 (pour $i < j$)

et
$$Sq^{2^{i+1}} Sq^{2^{j}-2^{i}} + Sq^{2^{i}+2^{j}}$$
 (ppur i + 1 < j)

appartiennent tous deux à l'idéal à gauche engendré par les Sq^{2s} pour s < j .

Donc, si $i \leq j - 2$, l'élément

$$Sq^{2i} Sq^{2j} + Sq^{2i+1} Sq^{2j-2i}$$

appartient à l'idéal à gauche engendré par les Sq^{2^S} pour s < j, øt comme $\operatorname{Sq}^{2^j-2^i}$ appartient aussi à cet idéal, la relation (5) est établie pour $i \le j-2$. Ceci achève la démonstration du lemme.

REMARQUE. - Les éléments $b_s^{(i,j)}$ de la relation (5) ne sont peut-être pas uniques. Peu importe : nous les supposerons choisis une fois pour toutes.

Définissons maintenant, pour $i \leq j$ (avec $i + 1 \neq j$),

$$b_{i}^{(i,j)} = Sq^{2^{i}}$$
.

Alors la relation (5) s'écrit

(5')
$$\sum_{s=0}^{j} b_s^{(i,j)} Sq^{2^s} = 0$$
 pour $i \le j$, $i + 1 \ne j$.

Observons que, dans cette relation, les $b_s^{(i,j)}$ appartiement à l'idéal à droite engendré par les Sq^2 pour $s \leqslant j$.

Fixons i et j (avec toujours i = j ou i \leq j - 2). Les Sq pour s = 0, 1, ..., j forment une matrice a, à une colonne et j + 1 lignes; les $b_s^{(i,j)}$ forment une matrice $b = b_s^{(i,j)}$ à une ligne et j + 1 colonnes; et l'on a la relation b o a = 0. On a donc une collection d'opérations cohomologiques secondaires $\Phi(b,a) = (\Phi^m(b,a))$, stable par suspension; elles sont déterminées à l'addition près d'une opération primaire stable par suspension. Précisons: pour chaque entier m, $\Phi^m(b,a)$ est une application linéaire, définie sur le sous-espace des $u \in H^m(X)$ tels que

(6)
$$Sq^{2^{S}}(u) = 0$$
 pour $0 \le s \le j$,

et à valeurs dans le quotient de $H^{m-1+2^{\frac{1}{2}}+2^{\frac{1}{2}}}(X)$ par la somme des images des $b_s^{(i,j)}$ (il s'agit, bien entendu, de cohomologie à coefficients dans Z_2). On notera $Q_{i,j}^m(X)$ ce quotient de $H^{m-1+2^{\frac{1}{2}}+2^{\frac{1}{2}}}(X)$.

L'opération secondaire $\tilde{\Psi}$ (b , a) est <u>unique</u> : en effet, une opération primaire stable de même degré que $\tilde{\Psi}$ (b , a) , c'est-à-dire de degré $2^{\dot{1}}$ + $2^{\dot{j}}$ - 1 ,

appartient à l'idéal à gauche engendré par les Sq^{2^S} pour $s \leq j$ (puisque, d'après le théorème 3 de l'exposé 12, une telle opération primaire appartient à la sous-algèbre engendrée par les Sq^{2^S} pour $s \leq j$; elle est donc nulle sur les u satisfaisant à (6). En fait, la condition (6) équivaut à $\operatorname{Sq}^k u = 0$ pour $1 \leq k < 2^{j+1}$.

Avec ADAMS, nous noterons $\Phi_{i,j}$ l'unique opération $\Phi(b,a)$; elle est définie, rappelons-le, pour tous les couples d'entiers i, j tels que $0 \le i \le j$, $i+1 \ne j$. Observons que la connaissance du degré 2^i+2^j-1 détermine le couple (i,j), en vertu de l'unicité de l'écriture dyadique.

L'opération $\phi_{i,j}$ n'est pas nulle (ou, plus exactement, n'est pas égale à une opération primaire). Cela résulte de l'exemple traité au paragraphe 3 ci-dessus, compte tenu du fait que $b_j^{(i,j)} = Sc_j^{2^i}$ n'est pas nul, et que $Sc_j^{2^j}$ n'appartient pas à l'idéal à gauche engendré par les $Sc_j^{2^s}$ pour s < j (sinon $Sc_j^{2^s}$ appartiendrait à la sous-algèbre engendrée par les $Sc_j^{2^s}$ pour s < j, contrairement au théorème 3 de l'exposé 12).

5. Principe de la méthode d'Adams pour la solution du problème de l'invariant de Hopf.

Donnons-nous us entier $k \geqslant 0$. Considérons tous les couples (i, j) tels que $0 \le i \le j \le k$, $i + 1 \ne j$.

Les éléments $b_s^{(i,j)}$ relatifs à tous ces couples (i , j) et à tous les $s\leqslant k$ (on convient que $b_s^{(i,j)}=0$ si s>j) constituent une matrice b_k qui, pour chaque entier m , définit une opération primaire

$$(b_k)^m : \sum_{s \leq k} H^{m+2^s}(X) \longrightarrow \sum_{(i,j)} H^{m+2^i+2^j}(X)$$

Désignons par a_k la matrice (à une colonne et k+1 lignes) formée des Sq^{2^S} pour $s \leq k$; elle définit, pour chaque m, une opération primaire

$$(a_k)^m : H^m(X) \longrightarrow \sum_{s \le k} H^{m+2^s}(X)$$

On a $b_k \circ a_k = 0$; les matrices a_k et b_k définissent donc une opération secondaire stable $\Phi(b_k, a_k)$, et on voit comme pour $\Phi_{i,j}$ qu'une telle opération est <u>unique</u>. Nous la noterons Φ_k . Pour chaque entier m, $(\Phi_k)^m$ est une application linéaire du sous-espace des $u \in H^m(X)$ tels que Sq^2 (u) = 0 pour $0 \le s \le k$,

dans un quotient $Q_1^m(X)$ de la somme directe $\sum_{(i,j)}^{m-1+2^i+2^j}(X)$ relative à tous

les couples (i, j) satisfaisant à (7). Précisons que $C_k^m(X)$ est le concyau de l'application

$$(b_k)^{m-1}: \sum_{s \leq k} H^{m-1+2^s}(X) \longrightarrow \sum_{(i,j)} H^{m-1+2^i+2^j}(X)$$

et que ce conoyau ne doit pas être confondu avec la somme directe $\sum_{i,j}^{m} Q_{i,j}^{m}(X)$, qui est un quotient de $\mathcal{Q}_{k}^{m}(X)$.

REMARQUE. - Pour chaque couple (i , j) satisfaisant à (7), l'application composée de $(\Phi_k)^m$ et de la projection $Q_k^m(X) \longrightarrow Q_{i,j}^m(X)$ n'est autre que l(application $(\Phi_{\mathtt{i},\mathtt{i}})^{\hat{\eta}}$, comme cela résulte des propositions 1 et 1 bis.

Supposons maintenant que l'on ait une ppération primaire ck qui, pour chaque m , envoie

$$\sum_{(i,j)} H^{m+2^{i}+2^{j}}(X) \text{ dans } H^{m+1+2^{k+1}}(X)$$

(la sommation étant toujours étendue aux couples (i, j) satisfaisant à (7)), et supposons de plus que c_k o $b_k = 0$. D'après la proposition 1 bis, les deux opérations

$$c_k \circ \Phi(b_k, a_k)$$
 et $\Phi(c_k \circ b_k, a_k)$

sont égales modulo une opération primaire stable. Mais puisque $c_k \circ b_k = 0$, le conoyau de $(c_k)^{m-1}$ o $(b_k)^{m-1}$ n'est autre que $\mathbb{H}^{m+2^{r+1}}$ (X) (en d'autres termes, l'indétermination est nu le); et on peut prendre $\Phi(c_k \circ b_k, a_k) = 0$. Ainsi, pour $u \in H^{m}(X)$ tel que

(8)
$$Sq^{2^{S}}(u) = 0 \text{ pour } 0 \le s \le h$$

 $c_k(\Phi_k(u))$ est un élément bien déterminé de $H^{m+2}(X)$, et coı̈ncide avec le transformé de u par une opération primaire stable. Or une telle opération a le degré 2^{k+1} ; elle est donc de la forme

$$\lambda \operatorname{Sq}^{2^{k+1}}$$
 + un élément décomposable de S*

où λ est égal à 0 ou 1 , et par suite on a la relation

(9)
$$c_{k}(\overline{\Phi}_{l}(u)) = \lambda Sq^{2^{k+1}}(u) \quad \underline{pour} \quad u \quad \underline{satisfaisant \ a} \quad (8).$$

Observons que la matrice c_k est une matrice à une ligne et autant de colonnes qu'il y a de couples (i , j) satisfaisant à (7) ; et la relation c_k o b_k =0 sérit

(10)
$$\sum_{(i,j)} c_k^{(i,j)} b_s^{(i,j)} = 0 \text{ pour tout } s \text{ tel que } 0 \le s \le k.$$

Il résulte des propositions 1 à 3 bis que si on prend la classe de $c_k(\bar{\varphi}_k(u)) \in H^{m+2}$ (X) modulo la somme des images des applications composées

$$H^{m-1+2^{S}}(X) \xrightarrow{b(i,j)} H^{m-1+2^{i}+2^{j}}(X) \xrightarrow{c_{k}^{(i,j)}} H^{m+2^{k+1}}(X)$$

on obtient $\sum_{(i,j)} c_k^{(i,j)} \Phi_{i,j}(u)$. Ainsi la relation (9) s'écrit

(9')
$$\sum_{(i,j)} c_k^{(i,j)} \Phi_{i,j}(u) = \lambda Sq^{2^{k+1}}(u) \text{ pour } u \text{ satisfaisant à (8),}$$

l'égalité ayant lieu dans le quotient de H^{m+2} (X) qui vient d'être précisé.

Nous pouvons indiquer maintenant le principe de la méthode d'ADAMS. Il prouve que, pour tout entier $k \ge 3$, il est possible de choisir la matrice c_k de manière que l'on ait $\lambda = 1$ dans la relation (9).

Une fois ce résultat admis, il est facile d'établir le théorème annoncé dans l'exposé 6 (fin du paragraphe 6), et d'où l'on avait déduit une solution du problème de l'invariant de Hopf. Il s'aget de prouver ceci : soit un X tel que $H^{t}(X) = 0$ pour m < t < m+n (il s'agit de cohomologie à coefficients dans Z_{2}); alors, si n est distinct de l'un des entiers 1, 2, 4 ou 8, l'opération de Steenrod

$$Sq^n : H^m(X) \longrightarrow H^{m+n}(X)$$

est nulle.

DÉMONSTRATION. - Supposons d'abord que n ne soit pas une puissance de 2 . Alors Sq^n est un élément décomposable de S^* (exposé 12, théorème 3), donc ici Sq^n s'annule sur $\operatorname{H}^m(X)$. Si maintenant on a $n=2^{k+1}$, avec $k\geqslant 3$, choisissons les $c_k^{(i,j)}$ de façon que (9) ait lieu, avec $\lambda=1$. Soit $u\in\operatorname{H}^m(X)$; u satisfait à (8) puisque $\operatorname{H}^t(X)=0$ pour $m< t< m+2^{k+1}$, donc la relation (9) est appliquable à u . Or $\Phi_k(u)=0$, parce que la valeur de $\Phi_k(u)$ est dans un quotient $Q_b^m(X)$ d'une somme directe

$$\sum_{(i,j)} H^{m-1+2^{i}+2^{j}}(X),$$

laquelle est nulle ici. Donc le second membre de (9) est nul, et ceci démontre le théorème.

Tout revient donc, en définitive, à choisir des $c_k^{(i,j)}$ satisfaisant à (10), de

façon que $\hat{\lambda}=1$. C'est ce problème qui va faire l'objet des exposés suivants. Si on analyse sommairement la question, on voit, d'après (10), qu'il s'agit d'étudier les relations existant, dans l'algèbre S*, entre les b_s^{(i,j)} (pour chaque s), et que les b_s^{(i,j)} satisfont eux-mêmes è des relations

$$\sum_{s} b_{s}^{(i,j)} sq^{2^{s}} = 0 .$$

Il s'agit donc de la question des <u>relations entre les relations</u> existant entre les Sq. . Ceci conduit à l'étude de la "cohomologie de l'algèbre de Steenrod".

BIBLIOGRAPHIE

- [1] ADAMS (J. F.). Non-existence of elements of Hopf-invariant one. Princeton, 1958, multigraphie.
- [2] ADEM (J.). Relations on iterated reduced powers, Proc. nat. Acad. Sc. U. S. A. t. 39, 1953, p. 636-638.