SÉMINAIRE HENRI CARTAN

J-P. SERRE

Faisceaux analytiques sur l'espace projectif

Séminaire Henri Cartan, tome 6 (1953-1954), exp. nº 18, p. 1-10 http://www.numdam.org/item?id=SHC_1953-1954_6_A18_0

© Séminaire Henri Cartan

(Secrétariat mathématique, Paris), 1953-1954, tous droits réservés.

L'accès aux archives de la collection « Séminaire Henri Cartan » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

FAISCEAUX ANALYTIQUES SUR L'ESPACE PROJECTIF

(Exposé de J-P. Serre, 10-5-54)

\$1. La d"-cohomologie

1. Un lemme.

LEMME 1. Soit f(z) une fonction différentiable dans le disque |z| < R. Si R' < R, il existe une fonction différentiable g telle que $\frac{\partial g}{\partial \overline{z}} = f$, dans le disque |z| < R'.

Si f est en outre fonction différentiable, ou analytique, de paramètres λ_i , on peut choisir pour g une fonction différentiable, ou analytique, de ces paramètres.

Soit φ une fonction différentiable, égale à 1 pour $|z| \leq R' + \epsilon$, à 0 pour $|z| \geq R - \epsilon$, ϵ étant assez petit. La fonction f φ est à support compact. On peut donc en faire le produit de composition avec la fonction $1/\pi z$, qui est localement sommable. Soit

$$g = \frac{1}{\pi Z} * (f\varphi),$$

ce produit de composition, qui est une fonction différentiable sur c. Si l'on considère $1/\pi z$ comme une distribution, on a:

 $\frac{\partial}{\partial \overline{z}}$ ($\frac{1}{\pi z}$) = δ , mesure de Dirac à l'origine (cf. Schwartz, Distributions, (II, 3;28)).

D'où $\partial g/\partial \overline{z} = f \varphi$, qui est égal à f pour |z| < R'.

En outre, la continuité du produit de composition montre que si f dépend différentiablement, ou analytiquement, de paramètres, il en est de même de g.

Note. Un résultat tout analogue vaut pour les distributions: on remplace f par une distribution sur le produit direct de |z| < R par l'espace des paramètres, et l'on fait un produit de composition avec

 $\frac{1}{\pi Z} \times \delta_{\lambda}$, δ_{λ} désignant la mesure de Dirac de l'espace des paramètres.

2. La d''-cohomologie locale.

On sait (cf. Séminaire 1951-1952, exposé 1) que sur toute variété analytique complexe, on a la notion de forme différentielle <u>de type</u> (p, q): c'est une forme dont l'expression au moyen de coordonnées locales complexes z_i fait intervenir p différentielles dz_i et q différentielles $d\overline{z}_j$. Si ω est de type (p, q), $d\omega$ est somme d'une forme de type (p+1, q) et d'une forme de type (p, q+1), que l'on note respectivement d' ω et d' ω . On peut aussi définir d' comme la différentiation par rapport aux coordonnées \overline{z}_i .

On observera que d''•d'' = 0, autrement dit que d'' peut être considéré comme un opérateur de cobord.

PROPOSITION 1. Dans l'espace c^k , considérons le polycylindre D (resp. D') défini par les inégalités $|z_1| < R_1, \ldots, |z_k| < R_k$ (resp. $|z_1| < R_1, \ldots, |z_k| < R_k$, avec $|R_1'| < R_1$ pour tout i).

Soit ω une forme différentielle, différentiable sur D, de type (p, q) avec $q \ge 1$, et telle que d' $\omega = 0$. Il existe alors une forme différentielle, différentiable sur D, de type (p, q - 1), soit α , telle que $\omega = d''\alpha$ sur D'.

Nous montrerons, par récurrence sur i, la proposition suivante qui coîncide avec la Proposition 1 pour i = k: $(A_{\dot{1}})$ Soit ω une forme différentielle de type (p, q), $q \geq 1$, vérifiant les conditions suivantes:

- a) $d''\omega = 0$ pour $|z_j| < R_j$ ($j \le i$) et $|z_j| < R_j'$ (j > i),
- b) ω ne contient pas $\,d\overline{z}_{i+1},\ldots,\,d\overline{z}_{k}\,$ (pour les valeurs ci-dessus des z_{i}).

Il existe alors α telle que $d''\alpha = \omega$ sur D'.

Pour i = 0, l'hypothèse b) entraı̂ne ω = 0, puisque q \geq 1. Donc (A_O) est vraie.

Montrons que $(A_{i-1}) => (A_{i})$:

Ecrivons ω sous la forme $\omega=d\overline{z}_i \wedge \beta+\gamma$, où β et γ ne contiennent pas $d\overline{z}_1,\ldots,d\overline{z}_k$. Si f désigne l'un des coefficients de β , on peut, d'après le Lemme 1, trouver une fonction g telle que $\partial g/\partial \overline{z}_i=f$ pour $|z_j|< R_j$ ($j\leq i-1$), $|z_j|< R_j'$ (j>i-1). En outre, les conditions a) et b) entraı̂nent évidemment que les coefficients de ω , donc de β et γ , sont des fonctions holomorphes de z_{i+1},\ldots,z_k ; on pourra donc prendre pour g une fonction holomorphe de ces mêmes variables. Au moyen des fonctions g, on construit de façon évidente une forme ω_1 telle que:

 $d''\omega_1=d\overline{z}_i \wedge \beta + \gamma', \quad \text{pour} \quad |z_j| < R_j \quad (j < i), \quad |z_j| < R_j' \quad (j \geq i),$ où γ' ne contient pas $d\overline{z}_i,\ldots,d\overline{z}_k$ (pour les valeurs ci-dessus des z_i). On a donc $\omega=d''\omega_1+(\gamma-\gamma')$, et, en appliquant (A_{i-1}) à la forme $\gamma-\gamma'$, on obtient le résultat chercé.

COROLLAIRE. Toute forme différentielle de type (p, q), qui est d''-fermée, est localement un d''-cobord si q > 1.

Remarques.

- 1) La Proposition 1 et son corollaire sont également valables pour les <u>courants</u> de type (p, q), c'est-à-dire pour les formes différentielles à coefficients distributions. La démonstration est la même.
- 2) Les résultats précédents sont dûs à Grothendieck (non publié). On en trouvera une démonstration un peu différente dans une note de Dolbeault (C-R, 236 (1953), p. 175-177)).

3. Un théorème de Dolbeault.

Soit X une variété analytique complexe, de dimension complexe égale à k. Nous désignerons par $\mathfrak{C}^{p,q}$ le faisceau des germes de formes de type (p,q) sur X. L'opération d'étant de caractère local définit un homomorphisme de $\mathfrak{C}^{p,q}$ dans $\mathfrak{C}^{p,q+1}$.

Soit d'autre part $\,\Omega^p$ le faisceau des germes de formes holomorphes de degré p sur X; $\,\Omega^p$ est un sous-faisceau de $\,\Omega^{p,0}$.

PROPOSITION 2. La suite d'homomorphismes de faisceaux:
$$0 \rightarrow \Omega^{p} \rightarrow \alpha^{p,0} \xrightarrow{d''} \alpha^{p,1} \xrightarrow{d''} \cdots \rightarrow \alpha^{p,k} \rightarrow 0$$

est une suite exacte.

Cela résulte du corollaire à la Proposition 1 et du fait évident que les formes de type (p, 0) qui sont d''-fermées sont holomorphes.

Soit maintenant $A^{p,q}$ l'espace vectoriel des formes de type (p,q) définies sur X tout entier (autrement dit, $A^{p,q} = H^0(X, \mathfrak{C}^{p,q})$); l'opération d' applique $A^{p,q}$ dans $A^{p,q+1}$, et d''od'' = 0. Si l'on désigne par A la somme directe des $A^{p,q}$, on voit que A est un complexe bigradué, l'opérateur cobord étant homogène et de bidegré égal à (0,1). Nous désignerons le groupe de cohomologie de bidegré (p,q) de A par $H^{p,q}(A)$.

Puisque les C^{p,q} sont des faisceaux fins, on peut appliquer à la suite exacte de la Proposition 2 un résultat élémentaire de théorie des faisceaux (cf. Exp. 17, Prop.1), et l'on obtient ainsi (Dolbeault, loc.cit.):

PROPOSITION 3. $H^{q}(X, \Omega^{p})$ est isomorphe à $H^{p,q}(A)$.

Bien entendu, un résultat analogue vaut pour la cohomologie à supports dans une "famille Φ ," et pour les formes différentielles à coefficients distributions; on peut également considérer des formes à coefficients dans un espace fibré analytique à fibres vectorielles.

4. Applications.

La Proposition 3 a de nombreuses applications. Par exemple, si X est une variété de Stein, on sait que $H^q(X, \Omega^p) = 0$ pour $q \ge 1$, puisque Ω^p est un faisceau analytique cohérent; donc $H^{p,q}(A) = 0$. Autrement dit:

En particulier, on voit que l'on peut améliorer la Proposition l en prenant $R_{\bf i}'=R_{\bf i}$ pour tout i. A vrai dire, il serait facile d'obtenir cette amélioration sans passer par la théorie des variétés de Stein: il suffirait de faire un "passage à la limite," analogue à celui utilisé dans la démonstration des théorèmes du type Mittag-Leffler.

Mais les applications les plus intéressantes de la Proposition 3 concernent les variétés <u>kählériennes</u> compactes. On sait en effet (cf. Séminaire 1951-1952, Exposé 1) que, sur une telle variété, $H^{p,q}(A)$ est isomorphe à l'espace vectoriel des <u>formes harmoniques de type</u> (p, q). Il en résulte en particulier que $H^{p,q}(A)$ est symétrique en p et q; par exemple, $H^q(X, 0) = H^{0,q}(A)$ est isomorphe à $H^{q,0}(A) = H^0(X, \Omega^q)$, espace des formes holomorphes de degré q (nous avons noté 0 le faisceau des germes de fonctions holomorphes sur X, identifié au faisceau Ω^0 des germes de formes holomorphes de degré 0). Si X est l'espace projectif complexe de dimension k, il est immédiat que toute forme différentielle holomorphe sur X, de degré ≥ 1 , est identiquement nulle (passer à l'espace vectoriel dont X est un quotient, par exemple). D'où le résultat suivant, qui sera utilisé plus loin:

 $H^{Q}(X, 0) = 0$ pour q > 1, si X est un espace projectif.

§2. Les théorèmes fondamentaux

5. Le faisceau O(n).

Soit k un entier \geq 0, et soit Y le complémentaire de l'origine dans l'espace \mathbf{C}^{k+1} . Le quotient X de Y par la relation d'équivalence définie dans Y par les homothéties est l'espace projectif complexe $P_k(\mathbf{C})$. Nous noterons π la projection: $Y \to X$; si U est une partie de X, on posera $D_U = \pi^{-1}(U)$; par exemple, si $\mathbf{X} \in X$, D_X est une droite (privée de l'origine).

Sur C^{k+1} , les fonctions coordonnées seront notées z_0, \ldots, z_k . Pour $0 \le i \le k$, l'ensemble V_i des points de C^{k+1} où $z_i \ne 0$ est un ouvert contenu dans Y_i ; soit $U_i = \pi(V_i) \in X$. L'ensemble des points de Y_i où $Z_i = 1$, soit W_i , est un espace affine, analytiquement isomorphe à C^k , et π est un isomorphisme de W_i sur U_i . En particulier, les U_i sont des variétés de Stein, et nous avons ainsi défini un recouvrement $W_i = \{U_i\}$ de X_i par des variétés de Stein, qui est de dimension K_i (puisqu'il est

formé de k+1 ouverts d'intersection non vide). Appliquant alors un théorème de Leray (cf. Exposé 17), on obtient:

PROPOSITION 4. Pour tout faisceau analytique cohérent 3 sur X, on a $H^q(\mathfrak{A}, \mathfrak{F}) = H^q(\mathfrak{X}, \mathfrak{F})$ pour tout q.

COROLLAIRE. $H^{Q}(X, 3) = 0$ pour q > k.

Note. La même démonstration montre que $H^{q}(X, 3) = 0$ pour q > dim X, si X est une variété projective; j'ignore si ce résultat s'étend à toute variété analytique complexe.

Nous allons maintenant définir un faisceau qui jouera dans la suite un rôle important. Soit n un entier (positif ou négatif), et soit U un ouvert de X. Nous désignerons par O(n)_U <u>l'ensemble des fonctions holomorphes sur D_U qui sont homogènes de degré</u> n, c'est-à-dire qui vérifient l'identité:

$$f(tz_0,..., tz_k) = t^n f(z_0,..., z_k)$$
 pour $t \in C^*$, $(z_0,..., z_k) \in D_U$.

L'ensemble $\mathfrak{O}(n)_U$ est un espace vectoriel complexe. Si V C U, la restriction à V d'un élément f de $\mathfrak{O}(n)_U$ est un élément de $\mathfrak{O}(n)_V$, d'où un homomorphisme $\mathfrak{O}(n)_U \to \mathfrak{O}(n)_V$ vérifiant une condition de transitivité évidente. Pour n fixé, les $\mathfrak{O}(n)_U$ définissent donc un faisceau, que nous noterons $\mathfrak{O}(n)$. Pour x ϵ X, un élément de $\mathfrak{O}(n)_X$ peut être identifié à une fonction holomorphe au voisinage de \mathfrak{D}_X , homogène de degré n. Il est clair que $\mathfrak{O}(n)_U$ est identique à l'espace des sections de $\mathfrak{O}(n)$ sur U.

Lorsque n=0, un élément de $O(n)_U$ correspond biunivoquement à une fonction holomorphe sur U; autrement dit, le faisceau O(0) est isomorphe au faisceau O(0) des germes de fonctions holomorphes sur X.

Si f ϵ O(n)_U et g ϵ O(m)_U, on a f·g ϵ O(n+m)_U; en particulier, pour m = 0, on voit que O(n)_U est un module sur O(0)_U, autrement dit que O(n) est un <u>faisceau</u> <u>analytique</u> sur X.

Nous allons préciser ce résultat: notons $^{\dot{1}}$ O la restriction du faisceau O à l'ouvert $U_{\dot{1}}$, et $\theta_{\dot{1}}$: $^{\dot{1}}$ O \rightarrow O(n) l'homomorphisme de fais-

ceaux défini par la multiplication par z_i^n (multiplication qui transforme bien une fonction homogène de degré 0 en une fonction homogène de degré n). Il est clair que θ_i est <u>un isomorphisme de</u> $i \in \mathbb{N}$ 0 sur <u>la restriction de</u> $i \in \mathbb{N}$ 0 a $i \in \mathbb{N}$ 1 est égal à la multiplication par $i \in \mathbb{N}$ 2 d'autre part, sur $i \in \mathbb{N}$ 3 $i \in \mathbb{N}$ 4 est égal à la multiplication par $i \in \mathbb{N}$ 4 (c'est bien un automorphisme de 0, puisque $i \in \mathbb{N}$ 5 est holomorphe inversible sur $i \in \mathbb{N}$ 6. Donc:

Le faisceau O(n) peut être défini à partir des faisceaux iO par recollement au moyen des isomorphismes μ_{ij} : $iO \rightarrow jO$. (Pour la notion de recollement de faisceaux, cf. Séminaire 51-52, Exposé 20, No. 13).

On peut également identifier $\mathfrak{O}(n)$ au faisceau des germes de sections holomorphes du fibré à fibre vectorielle de dimension 1, défini par les changements de cartes $(z_i/z_j)^n$ (cf. Exposé 17). Bien entendu, ces diverses définitions montrent que $\mathfrak{O}(n)$ est cohérent.

Déterminons enfin les sections de O(n) sur X tout entier, en nous bornant au cas $k \ge 1$; une telle section est une fonction holomorphe sur Y, et homogène de degré n; son développement de Laurent montre que c'est $\underline{u}\underline{n}$ polynôme homogène de degré \underline{n} en $\underline{z}_0,\ldots,\underline{z}_k$.

6. Les faisceaux 3(n).

Soit 3 un faisceau analytique cohérent sur X, et soit i 3 la restriction de 3 à U_{i} . Le multiplication par $(z_{i}/z_{j})^{n}$ est évidemment un isomorphisme μ_{ij} : i 3 \rightarrow j 3 au-dessus de U_{i} 0 U_{j} .

Nous noterons 3(n) <u>le faisceau obtenu à partir des faisceaux</u> ignar recollement <u>au moyen des isomorphismes</u> $\mu_{i,j}$.

Le faisceau $\mathfrak{F}(n)$ est donc isomorphe à \mathfrak{F} au-dessus de chaque $U_{\mathbf{i}}$, et c'est en particulier un faisceau analytique <u>cohérent</u>. Pour $\mathfrak{F}=0$, on retrouve évidemment le faisceau $\mathfrak{O}(n)$ défini plus haut. Vu la définition de $\mathfrak{F}(n)$, une section de $\mathfrak{F}(n)$ au-dessus d'un ouvert $\mathfrak{F}(n)$ peut être identifiée à un système de k+l sections s_0,\ldots,s_k,s_i étant une section de $\mathfrak{F}(n)$ au-dessus de $\mathfrak{F}(n)$ qui vérifient les relations: $s_{\mathbf{j}}=(z_{\mathbf{i}}/z_{\mathbf{j}})^n\cdot s_{\mathbf{i}}$ au-dessus de $\mathfrak{F}(n)$ $\mathfrak{F}(n)$ qui vérifient les relations: $s_{\mathbf{j}}=(z_{\mathbf{i}}/z_{\mathbf{j}})^n\cdot s_{\mathbf{i}}$ au-dessus de $\mathfrak{F}(n)$ $\mathfrak{F}(n)$ $\mathfrak{F}(n)$

On peut donner une caractérisation commode de $\Im(n)$ au moyen de la notion de <u>produit tensoriel</u> de deux faisceaux analytiques: soient d'abord \Im et \Im deux faisceaux analytiques, et posons, pour tout $\hbox{$x \in X$, $\mathbb{1}_X = \mathbb{1}_X \otimes \mathbb{Q}_X$, le produit tensoriel étant pris <u>sur l'anneau <math>\mathbb{Q}_X$. Si $\mathbb{1}_X$ désigne la collection des $\mathbb{1}_X$, on montre facilement qu'il existe une structure de faisceau analytique sur $\mathbb{1}_X$ et un seule, telle que, si $\mathbb{1}_X \to \mathbb{1}_X$ et $\mathbb{1}_X \to \mathbb{1}_X$ sont des sections de $\mathbb{1}_X$ et de $\mathbb{1}_X$ soit une section de $\mathbb{1}_X$ sur $\mathbb{1}_X$ l'application $\mathbb{1}_X \to \mathbb{1}_X$ soit une section de $\mathbb{1}_X$ sur $\mathbb{1}_X$ le faisceau $\mathbb{1}_X$ est appelé <u>produit tensoriel</u> des faisceaux $\mathbb{1}_X$ et $\mathbb{1}_X$ et noté $\mathbb{1}_X \to \mathbb{1}_X$ ou simplement $\mathbb{1}_X \to \mathbb{1}_X$ sont cohérents, $\mathbb{1}_X \to \mathbb{1}_X$ est cohérent. (Pour plus de détails sur cette opération, cf. J-P. Serre, <u>Un Théorème de Dualité</u>, Com. Math. Helv.).</u>

PROPOSITION 5. 3(n) est canoniquement isomorphe \dot{a} 3 \otimes 0(n).

Sur chaque U_i , on a un isomorphisme canonique α_i : ${}^i\mathfrak{F} \to {}^i\mathfrak{F} \otimes_{\mathfrak{G}} {}^i\mathfrak{G}$, et il est clair que $\mu_{i,j} \circ \alpha_i = \alpha_j \circ \mu_{i,j}$, d'où la proposition.

Signalons également une propriété de l'opération 3(n) qui résulte immédiatement de la définition (ou bien de la Prop. 5):

PROPOSITION 6. Si $\mathfrak{C} \to \mathfrak{B} \to \mathfrak{C}$ est une suite exacte de faisceaux analytiques cohérents (les homomorphismes étant analytiques), la suite $\mathfrak{C}(n) \to \mathfrak{C}(n)$ est exacte pour tout $n \in \mathbb{Z}$.

7. Enoncé des théorèmes fondamentaux.

Voici les théorèmes qui, dans le cas de l'espace projectif, jouent le même rôle que les théorèmes A et B de la théorie des variétés de Stein:

Soit 3 un faisceau analytique cohérent sur l'espace projectif X.

Il existe un entier $n_0(3)$ tel que, pour tout $n \ge n_0(3)$, on ait:

Théorème A. $H^0(X, \mathfrak{F}(n))$ engendre $\mathfrak{F}(n)_X$, considéré comme \mathfrak{O}_X -module, pour tout $x \in X$.

Théorème B. $H^{Q}(X, 3(n)) = 0$ pour tout $q \ge 1$.

La démonstration sera donnée dans l'exposé suivant. Nous allons nous borner ici à démontrer un résultat préliminaire:

PROPOSITION 7. $H^{q}(X, \mathcal{O}(n)) = 0$ pour $q \ge 1$ et $n \ge 0$.

Nous raisonnerons par récurrence sur $k = \dim X$, le théorème étant trivial pour k = 0. Supposons-le démontré pour k-1, et démontrons-le pour k. Nous raisonnerons alors par récurrence sur n; pour n = 0, on a O(0) = 0, cas qui a été traité au No. 4; supposons-le démontré pour n-1, et démontrons-le pour n.

Soit H l'hyperplan de c^{k+1} défini par l'équation $z_0=0$, et soit $E=\pi(H-\{0\})$ l'image de $H\cap Y$ dans X, qui est un hyperplan projectif de X, donc qui peut être considéré comme un espace projectif de dimension k-1. On peut définir sur E un faisceau analogue au faisceau O(n) de X, faisceau que nous noterons $O_E(n)$; si W est un ouvert de E, une section de $O_E(n)$ sur W est une fonction holomorphe de z_1,\ldots,z_k sur D_W , qui est homogène de degré n. Nous noterons $O_E(n)$ le faisceau \underline{Sur} X qui coincide avec $O_E(n)$ sur E, et est nul sur le complémentaire U_0 de E (cf. Séminaire 50-51, Exposé 17). Soit $\rho: O(n) \to O_E(n)$ l'homomorphisme de faisceaux qui fait correspondre à une fonction holomorphe homogène de degré n sa restriction à $H\cap Y$. Soit d'autre part $\sigma: O(n-1) \to O(n)$ l'homomorphisme de faisceaux qui fait correspondre à une fonction holomorphe homogène de degré n-1 son produit par la fonction z_0 .

LEMME 2. La suite d'homomorphismes de faisceaux:

$$0 \rightarrow \mathcal{O}(n-1) \xrightarrow{\sigma} \mathcal{O}(n) \xrightarrow{\rho} \mathcal{O}_{E}(n)' \longrightarrow 0,$$

est une suite exacte.

Il est évident que σ est injectif, et que $\rho \circ \sigma = 0$. Si $f \in \mathfrak{O}_E(n)_X'$, on peut considérer f comme une fonction f' de z_0, \ldots, z_k , indépendante de z_0 , et $\rho(f') = f$, ce qui montre que ρ est surjectif. Enfin, si $\rho(f) = 0$, $f \in \mathfrak{O}(n)_X$, cela signifie que f s'annule sur f, donc est divisible par z_0 , et le quotient sera un élément $g \in \mathfrak{O}(n-1)_X$

tel que $\sigma(g) = f$, ce qui achève de prouver le lemme.

Appliquant la suite exacte de cohomologie, on obtient alors la suite exacte:

$$H^{Q}(X, \mathcal{O}(n-1)) \rightarrow H^{Q}(X, \mathcal{O}(n)) \rightarrow H^{Q}(E, \mathcal{O}_{E}(n)),$$

puisque l'on sait que $H^q(X, \mathcal{O}_E(n)') = H^q(E, \mathcal{O}_E(n))$, cf. Séminaire 50-51, loc. cit.

Or $H^{q}(X, O(n-1)) = 0$ d'après l'hypothèse de récurrence sur n, et $H^{q}(E, O_{E}(n)) = 0$ d'après l'hypothèse de récurrence sur k. D'où $H^{q}(X, O(n)) = 0$, cqfd.

Remarques.

- 1) Il serait facile de calculer complètement les $H^{q}(X, \mathcal{O}(n))$ $(n \ge 0 \text{ ou } < 0)$ par la méthode précédente. On trouve $H^{q}(X, \mathcal{O}(n)) = 0$ pour $q \ne 0$ et $\ne k$, dim $H^{0}(X, \mathcal{O}(n)) = \binom{n+k}{k}$, et dim $H^{k}(X, \mathcal{O}(n)) = \binom{-n-1}{k}$.
- 2) On peut obtenir les résultats précédents par une méthode directe, utilisant la Proposition 4 (Frenkel, non publié).

La Proposition 7 a la conséquence suivante:

COROLLAIRE. <u>Le théorème B est vrai pour tout faisceau</u> 3 isomorphe à une somme directe d'un nombre fini de faisceau O(m).

On se ramène d'abord au cas d'<u>un</u> <u>seul</u> faisceau O(m), en utilisant le fait que l'opération $\Im(n)$ commute à la somme directe (et que les groupes de cohomologie d'une somme directe de faisceaux sont isomorphes à la somme directe des groupes de cohomologie de chaque facteur). Ensuite, on remarque que O(m)(n) est isomorphe à O(m+n), donc a des groupes de cohomologie nuls pour n > -m.

(De façon générale, 3(m)(n) est isomorphe à 3(m+n).)