
Séminaire sur les équations non
linéaires
École Polytechnique

D. V. CHOODNOVSKY
One class of meromorphic solutions of general two-dimensional non-
linear equations, connected with the algebraic inverse scattering method
Séminaire sur les équations non linéaires (Polytechnique) (1977-1978), exp. no 8, p. 1-9
<http://www.numdam.org/item?id=SENL_1977-1978____A9_0>

© Séminaire sur les équations non linéaires (Choodnovsky)
(École Polytechnique), 1977-1978, tous droits réservés.

L’accès aux archives du séminaire sur les équations non linéaires implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SENL_1977-1978____A9_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


I

S E M 1 N A IRE SUR

LES EQUATIONS NON-LINEAIRES

ONE CLASS OF MEROMORPHIC SOLUTIONS OF

GENERAL TWO-DIMENSIONAL NON-LINEAR EQUATIONS,
CONNECTED WITH THE ALGEBRAIC INVERSE SCATTERING METHOD.

D.V. CHOODNOVSKY 
Dept. of Mathematics, Columbia Univeristy

New York (New York) 10027

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES
PLATEAU DE PALAI$E/,V . 91128 PALAISEAU CEDEX

T4!Jéphone : 941.82.00 . Poste No

Tilex : ECOLEX 691596 P

This work was supported in part by the Office of Naval Research.

Mars 1978





1 

0. It is well known that the most general form of

"exactly solvable" (or "completely integrable") systems of

non-linear two-space dimensional (in x and y ) partial

differential equations can be written as a condition of com-

muting of two differential operators [1 ] , [2]. Non-trivial

two-dimensional systems in variables x, y, t can be obtained

if each of these operators have differentiation, say in x ,

and differentiation of order only one in y and t [5].

Such systems were at first introduced by Zakharov and Shabat

[1] as a natural generalization of Lax pair [3]. These systems

are the culmination of investigations started by Burchnall and

Chaundy [4] and we write them in the form

where L n and L m are differential operators

L 

m 

v. 
y 

, of orders n and m 

’

L - v . 20132013r of orders n and m respectively,’ wherem i= 0 1 dx
un - vm - 1 , .

We present here a special class of solutions of this

equation based on the following two observations. First of

all, it was shown in our previous papers [6], [7], that for meromorphi

in x solutions u(x, y, t) the evolution of poles ai (y, t)

is described as an evolution in y and t directions according

to two Hamiltonian flows commuting simultaneously with the
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flow describing the interaction of particles with inverse

square potential. On the other side, it was shown in [6], [7]

that there are lineari7ed equations, so called higher Burgers-

Hopf (BH) equations, the poles of meromorphic solutions of

which evolve also according to these Hamiltonian flows.

These two observations lead to the conclusion that it is pos-

sible to construct directly the solutions of two-dimensional

systems starting from linear partial differential equations.

In this paper, we prove this and present a method for the

construction of this class of solutions. It is possible to

construct them starting from Gelfand-Levitan.-Marchenko equation.

Instead of doing this, we derive meromorphic solutions directly

using commutativity conditions. We also examine the behavior

of their poles. 

1. It is known that the evolution of poles of most non-

linear, completely integrable systems, is connected with the

Hamiltonian for asystem of particles interacting via potential

G ~(x) for Weierstrass elliptic 

Thus, we consider the Hamiltonian [9]

for an arbitrary number of particles ai: i E I . This Hamil-
i

tonian has infinitely many first integrals. These integrals

come from the Lax representation
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for system ( 1 , where the matrix L = (L..) .. , in (2)
ij i, jgI

has the form

- Then the functionals I) o ~ ) 
n n 

~L )

n ~ 1 are the first integrals of H . Moreover, J n are

in involution and they are sums of polynomials in a. ,

1

 (a. - a.) , G with rational coefficients. The form of the/ i j

first terms of ,Tn is the following

For the degenerate case 9 (x) = x~2 and finite I

there are very simple formulae [6 ~ , [9] for the solution of the

Cauchy problem for any Jn . 
HamiltonianHamiltonian

If we consider such trajectories of J that all
i n

the integrals J m vanish, J m = 0 , m = 1, 2, ... , then we

come to the poles of higher Burgers-Hopf equation.

As is well known [~] , the usual BH equation has the

form Ut = u - 2uux . The higher BH equations like the

ordinary one are lineari7ed using Hopf-Cole substitution

u = -(log Thus, n th higher BH equation has the form
n

6 BH [ u ] . o r BH [u]u 
= - (ð n ( exp [ - fudx ] ) exp [ iudx ] ) = BH [u] , or BH [u]

u - 

= 

n 
[u] or 

n 
[u]

can be defined as a polynomial in u, ux, uxx, by induction
x xx
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We must emphasi7e that the notations here and in [6]

differ only in the sign of u . Then, the basic information

on higher BH is contained in the following f

Theorem 1: The equation BHn[u] reduces by the

transformation 
x 

to the equation m t T x...x = m nx ,

Meromorphic solutions u ~x, t) of ut - BHn [u] have the

form . and

meromorphic satisfy ut - iff

Also, the system (5) has a very simple description:

Proposition 2: The system (5) is embedded into a system

with Hamiltonian 

Moreover, the system (5) corresponds to the following

submanifold

For finite I the trajectories 
- 

I of J 
n

with G = -1 on which all the integrals J 
m 

vanish, m - 0

are precisely the solutions of the system (5).

2. For any integer n &#x3E; 2, 2 we consider the

following system of equation in partial derivatives for
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functions

where

The main result of this paper is the following:

Theorem 3: For the system (6) and any initial conditions

u (x) there exists such a solution ul, v , of (6) and that
i J

and

and other 1

defined by induction

Here we denote by w (i) the j th derivative of

W: W ( j ) - W. and c. k = (i) are binomial coefficients.w: w 
" 

= 

3x 
and 

1 
= ( 

k 
) are binomial coefficients.

Proof: As usual [10], we consider the common eigen-

function *(x, y, t, k) for two operators 

Lm - 2)Y having the formm 8Y .
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where k is a spectral parameter. Then, it is clear that

the function t, from (11) is the eigenfunction for

Iff the following system of equations in w, u., v ,
i j

is satisfied:

analogous system for v, changing ui to v, and n

an ¡&#x3E; 1 1

to m . Then $ depends onBarbitrary parameter k and

*(k) is a null function for the commutator L at I L -n t m ay

This operator is the operator on 2013 and so cannot have in-
bx

finite dimensional null subspace unless it is zero. Thus,

(6) is satisfied when (13)-(14) for w, u., v. is true. By
. 

1 J

induction, it is easy to show that assuming (13) the right

side in (14) is exactly BH n [w] . As (9) is equivalent to

(13) and ( 8 ) to ( 14 ) , the theorem is proved.

Corollary 4: For any hex) and any solution , (x, y, t)

of the linear problem
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with

there exists a solution ui, v. of (6) defined by (9) and
i j

(10), where

Exact formulae for solutions ( 9 ) , ( 10 ) , (16) can be

obtained using (15).

On the other side, formulae for rational solutions

of (6) having the form (8) - (10) can be written, using

theorem 1 and proposition 2 and result from [11], [12].

In fact 8f initial conditions 
0 

... 

0 0 
...In ° 1 initial conditions 1, ’ k lt’ ... I

Then the function being

the solution of (8) can be written as

Here y, t) = ~..(x) is a characteristic poly-

nomial on x of matrix M(y, t): M(y, t) = diag (a~, ..., 0
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is the matrix for

The solution (18)

satisfy (8) provided

Results analogous to these can also be obtained for

matrix differential operators, and will be published in

another paper.
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