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0. Introduction.

We consider the system of equations, describing the motion of a particle
, . . . . 4 .
in n-dimensional space with central potential x and added arbitrary non-central

linear forces

(1) x" = \x, - x, (0 2) :i=1,...,n

i ii i j=1xj

These equations arise in [3] as a special case of equations defining poten-
tial with the maximal number of bound states for n-dimensional Schrddinger equa-
tion and corresponding to n = 4 . It was shown in [4] that system (1) is com-
pletely integrable for arbitrary ICEREEEY S In this paper we present the exact
form of additional algebraic first integrals of (1) and give applications of

existence of these integrals to Strurm-Liouville problem and algebraic geometry.

1. - First of all we'll give a proof of complete integrability of (1), based on
the Lax'pair and the theory of stationary solutions of infinite-dimensional

Hamiltonian systems [5], [6] .

Theorem 1 [4] - The Hamiltonian system (1) with Hamiltonian
n 2 n 2,2 n 2
Ho=Zip oy + 17202 997 - I M9

is completely integrable for any NqseessA .
1 n

Let L be the following matrix differential operator of order 1 for

(n+l) x (n+l) matrices

1 0 0 u,. u
-1 4 v 1 n
L = . d_ + 1
. x : 0
0] -1 v
n
or
L = diag(l,-1 -1) 4,y
g(l,-1,..., © I s
where U1j = uj_1 s Ujl = Vj_1 for j =2,...,n+l and Uij =0 for

min{1,j} >1 , U, =0 .



Then the multicomponent non-linear Schrddinger equation (MCNS) [2]

2

aui 3 ui n
- — + +u, (¥, ju,v,) =0:1i=1,...,n :
D) s = 3 3 3
at 3%’ i 73=13 3
(2) Bvi 82%_ i
3T + ;;5 + vi(2j=1ujvj) =0:1i=1,...,n s

is equivalent (cf. computation in [5]) to Lax's equation

dL _
a_g = [L:M]

for matrix differential operator M of order 2 . Substituting in (2),
st -Ast

u; =e 1 Vi3 v, = e i Y o4 Yxi= in(x,t) we obtain Lax's system
2
oYV.i O X
S X8 X oy (T Yy, )t L=, =1,2
(3) (-1) St + axz )\inl yX1(2j=],ley2J s sy X 1,2 .
The stationary subsystem of (3) : ayxi/at =0:1i=1,...,n ,
Yii = Vo4 i=1,...,n , is simply (1) . By [5], [6] this is also Lax's system

and is, by Liouville's theorem completely integrable.

Below we'll give n independent and involutive first integrals of (1).

2. - The system (1) is also closely connected with stationary solutions of higher
Korteweg~de Vries (KdV) equations [1], [7]. In order to find them we consider
the resolvent R(x,)) of Sturm-Liouville problem - + [u(x) + AJp =0 , sa-

sitfying the Ricatti equation
2 2
(4 “2RR" +@R')“ + 4(u +\)R" =0 .

Then we have the asymptotic expansion
@ -1-1/2
(5) R(x,)) = =0 Ri[u]x
and all Ri[u] are polynomials from u and its derivatives u',u",u™ ,... .
For Ri[u] there exists a lot of recursive formulae [17], [77, [8], most of
which can be deduced from (4) and (5). We'll list only

Ry = 1/2 , R1 = -u/4 , R, = 1/16(3u2 -u"),...



-3 -

and

(6) &R, [u) = ~G-1/2DR, ([u] .

The equations

du _ 3 ¢n L
5t - ax “i=1% By Lilv]

for Ii[u] =_{Ri[u1dx , are called higher KdV. By (6) they have the form

du _ 3 n+1
3t - 3 ti=1 94Ry[Y] .

Their stationary subsystems

(7 T SR TO et

are called stationary n-th order KdV equations (or Lax-Novikov equations) [71,
[9]. The system (7) with given Cos+v+sC, 1s completely integrable Hamiltonian
system with n degrees of freedom [7], [8] . All the solutions are expressed in
terms of @-functions on Jacobians of hyperelliptic curves of genus n[7]-[97 .
The equations (7) have also the spectral sense ([7]-[9]) : periodic ( or quasi-
periodic) potential wu(x) have n-lacunary spectrum - i.e. having finetely many

forbidden intervals for =-g" + [utA]p = 0 - if and only if wu(x) is a solution

of some of the equation (7) with fixed CoreresCy -

Now we can prove the main result concerning the solutions of (1)

Theorem 2 -~ If x

If %y,...,x are solutions of (1), then the potential

is a solution of stationary n-th order KdV equation (7)

n+1 -
Zk=0 dkRk[u] =0 .



For the proof cf. [4]. In fact the proof follows immediatcly from the fol-

lowing lemma, easely to verify directly, using (4) and (5)

Lemma 3 - Let u = —Z?zlxi - 8C0 . Then there exist such constants of motion
Cl""’cf"" (first integrals of (1)), that for polynomials P&(x) 14 =0,1,2,...

defined by

(8) Po(x) =1/4 , PHl(x) = P{,(X).X + SCOP&(X) + C}L : 4 =0,1,2,..

and moments

n

2 -
(9) M= 3 P&(xi)xi +2C,.: 4 =0,1,2,...
we have
(10) R&+1[uj = M@ for all £ =0,1,2,... .

By the theory of n-lacunary (or n-band, or n-gap ) solutions [7]-[9] we

obtain
Corollary - For any solutions XyseeosX of (1) and the potential
-n 2 X .
LI IRE S Xl""’xn are the eigenvalues and Xysee.rX are the eigenfunc-

tions corresponding to the ends of lacunae (in the sense of [8]) .
Using Borg's uniquiness theorem we obtain

Theorem 5 - For any periodic potential u , which is n-lacunary, there exist

such xl,...,xn,xl,...,xn and C that

i=1
and
X, :i=1,...4n
are the solutions of (1). Moreover, Xl""’xn are the eigenvalues correspon-

ding to solutions of periodic or anti-periodic Sturm-Liouvile problem and

XyseeeX are corresponding eigenfunctions (periodic or antiperiodic).

In theorem 5 Xl""’xn can be choosen as arbitrary n from 2n+l ends
of lacunae. Thus any n + 1 square Yi :i=1,...,ntl of Bloch's eigenfunctions,
corresponding to 'periodic or antiperiodic eigenvalue problem for n-lacunary po-

tential are linearly dependent (cf. [1]).



Corollary 6 - If Yl,...,Yn are Bloch's eigenfunctions of periodic or anti-
periodic problem for n-lacunary potential that are linearly independent, then

for some ki :1i=1,...,n the potential v = -} kiwi is also n-lacunary.

The theorem 5 can be generalized for arbitrary n-lacunary potential (i.e.

quasi-periodic, not neccessary periodic)

Theorem 7 - Any n-lacunary potential u (i.e. the solution of (7)) can be
presented in the form

_n 2
u = —Zi=1 xi + C s

where {xl,...,xn} is some solution of (1) with Apoeeeady defined by (7) and

hyperelliptic curve correspond to u .

3. - As the systems (1) and (7) are equivalent, we can obtain the expressions of
the first integrals of (7) from those of (1). It is very important because it's
very difficult problem to write down first integrals of (7) for n >3 . We'll
remember from [4] the second (different from H ) integral of (1) (use
lemma 5)

n

7= 0% 0 nad) + Gy a2 5 add) -
ig1 P17 Y iz1 9447%iz1 My

(11) n n
2 2 n 2 2
i=1 i=1

It is very simple to make small changes in (11) in order to obtain another
integrals of (1). In order to do this it's enough to consider such ooty

and gl,...,gn , that

(12) e E.E, (for Ay # xj and m, =m, for ), = A:) .

1
g, =VTO; + )"l (1 =1,...,n) . Then it is easy to verify that

g My, 8 =1l (=l im0 +OT



n 2., 1 2 n a0 2
J'=(% €40y €.p.)+ (¥ 4T mq’)-
i=1 * 1t oi=p PR i=1 * i=1 *?
(13) n n N
- (% E.q.p )2 +2(% ™ p2 - 2 AT q2)
. i7i%1 . iti . i'i7i -
i=1 i=1 i=1
E.g. for gi =0, m, = 1 (i=1,...,n) , J' =2H . It is clear that

integrals J' for m, = (xi + Q)—l » & < -1 x (xi + Q)—l after expansion

by powers of ( give n  independent integrals in involution for (1).

From (13) it can be deduced various forms of first integrals of (13) (one
of such forms was obtained by H. Grosse recently using (11)). It is natural to
use (11), (13) to write down the system of algebraic equations defining Jacobians
of hyperelliptic curves of genus n . For n = 2 these equations are as

follows

2 2 2 2, 2 2
(p1q2 - qlpz) + 2()\1 - >\2)p1 - 2>\1(>\,1 - >\2)q1 + (xl - xz)ql(q1 + qz) = C1 ;

2 2 2 2 2 2.2
Here xl’XZ’Cl’CZ are arbitrary constant. It is interesting that Jacobian
J(F) of the curve F : y2 = P, »(x) can be defined by n equations in

 JPCH (i =1,...,n) of degree 2 with 2n constants Cl""’Cn’ X1""’*n .
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