SÉMINAIRE SUR LES ÉQUATIONS NON LINÉAIRES ÉCOLE POLYTECHNIQUE

- D. V. CHOODNOVSKY
- G. V. CHOODNOVSKY

Multidimensional two-particles problem with non-central potential

Séminaire sur les équations non linéaires (Polytechnique) (1977-1978), exp. n° 5, p. 1-8 http://www.numdam.org/item?id=SENL_1977-1978 A6_0>

© Séminaire sur les équations non linéaires (Choodnovsky) (École Polytechnique), 1977-1978, tous droits réservés.

L'accès aux archives du séminaire sur les équations non linéaires implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91128 PALAISEAU CEDEX
Téléphone : 941.82.00 - Poste N

Télex : ECOLEX 691 596 F

SEMINAIRE SUR L'ANALYSE DIOPHANTIENNE ET SES APPLICATIONS 1977-1978

MULTIDIMENSIONAL TWO-PARTICLES PROBLEM
WITH NON-CENTRAL POTENTIAL

D. V. CHOODNOVSKY and G. V. CHOODNOVSKY

		•

It is well-known that multidimensional two-body problem with the central potential (generalized Keplerian problem) is completely integrable [1]. On the other side, when the potential is non-central and e.g. has the form $U(x_1,\ldots,x_n)=V(r)+\sum\limits_{i=1}^n\lambda_i^2$ i.e. there are noncentral linear forces, the situation changes. Very general results of Poincaré [2] show in this case, that under weak assumptions the corresponding two-body system, with periodic V(r), cannot have additional first integrals analytical both in x_1, \dots, x_n and $\lambda_1, \dots, \lambda_n$. Usual examples corresponding to the case $V(r) = r^{-1}$ (the Newton case), $V(r) = r^{3}$ and n = 2 show the non-existence of first integrals even in the simplest cases. However in the case of quadratic V(r) the system is completely integrable and for $V(r) = r^{-2}$ (the Jacobi case) the system possesses one additional algebraic first integral. In this note we show that for $V(r) = r^4$ and arbitrary linear non-central forces the Hamiltonian system for two n-dimensional particles is completely integrable. It should be remarked that for the potential $V(r) = r^4$ the system of three particles in n-dimensional space in the absence of non-central forces possesses one additional algebraic first integral, through for n≥3 it is still unknown whether the corresponding system is completely integrable [3]. This note continues our previous one [3] and uses the same ideas.

Let $n\geq 2,\ \lambda_1,\dots,\lambda_n$ be arbitrary complex numbers. We consider a Hamiltonian system describing the motion of two bodies in n-dimensional space interacting via central potential r^4 and additional linear noncentral forces :

(1)
$$H_{1} = \sum_{i=1}^{n} (p_{i1}^{2} + p_{i2}^{2}) + (\sum_{i=2}^{n} (q_{i1} - q_{i2})^{2})^{2} - \sum_{i=1}^{n} \lambda_{i} (q_{i1} - q_{i2})^{2}.$$

As all the projections of centre of masses-momentum are integrals of the system (1), then the Hamiltonian (1) can be reduced, as usually, to the problem of the motion of a particle in non-central potential field. The corresponding Hamiltonian is:

(2)
$$H = \sum_{i=1}^{n} p_{i}^{2} + \frac{1}{2} \left(\sum_{i=1}^{n} q_{i}^{2} \right) - \sum_{i=1}^{n} \lambda_{i} q_{i}^{2} ,$$

and the system of equations has the form :

(3)
$$\ddot{q}_{i} = \lambda_{i} q_{i} - q_{i} (\sum_{j=1}^{n} q_{j}^{2}) : i = 1, \dots, n .$$

As we have proposed in the paper [3] the system (3) can be investigated using quadratic moments. Taking into account the non-centrality of potential we use the following quadratic moments:

(4)
$$I_{m} = \sum_{i=1}^{n} \lambda_{i}^{m} q_{i}^{2} : m = 0, 1, 2, \dots$$

 $\hbox{ Besides these quadratic moments we consider also the following ones :}$

(5)
$$I_{m}^{(2)} = \sum_{i=1}^{n} \lambda_{i}^{m} q_{i} \dot{q}_{i};$$

$$I_{m}^{(3)} = \sum_{i=1}^{n} \lambda_{i}^{m} \dot{q}_{i}^{2} : m = 0, 1, 2, \dots$$

These systems of moments satisfy the following systems of differential equations

Lemma 1: According to (3) we have

$$\dot{I}_{m} = 2I_{m}^{(2)}; \quad \dot{I}_{m}^{(2)} = I_{m}^{(3)} + I_{m+1} - I_{m} \cdot I_{o};$$

$$\dot{I}_{m}^{(3)} = 2I_{m+1}^{(2)} - 2I_{m}^{(2)}I_{o} : m = 0, 1, 2, \dots.$$

Now it is possible to define the system of the first integrals of (3) algebraic in λ_i , q_i , p_i (or λ_i , q_i , \dot{q}_i). In fact these integrals are simply algebraic in I_m , $I_m^{(2)}$, $I_m^{(3)}$.

Theorem 2 : There are n independent first integrals of the system (2), algebraic in λ_i , q_i , p_i .

We shall not only prove the existence of these integrals, but we'll also provide a recursive scheme of obtaining the sequence of such integrals valid for any n and, in fact, even for an infinite number of variables.

From the given moments (4), (5) we can construct analogous moments with coefficients-polynomials in λ . In fact if $P_{\ell}(x)$ is a polynomial of degree ℓ , then we denote

(7)
$$I^{(1)}(P_{\ell}) = \sum_{i=1}^{n} P_{\ell}(\lambda_{i})q_{i}^{2},$$

$$I^{(2)}(P_{\ell}) = \sum_{i=1}^{n} P_{\ell}(\lambda_{i})q_{i}\dot{q}_{i},$$

$$I^{(3)}(P_{\ell}) = \sum_{i=1}^{n} P_{\ell}(\lambda_{i})\dot{q}_{i}^{2}.$$

It is clear that any moment $I^{(j)}(P_\ell)$ is a linear combination of moments $I_0^{(j)},\ldots,I_\ell^{(j)}$. Thus from lemma 1 we obtain the following useful identities:

Lemma 3 : Let P(x) be a polynomial and $Q(x) = P(x) \cdot x$. Then

$$\frac{d}{dt} I^{(1)}(P) = 2I^{(2)}(P) ;$$
(8)
$$\frac{d^{2}}{dt^{2}} I^{(1)}(P) = 2I^{(3)}(P) + 2I^{(1)}(Q) - 2I_{0} \cdot I^{(1)}(P) ;$$

$$\frac{d^{3}}{dt^{3}} I^{(1)}(P) = 8I^{(2)}(Q) - 8I_{0} \cdot I^{(2)}(P) - 4I_{0}^{(2)} \cdot I^{(1)}(P) .$$

The identities (8) follow immediately from Lemma 1 and (7). Let C_{ℓ} : $\ell=0,1,2,\ldots$ be an infinite sequence of constants. We define an infinite sequence of polynomials $P_{\ell}(x)$: $\ell=0,1,2,\ldots$ of degree ℓ by the following inductive procedure:

(9)
$$P_{\ell+1}(x) = P_{\ell}(x)x + 8C_0 P_{\ell}(x) + C_{\ell} : \ell = 0, 1, 2, ...$$

We leave undefined the constant P_{o} -the polynomial of degree 0 (having a deep metaphysical meaning).

Now we are ready to define the basic sequence of polynomials, quadratic in \boldsymbol{q}_i and of degree $\boldsymbol{\ell}$ in $\boldsymbol{\lambda}_i:\boldsymbol{R}_{\boldsymbol{\ell}}$.

Definition 4: For a given sequence of polynomials $P_{\ell}(x)$ defined by (9) and undetermined P_{0} , in accordance with the notations of (7) we put

(10)
$$\Re_{\ell} = I^{(1)}(P_{\ell}) + 2C_{\ell} = \sum_{i=1}^{n} P_{\ell}(\lambda_{i})q_{i}^{2} + 2C_{\ell} : \ell = 0, 1, 2, \dots$$

We shall show below that, in fact, the constants C_{ℓ} correspond to the values of algebraic integrals of (3). To do this we define by induction the infinite sequence of polynomials in $I_m^{(j)}$ and C_o . Let us show that in fact this sequence coincides with \Re_{ℓ} . So we define this

sequence S_{ℓ} : $\ell = 0, 1, 2, \dots$ by induction :

<u>Definition 5</u>: We put $S_0 = 1/2$; $S_1 = 1/4 I_0 + 2C_0$ and for $\ell = 1, 2, \dots$

$$S_{\ell+1} = 2 \sum_{k=0}^{\ell-1} S_k \frac{d^2}{dt^2} S_{\ell-k} - \sum_{k=1}^{\ell-1} \frac{d}{dt} S_k \cdot \frac{d}{dt} S_{\ell-k} + \frac{1}{16S_1} \sum_{k=0}^{\ell} S_k S_{\ell-k} - 4 \sum_{k=1}^{\ell} S_k S_{\ell-k+1} \cdot \frac{d}{dt} S_{\ell-k+1} \cdot \frac{d}{d$$

From the definition we obtain

Lemma 6 : For $\ell = 0, 1, 2, \dots$ S_{ℓ} is a polynomial in I_{o} , C_{o} , $I_{m}^{(j)}$: $j = 1, 2, 3, m = 0, 1, 2, \dots$ So S_{ℓ} is a polynomial in P_{i} , Q_{j} and C_{o} .

In fact, the $\mathbf{S}_{\mathbf{\ell}}$ have a much more simple structure. In order to present it we use

Lemma 7 : The sequence $S_{k}: k=0,1,2,\ldots$ satisfies the following recurrent relation

(12)
$$\frac{d}{dt} S_{\ell+1} = \frac{1}{4} \frac{d^3}{dt^3} S_{\ell} + 4S_1 \frac{d}{dt} S_{\ell} + I_0^{(2)} S_{\ell}$$

for any k = 0, 1, 2, ...

Lemma 7 is true indeed for $\ell=0$. There is one possibility to prove (12) just looking at (11). But in the Appendix A to the paper, we'll give a short proof of lemma 7 using Riccati equation (cf. Gelfand [4]).

On the other hand the system $\mathbf{R}_{\hat{\mathbf{L}}}$ also satisfies (12) :

Lemma 8: For any $\ell = 0, 1, 2, \dots$

(13)
$$\frac{d}{dt} \Re_{\ell+1} = \frac{1}{4} \frac{d^3}{dt^3} \Re_{\ell} + (I_o + 8C_o) \frac{d}{dt} \Re_{\ell} + I_o^{(2)} \Re_{\ell} .$$

Proof: By (8) and (10) we have

$$\frac{d}{dt} \Re_{\ell+1} = 2I^{(2)}(P_{\ell+1}) ;$$

$$\frac{1}{4} \frac{d^3}{dt^3} \Re_{\ell} = 2I^{(2)}(P_{\ell} \cdot \mathbf{x}) - 2I_0I^{(2)}(P_{\ell}) - I_0^{(2)}I^{(1)}(P_{\ell}) ;$$
(14)
$$(I_0 + 8C_0) \frac{d}{dt} \Re_{\ell} = 2I_0I^{(2)}(P_{\ell}) + 16C_0I^{(2)}(P_{\ell}) ;$$

$$I_0^{(2)} \Re_{\ell} = I_0^{(2)}I^{(1)}(P_{\ell}) + 2C_{\ell}I_0^{(2)} .$$

Taking into account (9) and (7) we obtain

$$I^{(2)}(P_{\ell+1}) = I^{(2)}(P_{\ell} \cdot x) + 2C_{\ell} I_{0}^{(2)} + 8C_{0} I^{(2)}(P_{\ell})$$
.

Thus (14) gives us immediately (13). The lemma is proved.

Now we have the main lemma in the proof of Theorem 1:

Lemma 9 : For some constants C_1 , C_2 , C_3 ,... we have $S_{\ell+1} = \Re_{\ell}$ for $\ell=1,2,\ldots$

 $\underline{\text{Remark}}$: If we put the undetermined constant P_0 to be 1/4, then we have

(15)
$$S_{\ell+1} = \Re_{\ell} \text{ for any } \ell = 0, 1, 2, \dots$$

<u>Proof</u>: First of all, for $P_0 = \frac{1}{4}$ we have $\Re_0 = \frac{1}{4} I_0 + 2C_0 = S_1$. Thus (15) is valid for $\ell = 0$. Let us suppose that there are constants C_1, \dots, C_{ℓ} such that

(16)
$$S_{m+1} = \Re_{m} \quad \text{for } m = 0, 1, \dots, \ell \quad .$$

We define $C_{\ell+1}$ in such a way that $S_{\ell+2} = \Re_{\ell}$. By (9) $P_{\ell+1}(x)$ is already defined, so $I^{(1)}(P_{\ell})$ is defined. According to (13),

$$\frac{d}{dt} I^{(1)}(P_{\ell}) = \frac{1}{4} \frac{d^{3}}{dt^{3}} R_{\ell} + 4S_{1} \frac{d}{dt} R_{\ell} + I_{0}^{(2)} R_{\ell} .$$

Taking into account (12) and (16) for $m = \ell$ we obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \ \mathrm{I}^{(1)}(\mathrm{P}_{\ell}) = \frac{\mathrm{d}}{\mathrm{d}t} \ \mathrm{S}_{\ell+2} .$$

So there is a constant $C_{\ell+1}$ such that $R_{\ell+1} = I^{(1)}(P_{\ell}) + 2C_{\ell+1}$ and

$$R_{\ell+1} = S_{\ell+2} .$$

Lemma 9 is proved.

The constants C_{ℓ} : $\ell=1,2,\ldots$ are exactly the integrals of (3). It should be mentioned once more that we have never used the finiteness of dimension (3).

We shall give exact expressions for the constants C_m . In fact, from Lemma 9 and (10) it is easily seen that C_ℓ : $\ell=1,2,\ldots$ are algebraic first integrals of the system (3). We shall summarize the previous inductive schemes in order to obtain a general form for the integrals C_m .

<u>Definition 10</u>: We define by induction the system \widetilde{C}_{ℓ} : $\ell = 1, 2, \ldots$ of polynomials in p_i , q_i , λ_i using the system S_{ℓ} in the following way.

$$\tilde{C}_1 = \frac{1}{2} \{S_2 - \sum_{i=1}^{n} (\frac{1}{4} \lambda_i + 3C_0) q_i^2 \}$$
,

or with the notations of (7),

(18)
$$\tilde{C}_1 = \frac{1}{2} \{S_2 - I^{(1)}(\tilde{P}_1)\}, \quad \tilde{P}_1(x) = \frac{1}{4} x + 3C_0$$

Now we define by induction the polynomials $\widetilde{P}_{\ell}(x)$ -the coefficients of which are combinations of C_0 , \widetilde{C}_1 ,..., $\widetilde{C}_{\ell-1}$. We put

$$\tilde{P}_{0}(x) = \frac{1}{4}$$
; $\tilde{P}_{1}(x) = \frac{1}{4}x + 3C_{0}$

and if $\widetilde{C}_1, \ldots, \widetilde{C}_{\ell}$ are defined, then for $\ell = 1, 2, \ldots$

(19)
$$\widetilde{P}_{\ell=1}(x) = \widetilde{P}_{\ell}(x) \cdot x + 8C_{0} \widetilde{P}_{\ell}(x) + \widetilde{C}_{\ell}$$

Thus if all $\tilde{c}_1,\ldots,\tilde{c}_\ell$ are already defined we obtain $\tilde{P}_{\ell+1}(x)$ from (19) and put

(20)
$$\widetilde{C}_{\ell+1} = \frac{1}{2} \{S_{\ell+2} - I^{(1)}(\widetilde{P}_{\ell+1})\} = \\
= \frac{1}{2} \{S_{\ell+2} - \sum_{i=1}^{n} (\widetilde{P}_{\ell}(\lambda_i) \lambda_i + 8C_o \widetilde{P}_{\ell}(\lambda_i) + \widetilde{C}_{\ell})q_i^2\} .$$

From Definition 4 and Lemma 9 it is easily seen :

Lemma 11 : All the polynomials C_{ℓ} : $\ell = 1, 2, \ldots$ are algebraic first integrals of (3).

For a given n it easily follows from Definitions 5 and 10 that $\widetilde{C}_{\ell}:\ell=1,2,\ldots,n$ are functionally independent. In fact the \widetilde{C}_{ℓ} are in involution. This can be proved by algebraic arguments using the precise form of S_{ℓ} from (11) (cf. Appendix). It should be noted that \widetilde{C}_1 is indeed the Hamiltonian H from (2). We give also the expression for the second integral \widetilde{C}_2 :

(21)
$$\begin{pmatrix} n & q_{i}^{2} \end{pmatrix} \begin{pmatrix} n & p_{i}^{2} \end{pmatrix} + \begin{pmatrix} n & q_{i}^{2} \end{pmatrix} \begin{pmatrix} n & \lambda_{i} & q_{i}^{2} \end{pmatrix} - \\ i = 1 &$$

Similar formulaes can be easily written for any $\overset{\sim}{\mathrm{C}}_{\ell}$.

$$\underline{\mathbf{APPENDIX}}_{-}\underline{\mathbf{A}}$$

The proof of formula (12)

We use as a generating function for \mathbf{S}_{ℓ} the resolvent of Sturm-Liouville operator :

(22)
$$S(t,z) = \sum_{\ell=0}^{\infty} S_{\ell}(t) \cdot Z \qquad (22)$$

Let us consider S(t,z) satisfying (at least formally) the following Riccati equation

(23)
$$-2SS_{tt} + (S_t)^2 + 4zS^2 - 16S_1S^2 = 1 .$$

It easily follows from Definition 5 and (11) that S defined by (22) satisfies (23). Differentiating (23) we obtain the following linear in S third order equation

(24)
$$-S_{ttt} - 8 \frac{d}{dt} S_1 \cdot S - 16S_1 S_t + 4zS_t = 0 .$$

As $\frac{d}{dt} S_1 = \frac{1}{2} I_0^{(2)}$, then we obtain from (24)

$$-S_{ttt} - 4I_0^{(2)}S - 16S_1S_t + 4zS_t = 0 .$$

Substituting (22) into (25) we obtain for $\ell = 0, 1, 2, ...$

(26)
$$\frac{d}{dt} S_{\ell+1} = \frac{1}{4} \frac{d^3}{dt^3} S_{\ell} + I_0^{(2)} S_{\ell} + 4S_1 \frac{d}{dt} S_{\ell} .$$

It is clear from definition 5 that (26) coincides with (12). This completes the proof of Lemma 7.

APPENDIX B

Connection between \tilde{c}_1 and H.

By (11) we have :

$$S_{2} = \frac{1}{16} \left(I_{0}^{(1)2} + 2I_{0}^{(3)} + 2I_{1}^{(1)} + 48I_{0}^{(1)} C_{0} + 192C_{0}^{2} + 8C_{0} \right)$$
and so
$$+ 192C_{0}^{2}$$

$$\tilde{C}_{1} = \frac{1}{32} I_{0}^{(1)2} + \frac{1}{16} I_{0}^{(3)} - \frac{1}{16} I_{1}^{(1)} + 6C_{0}^{2} + \frac{1}{4} C_{0} = \frac{1}{16} H + 6C_{0}^{2} + \frac{1}{4} C_{0}$$

REFERENCES

- [1] P. Laplace, Traité de Mécanique Céleste, V. 1, Paris, 1805.
- [2] A. Poincaré, Ceuvres, Paris.
- [3] G.V. and D.V. Choodnovsky, Novel first integrals for the Fermi-Pasta-Ulam lattice with cubic nonlinearity and for other many-body systems in one and three dimensions, Lett. al Nuovo Cimento, v. 19, No 8 (1977), 291-294.
- [4] I.M. Gelfand, L.A. Dikij, Asimptotika resolventi Shturm-Liuvillevskih yravnenij i algebra yravnenij Kortevega-de-Vriesa, Yspekhi mat. nauk., 1975, v. XXX w 5 (russian).