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It is well-known that multidimensional two-body problem with

the central potential (generalized Keplerian problem) is completely

integrable [1J. On the other side, when the potential is non-central
n 

2.
and e.g. has the form U(x1’...’x ):::V(r)+ ¿ X, xi i . e. there are non-

n i=1
central linear forces, the situation changes. Very general results of

Poincar6 L2] show in this case, that under weak assumptions the cor-

responding two-body system, with periodic V(r), cannot have additional

first integrals analytical both in x1’...,xn and A1’...,An. Usual

examples corresponding to the case V(r) = r 1 (the Newton case), V(r) = r3
and n= 2 show the non-existence of first integrals even in the simplest

cases. However in the case of quadratic V(r) the system is completely

integrable and for V(r)= r 2 (the Jacobi case) the system possesses one

additional algebraic first integral. In this note we show that for

V(r)- r4 and arbitrary linear non-central forces the Hamiltonian system
for two n-dimensional particles is completely integrable. It should be

remarked that for the potential V(r)= r4 the system of three particles
in n-dimensional space in the absence of non-central forces possesses

one additional algebraic first integral, through for n ~ 3 it is still

unknown whether the corresponding system is completely integrable [3J.
This note continues our previous one [3J and uses the same ideas.

Let n&#x3E;2, ~ ,...,B be arbitrary complex numbers. We consider

a Hamiltonian system describing the motion of two bodies in n-dimensional

space interacting via central potential r4 and additional linear non-
central forces : ]

As all the projections of centre of masses-momentum are inte-.

grals of the system (1), then the Hamiltonian (1) can be reduced, as

usually, to the problem of the motion of a particle in non-central

potential field. The corresponding Hamiltonian is :

and the system of equations has the form :
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As we have proposed in the paper [3J the system (3) can be

investigated using quadratic moments. Taking into account the non-central-

itv of potential we use the following quadratic moments :

Besides these quadratic moments we consider also the following
ones :

These systems of moments satisfy the following systems of

differential equations

Lemma 1 : According to (3) we have

; Now it is possible to define the system of the first integrals

of (3) algebraic in , 1’ .. qi’ p. (or X., q., q.). In fact these integrals
1- I i i i 1-

are simply a 1 ge b ralC .’. 1-n, I , .
" " " 

m m m

Theorem 2 : There are n independent first integrals of the system (2),

algebraic in A., q., p..
i i 1

We shall not only prove the existence of these integrals, but

we’ll also provide a recursive scheme of obtaining the sequence of such

integrals valid for any n and, in fact, even for an infinite number of

variables. 
’

From the given moments (4), (5) we can construct analogous moments

with coefficients-polynomials in Ai In fact if P (x) is a polynomial
i "

of degree £, then we denote 
, ,
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It is clear that any moment r(j)(Pi) is a linear combination

of moments I(j)I... 11 (i) Thus from lemma 1 we obtain the following usefuo z

identities :

Lemma 3 : Let P(x) be a polynomial and Q(x)=P(x).x. Then

The identities (8) follow immediately from Lemma 1 and (7).

Let C/) : ~=0,1,2,... be an infinite sequence of constants.

We define an infinite sequence of polynomials P~(x) : ~ = 0,1,2,... of

degree I by the following inductive procedure :

We leave undefined the constant P 
0 

-the polynomial of degree 0

(having a deep metaphysical meaning).
Now we are ready to define the basic sequence of polynomials,

quadratic in qi and of degree £ in X. : R), Ii i 

Definition 4 : For a given sequence of polynomials Pg(x) defined by
(9) and undetermined P , in accordance with the notations of (7) we put

o

We shall show below that, in fact, the constants C, correspond

to the values of algebraic integrals of (3). To do this we define by

induction the infinite sequence of polynomials in and C . Let usq p y 
m 0

show that in fact this sequence coincides with RL * So we define this
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sequence S~ : ~ =0,1,2,... by induction :

Definition 5

From the definition we obtain

Lemma 6 : For L = 0,1,2,... 8n is a polynomial in I , C , I : j=l,2,3,- )(J 0 0 m

m= 0,1,2,.... So SI) is a polynomial in p., q. and C .
)(J i j o

Proof : From the formulate (6) we obtain that the ring

Q[I: J == 1,2,3 ; m=0,l,2,...] is mapped by the differentiation d-

into I (1) = I . into itself. Here and below we put for simplicity m = 

m 
. Thus we

obtain in (11) S ,Z + 1 as a polynomial in S 0 I ... IS), and the lemma is

proved by induction.

In fact, the S~ have a much more simple structure. In order to

present it we use

Lemma 7 : The sequence Sg : £ = 0,1,2,... satisfies the following recur-

rent relation

for any £ = 0, 1,2, ....

Lemma 7 is true indeed for £=0. There is one possibility to

prove (12) just looking at (11). But in the Appendix A to the paper,

we’ll give a short proof of lemma 7 using Riccati equation (cf. Gelfand

[4]).
On the other hand the system 6~~ also satisfies (12) : :
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Proof : By (8) and (10) we have

Taking into account (9) and (7) we obtain

Thus (14) gives us immediately (13). The lemma is proved.

Now we have the main lemma in the proof of Theorem 1 :

Lemma 9 : For some constants Ci, C2, C3’... we have for

~==1~2~’*’ ’

Remark : : If we put the undetermined constant P o to be 1/4, then we have

Proof : First of all, for have R = 1 I + 2C _ s . Thus (15)
2013’201320132013 

’ o4 0 0 0 
-

is valid for ==0. Let us suppose that there are constants C,...,C
such that

We define C1,+1 in such a way that 81,+2 = R1,. By (9) is already

defined , so is defined. According to (13),

Taking into account (12) and (16) for m=~ we obtain .
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So there is a constant C£+1 such that
+

Lemma 9 is proved.

The constants Ce : £ = 1,2,... are exactly the integrals of (3).

It should be mentioned once more that we have never used the finiteness

of dimension (3).

We shall give exact expressions for the constants C . In fact,
m

from Lemma 9 and (10) it is easily seen that C : ae = 1,2,... are algebraic

first integrals of the system (3). We shall summarize the previous induc-

tive schemes in order to obtain a general form for the integrals C .
m

Definition 10 : We define by induction the system C : =1,2,... of

polynomials in p., q., i using the system S in the following way.i i 1 

or with the notations of (7),

-

Now we define by induction the polynomials Pi (x) -the coefficients of
N 

which are combinations of C , C1,...,Ci_1. - We put

and if C1’... ,C~ are defined, then for -Z= 1,2,...

- - -

Thus if all are already defined we obtain 

from (19) and put
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From Definition 4 and Lemma 9 it is easily seen :

Lemma 11 : All the polynomials Cg : £ = 1,2,... are algebraic first

integrals of (3).

For a given n it easily follows from Definitions 5 and 10 that

c 1121... n are functionally independent. In fact the C, are in

involution. This can be proved by algebraic arguments using the precise
-

form of Sg from (11) (cf. Appendix). It should be noted that C1 is indeed

the Hamiltonian H from (2). We give also the expression for the second
-

integral C2 : :

Similar formulaes can be easily written for any C a

APPENDIX A 

The proof of formula (12) 
’

We use as a generating function for Sg the resolvent of

Sturm-Liouville operator :

Let us consider S(t,z) satisfying (at least formally) the

following Riccati equation
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It easily follows from Definition 5 and (11) that S defined by (22)

satisfies (23). Differentiating (23) we obtain the following linear in S

third order equation

then we obtain from (24)

Substituting (22) into (25) we obtain for 2 = 0 , 1 , 2 , ...

’ 

It is clear from definition 5 that (26) coincides with (12).

This completes the proof of Lemma 7.

APPENDIX B 

’

Connection between C and H.

By ( 11 ) we have : : 
’

and so
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