
Séminaire sur les équations non
linéaires
École Polytechnique

D. V. CHOODNOVSKY
Meromorphic solutions of two-dimensional equations
with algebraic laws of conservation
Séminaire sur les équations non linéaires (Polytechnique) (1977-1978), exp. no 4, p. 1-18
<http://www.numdam.org/item?id=SENL_1977-1978____A5_0>

© Séminaire sur les équations non linéaires (Choodnovsky)
(École Polytechnique), 1977-1978, tous droits réservés.

L’accès aux archives du séminaire sur les équations non linéaires implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SENL_1977-1978____A5_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SEMINAIRE SUR

L’ANALYSE DIOPHANTIENNE ET SES APPLICATIONS

1977-1978

MEROMORPHIC SOLUTIONS OF TWO-DIMENSIONAL EQUATIONS

WITH ALGEBRAIC LAWS OF CONSERVATION

D. V. CHOODNOVSKY

BCOLB PtLYTECHNIQUH

CENTRE DE MATHBMATIQtJES
PLATEAU DE PALAISEAU - 91128 PALAISEAU CEDEX

Téléphone : 941.82.00 - Poste N·

T6Iex : ECOLEX 691596 F

24 Janvier 1978 - (2)





’ 
’ 

ABSTRACT

~ 

Complete description of meromorphic solutions of

several two-dimensional equations with algebraic laws of

conservation is obtained. Among them are Zakharov-Shabat

systems and, e.g., Kadomtsev-Petiashvili equation.

, 
, 

- 

.

PACS Classification: 03.40 + 03.30 + 03.65.





1

·We shall consider two-dimensional equations and their mero-

morphic solutions, especially elliptic solutions (i.e. solutions ex-

pressed in terms of elliptic functions). Wp shall investigate the

behaviour of theses solutions using the picture of poles in complex

plane, so transferring our problem to many-particles one in the spirit

of [2]. Using methods from [2], we will describe completely

meromorphic (in particular, rational) solutions of some two-

dimensional systems. 
’

§ 0. 
_

Two-dimensional Lax’ (or Zakharov-Shabat) equations for the

vector function u ~x, y, t) have the form [5]:

I
This is the condition of commutation for two operators acting on func-

ti ons of x :

This.equation is the system of .

. 
equations on coefficients of operators Li, L2 [5]. For such

, 
kind of equations,Zakharov-Shabat have constructed "algebraic inverse

scattering method".

The first non-trivial example of two-dimensional "inverse scat-

tering integrable" equation is the two-dimensional KdV or Kadomtsev-Petiashvili

equation [4], ~5~ :

for u = u ( x, y, t ) and For this equation some solutions were written

down by Zakharov-Shabat (constructed from exponentials but without

decrease in (x,y) at infinity) ; and some (not the same 1) by Krichiver

using 9-functions of plane curves [5J, [9J.. 
’

What is the method of solving (2 dim) algebraically ? We 
’.

consider some auxiliary stationary problem
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or  I = 0 for some functional I = f p dx, such -that the stationary
6u p p

ou c)u = 0) manifold (S’) is invariant for the system (2 dim). All
C)t ay
the solutions of (S) can be found algebraically, when the orders of

LI and Q are relatively prime. 
-(x)= 

,

Then for any solution of (S) we find an

evolution in y and t according to (2 dim), because for invariant (S),

u(x,y ,t ) is a solution of (S) for any y , t .
o 0 0 0 .

. Thus for (2 KdV) we start e.g. with any finite-lacunary

potential u(x) [here L 1 is Schr8dinger, Q=E ci A 2i+l I and obtain
through 0-functions (if necessary) solution u(x,y,t) of (2 KdV) such

that u(x,0,0)=u(x).
We had already mentioned in L2] that this method can give

only meromorphic solutions. Thus it is much more natural to examine

all the meromorphic solutions u(x,t,y), considering as in [1], [2]
the motion of poles a. 1 = a. 1 (t,y) of u(x,t,y) in all complex x-plane.

§ 1. MEROMORPHIC SOLUTIONS OF TWO-DIMENSIONAL EQUATIONS AND THEIR POLES.

’ We know by [1], [2], [3J that the evolution of poles of seve-

ral one-dimensional equations (e.g. KdV, Boussinesq,...) is connected

with the Hamiltonian ’.

for the Weierstrass elliptic function and with the corresponding
first integrals J tr(Ln) : n= 1,2,... of H described in 1n n g- C
and [2]. 

n n p 
.1

These one-dimensional systems have Lax’ form 
’

and so are included in more general two-dimensional equation (2 dim).

In this paper we shall consider some natural conjectures about

meromorphic solutions of (2 dim) and obtain new solutions of (2 KdV)

and simi lar equat i ons in terms of elliptic functions.
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. The chain (C) and (2] of non-linear equations with constraints

u ae 0 gives some particular system of non-linear equations of evo-

lution possessing infinitely many algebraic laws of conservation. As

we had already mentioned in (2], the first system in this chain is

Boussinesq equation, i.e., corresponds to the Lax pair 2013 = [L, A] ,Qu

where L is Schrodinger and A of degree 3 . For this equation, ’
the motion of the poles x. = x.(t) corresponds to the motion according

1 1 
,

to the Hamiltonian H = J 2 with the restrictions grad J3 =E 0 [3] .

On the other hand, the KdV equation has the Lax representation

[A,.L] and the poles x. 
= xit&#x3E; move according to the Ilamil-dt 1 1

tonian J3 with the restrictions grad H = grad J2 = 0 (see [1] and

[2]).

~ 

So it is natural to put out the following

Conjecture: The pole evolution of the system having the Lax form

2013 = [A, L] for L order n and A of order m, n &#x3E; 1, m &#x3E; 1, is
dt

connected with the system with the Hamiltonian J with the restriction
in 

dL ciA
grad In = 0 . By analogy, if we have the system dt - dy 

== [A, L] ,

then the poles x. = x.(y t) move in y according to J 
n 

and in t
i i n

according to J 
In 

.

This conjecture was proved in [1] for the case m = 2, n = 3 of

m = 3, n = 2 (see [1], §10, p. 350). Krichiver [9] tries to say that

he obtained these’ results "very recently" (after [1]). We prove here

the conjecture for n = 2, m = 4 and show close relations with system (C

Part A-- Meromorphic, rational and elliptic solutions of the two-

dimensional Korteweg-de Vries equation.

In this part, general meromorphic solutions of (2 KdV) are con-

sidered and new elliptic solutions are constructed.

Al. For the two-dimensional Korteweg-de Vries equation

we shall consider the rnerornorphic solutions, written in the general
I

form
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or

It is easy to show that, if u(x,y,t) is a meromorphic solu-

tion in’ x of (2 KdV) for (y,t)6[0,y ]xLO,t ], then the poles in
a.(y,t) are of second order with residues -2. Thus the form (1) or
1 .

(2) is the general form of the meromorphic solutions of (2 KdV).

In the paper [1] (§ 10, p. 350) it was shown that the motion

of the poles a.(y,t) is in y according to J 2 H and in t according to

13’ This is possible because J2 and J3 commutes. More precisely we

have

Proposition 1 : The function

is meromorphic solution of (2 KdV) if and only if

This can be obtained by substituing u(x,y,t) from (2) into (2 KdV) -

and using the law of addition for P(x).

If we consider the commuting flows 
, 

~

G: 4/a. and J2= H= J2 and 13 = 3(x j3’ then the system (3) is obvious-

ly equivalent to



, 
. 

Because J 2 and J3 are commuting we obtain solutions a i (y,t),. 2 3 i

b.(y,t) of the system (4), or of the system (3).
3L

e 

Thus starting from any initial data at y = y , t= ta
.-

we can explicitely find (at least for finite I) .a solution of (3)-

a.(y,t) such that
. .

For example, for rational solutions u(x,y,t) of (2 KdV) of degree 2n,

this gives solutions depending on 2n arbitrary parameters.

A2. How to obtain e.g. rational solutions of (2 KdV), e.g. those

when I = n, P( x) = x -2 ? According to the theory of commuting Hamiltonians
with 11 2 described in [1], [2], we have the following 

°

, 

x 

Rule 2 : If we have initial conditions at y=y , t=t :

then for two flows having Hamiltonians

for which
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the solutions are defined as eigenvalues of the following matrix

Now it is clear how to obtain u(x,y,t).
I

Rule 3 : If 

’

is such that a i moves in y according to iI I = tr. f(L) and in t according
to H2 = tr.g(L), then

where is a characteristic polynomial of the matrix U~ IIH 1’ H2 1’ 2

defined before.

Thus for two-dimensional KdV (2 KdV),

where as before

So all rational solutions of (2 KdV) are easily described.
Now there exists a paper of Manakov, Zakharov, Bordag, Its

and Matveev [7] where they have written similar formulae for rational
solutions with a = -I. They deduced these solutions from solutions of

- 

Zakharov-Shabat type with degenerate kernel taking in e 1 i . the limit

xi -~ 0, ’~i -~ 0, i.e. considering degenerate case of exponential functions.

They even made some kind of speculation, claiming that their

rational solutions are solitons. To do this, they consider the 2n-

parametric system of u(x,y,t) of degree 4n (we know that there is
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. 

a 4n-parametric system of solutions) with poles 

and Im(a. »0. Of course such u ( x, y, t ) are non-singular.
1

For example, let us write.down the simplest non-singular
. rational solution. We also must mention that in Krichiver’s review [9]

this solution was written wrongly. 
’

It is. :

Here a ~ -1 and vx = 3v2, velocity in the x-direction, vy = -6v
.in the y-direction of "soliton". However, this is an incorrect name for

such solutions because they are not in any sense general solutions of

(2 KdV) even with some particular kind of initial conditions.

Now we shall proceed to exhibit very interesting elliptic

solutions of (2 KdV). The simplest such elliptic solution is of the

following form

We shall now consider the elliptic solution of (2 KdV) with two poles

in each part of the lattice. So we take 
"

a. I = a.(x,t), i=1,2. Then acc;oridng to the equation of evolution, after
I 1

some changes,we obtain the following formulae A: :

where the function GaR 0 t) satisfies

A3. We have already reduced the problem of finding elliptic solutions
4 

of 2-dimensional equations, especially of (2 KdV) to the solution of
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ordinary differential equations involving P(z), such that

for H=H~[1], [2J.. .

We know that this system for finite tit is completely inte-

grable.. But we do not know what is the exact form of these solutions

when Here we have the following questions :
. 

1) Whether the general trajectory a.(y), b.(y) can be expressed
!namely usin_qj 1 1

. using only elliptic additional ones ; what are the

relations between invariants of these functions and P(x), if elliptic

representation is possible ?

2) What is topologically the variety of solutions of H~ ?
In the case of degenerate e.g. ~-(x)= x -2 si n x,

sh-2x we have simple formulae for exact solutions Cf. [2]). We have

also the result for !l!=2.
Let

Then a1 + a2= A0y+ At and for a = at - a2’

C is a constant. If we put

and set

then for

we have the elliptic representation for ~, ~ satisfying
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where

is an elliptic function, satisfying

then

It is very important to mention that for a modular 

the modular invariant can be choosen (with variation of C)

arbitrarily. Thus the complete solutions of Hp involves 2 functions
, 
the P(z) and a new with arbitrary invariant.

A4. We turn back to the solution (11) of (2 KdV).

Now we use the solution of H for lI ’ * 2* We put :

where

Then we have :

Here the function P satisfy
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This gives exact formulae for u2 (x, y, t) in (11) , depending

on 92’ g3’ Cl’ C2 , Ro, C3 As we already mentioned before ,

this leads to non-simple abelian variety

° (P(x).~’(x). ’l ~~~ ’ (X)
of dimension 2 and any non-simple abelian variety of dimension 2

can appear as a manifold for solutions of (2 KdV) .

The solutions u 2(x, y, t) are non-singular and especially

interesting if ~(z) is with complex multiplication on 

i.e., [8] : g3 
= 0 . In this case the a can be chosen such

that a, 
= a, a 2 

= - and u2 (x, y, t) is bounded in

the (x, y)-plane. 
_

Part B - Meromorphic solutions of other two-dimensional equations.

The very general idea of pole expansion can be used in order

to obtain information even about algebraic properties of equation.
/ 

’

We shall use the pole expansion in this part for different two-

dimensional systems of the form (2 dim) with L, L2 of order

2 and 4 . In fact, in this case, it is necessary to change the

form of equation (2 dim) to obtain our conjecture for elliptic and

meromorphic solutions.

Bl. Elliptic solutions for (2 dim) in the case n = 2, m = 4 .

dL2 dL3
The (2 KdV) corresponds to the case = [L 2’L

and we get a good description in terms of Hamiltonians J 2’ 13

The next case (a very non-trivial one) is the system
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giving equations for the coef f ic ients of the operators of degree

2 : t, 2 and 4 : L4 ’* If we consider them as usual

then we have the following system for uoo UiF u ·

We can transform this system into a more convenient form.

If we put -

then the system (L) takes the form

° 

Now we consider general purely Weirstrass solution

A 
~ ~

of (L) . If functions u , u1, u are purely Weirstrass elliptic0 1 2
A -

solutions of (L) , they can have the form 
.
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We must mention that ( 12 ) - ( 14 ) is not the most general form
ev en ellipt* .

of meromorphic solutions of (L) , but it is the general form

for purely Weirstrass elliptic solutions.
. a little 1 ,

Solutions (12)-(14) are ar to those in chain system (C)are)’B 
,

from [2]. Really, we have in order (12)-(14) to satisfy (L)

the following condition: .

/’
However, it can easily be shown from (L) that (12)-(14)

+

satisfy (L) ,

if ait = ajt for all i, j, E I :

Thus, for all the elliptic solutions of (L) the velocity

of poles in t-direction is the same for all the poles.

The conditions for satisfaction of (L) for (12-- (14)

the following: . 

’

. 

This is the condition grad (J2 -BTJ1)" = 0 . In the2 1 
°

y-direction, a. moves according to J but linearly in t .
1 4

Even for y-independent (L) this gives N-soliton solutions

which have the same velocity not connected with initial conditions.

The N-soliton remains thus always solutions connected with a

strange interaction of the 1-so1itons inside the N-soliton. The

simplest 1~-soliton of (L) , y-independent, is the following
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obtained firstly by Manin [10] :

or we can change x by x + c .

These solutions have the period -- , but when cos 4a t = -1 ,
2a 

2

we have "explosion" at x = 0 .

8~. New systems of equations connected with integrals J and 4
It is clear that because of the strange behavior of elliptic

Weierstrass solutions of (L) , even for y-independent 
.

case, it is necessary to correct (L) .

We correct (L) using the system of equations (C ) - (C2)o 2

from [2] in such a way that it has good elliptic (as well as mero-

morphic) solutions with poles moving according to J 4 in y direc-

tion and according to J in t . , 
.

.2

Here is the new system:
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The meromorphic solutions of this system are of the same type:

but the a i moves in y according to J 4 and in t according

to j 2 , for any G .

s
’ 

Now we will show that the systems (L) and its correct form

(16) are in fact equivalent. So it is possible to obtain an

analogue of elliptic solutions even for (L) .

To do this, we will first investigate the general form of

s

meromorphic solutions for (L) , not necessarily pure Weirstrass
elliptic. 

’

B3. General meromorphie solutions of (L) are connected with

12 and 1 4 
The general meromorphic solutions of (L) are really con-

nected with Hamiltonians J 2 and 1 4 but not with G =-8 (as foi

pure Weierstrass elliptic solutions) and with G = -4 . However,

in this case, Uo contains the poles of first order.

Now let’s find all meromorphic solutions of (L) they

have rather a simple nature, connected with J2 and J 4 We

must have, for an arbitrary meromorphic solution uof Ulf u 2 of
’

(L) , the following representation: 
’
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The general functions u0* tl7)-(19), as functions from
. 

X, t satisfy (L) if

i.e., a. as functions of t satisfy H x_2 for G = -4 .
1 x-

Similarly a. (y, t) as a function of y is the solution corres-
1

ponding to J4 ’ also for (x) = x -2 and G = -4 .

Thus, rational solutions of (L) really satisfy our conjecture.
n

Now we will write (L) in a more traditional form (cf. (C)

in [2] and expressions for ~(X7 t) in L 2 To do this, we
~

remember that(17)-(19)is the solution of (L) if (20) is satisfied:

Thus

We put

From (17)-(19) it follows
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Now for we have:

By the law of addition f or P (x) we have

Thus,

+

Now we can rewrite (L) in the following form:
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Now we define

A

Then from (L) we obtain

Then, in view of the given supra, this system is equivalent
B

to (L) . , 

..

General meromorphic solutions of (L) have the form (17),

± _ 
,(18), (21),with u = Uo ’ where (20) is satisfied and a.(y, t)

moves according to J2 on t and according to J 4 on Y .

But the system (L) is equivalent also to (16) by B2,

if we change y by 2y . 
~ 

Thus, after some transformations, we find that (L) has

elliptic solutions and in this case also, the conjecture is true.

Conclusion: In fact system (C) from the first part [2] of the

paper gives us the possibility to verify the conjecture for 

for min (n, m) &#x3E; 2 besides motion corresponding to J 
n 

and J 
m’ ’ ’ 

, 
n m

(as we suppose) there can appear some new many-particle systems.
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