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§ 0. INTRODUCTION

This paper is devoted to detailed analysis of behaviour of

poles of meromorphic solutions for two types of non-linear partial

differential equations : Korteweg-de Vries (KdV) and similar ones and

Burgers-Hopf (BH) and its analogues.

This paper consists of results of D.V. Chudnovsky contained

in a preprint ~21~ of two authors which remains unpublished because of

political persecution of the authors (though it was distributed).
Most of the results presented here have been already published

in [I] and text in this volume contains also references for new publi-

cations in same field.

The first part (§ 1) give definitions of completely integra-

ble systems with which the motion of poles is connected. Then we con-

centrate our attention on many-particle interpretation of the motion

of poles. Always in the problem of pole motion for classical completely

integrable systems, there arise some funny functional equations.

In § 2 we investigate these functional equations which are

naturally equivalent to different forms of law of additions for Abelian

varieties and give information on pole motion for KdV, BH, mKdV and

higher types of KdV equations. E.g. the poles of meromorphic solutions

of KdV behave like particles with potential X- 4. Such ideology was

used since [1J for different kinds of equations (see e. g. 31 ) , as

well as for equations in two dimensions (see papers in this volume)

and e.g. for Benjamin-Ono equations (paper No 7 in this volume).

§ 3 is devoted to consideration of properties of solutions

of higher order BH equations. As it was realized since [21] and [1]
that these equations play an important role for multisoliton solutions

in two-dimensions. Two papers in this volume (namely papers No 8 and 9)

deal with such applications.
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§1. MANY-PARTICLE COMPLETELY INTEGRABLE SYSTEMS.

Lax’ procedure gives the first examples of the many

particle completely integrable systems. The most known

example is the Toda lattice [13] z

This system is equivalent to the Lax representation

= A L where the matrices L and A are the followingdt C j a ,

where C - v = x . .n = e n nn n n

In fact, the infinite Toda lattice (1) can be considered

just in the same way as the KdV equation and in fact, from

the topological point of view, it is the same kind of equation.

The system (1) as well as the KdV or non-linear

Schrodinger equations arises from the moduli of hyperelliptic

curves and there exists a natural analogue of finite band

solutions and these solutions can be represented using the

same 6-functions on the Jacobian varieties of hyperelliptic

curves. Naturally, with the system (1) are also associated

higher analogues of the Toda lattice.
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In fact these systems arise in some physical problems

and, for example, are related to the well-known Fermi-

Pasta-Ulam chains [21]. These chains are obtained from (1)

by taking only 3 terms in the expansion for the exponent.

There is however mechanical systems of complete

different character having no topological relations to the

Burchnall-Chaundy-Lax [23], [~~] , [ ~5] procedure. We mean

the system of finitely (or infinitely) many particles inter-

. acting via the potential C~,9(x) (where 9(x) is a Weierstrass

elliptic function [2 ]). In the degenerate case we obtain

a system of particles x. = xi(t) interacting via the Jacobi
i i

potential x - 2. Thus there occurs an Hamiltonian of the form

It was a surprising result obtained by Moser [8] for

finite n in (3) and by Calogero [5] for finite I in (2)

that the corresponding systems possess Lax representation

for finite matrices A and L and, so (as n eigenvalues

of L are conserved) possess n first integrals. The form
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of A and L is very easy for (3):

For the case of (2) the matrix L = (L. i, j E I have the
1)

form

where a 2 (x) = ~(x). ’

Then of course the quantities J = 2013 n 1
n n

are the first integrals of H . Moreover it is proved that

the Jn are involutive and that they are sums of polynomials

x . ) , G with rational coefficients. The form
j

of the first terms of J n is the following

For the Hamiltonians (2) and (3) the exact formulae for

solutions can be given for finite I) = n. For 9 (x) = x -2

all the solutions x. = x. (t) for the Hamiltonian H and
I 1

for the Hamiltonian J n are algebraic functions. In fact the

x. are the roots of some polynomial P(x,t) having degree n
1

on x. These solutions can be easily obtained using the
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matrix L for x‘Z . For the matrix ~2 l ~ [g]:

the eigenvalues xi (t) are solutions with given initial
1

values xi (t0), :ki(t0), corresponding to the Hamiltonian
1 0 1 0

H = 1/2 tr L2. For the Hamiltonian J n = 1/n tr Ln in

M(t)~ L must be replaced by 

Because of this rational character it is unclear how

. 

the system H is connected with the usual one. But the

connection with the elliptic curve remains: in fact the

existence of Lax representation for (2) is simply equivalent

to the functional equation defining the 9(x), namely to the

law of addition for %(x) [ ~,~] . Nevertheless it was very

interesting to show that in fact there is a close relation

between many particle systems (2)-(3) and the solutions of

known completely integrable equations. This connection lies

in the so-called pole interpretation. The idea of such pole

interpretations were first proposed by Kruskal [7]~ but

at that time they were not taken into consideration.
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POLE INTERPRETATION OF ONE-DIMENSIONAL COMPLETELY

INTEGRABLE SYSTEMS OF KORTE.WEG-DE VRIES AND BURGERS-HOPF TYPE

The most intriguing feature of exact solutions of non-

linear differential equations, that were found during these

years (1922-1931 [23], [25] and 1967-1977 [ ~~ ] , [20]) is

the meromorphic character of the solutions. Moreover 

the meromorphic functions that can appear as solutions are

of a particular nature, because almost all exact formulae

are obtained from multidimensional (or even infinite-

dimensional) 0-functions.

So it is natural to start the investigation of solutions

from meromorphic ones. While studying meromorphic solutions

u (x, t) or u (x,y, t) as functions of x we suppose that at

least for some non-trivial interval or [0,y] x [0,t] ,
the function u (x, t ) or u (x, y, t) is meromorphic as function

of x for t E or (Y,t&#x3E; e x 

It is necessary to mention that the meromorphy or even

rationality of the initial condition u (x , 0 ) or 

does not imply the meromorphy of u ~ x ~ t ) for t 0.

Evenfor the KdV equation if the solution u (x, t) is meromorphic

for t e t &#x3E; 0 then all thepolesx. =x.(t of

u (x, t ) for any given tl E are of second order and
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of particular type for all

In particular this shows why the "algebraic inverse

scattering method" cannot give complete solution of

completely integrable equations: it is necessary to consider

also non-meromorphic u(x,t). But for meromorphic solutions

the problem of finding exact analytical formula of mero-

morphic solutions is solvable by so-called method of pole

. interpretation (pole expansion).

The ideas of this method briefly are the following:

to consider solutions u (x, t) of non-linear partial differential

equations as meromorphic functions in the complex x-plane

and to investigate the motion of the poles xi - x. 1 (t) as 

’

particles with self-consistent potential. In fact, for all

the classical non-linear completely integrable systems

the pole interpretation (or zero-interpretation in the sense

that we consider entire functions, entire solutions) leads

either. to systems (2) (3) or to Hamiltonians J . In this
n

situation there can arise systems of differential equations

with some constraints.

The procedure of pole (zero) interpretation is of

particular interest as the process of finding all the

rational solutions [ $ ] , [ ] .
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~2. POLE INTERPRETATION OF KORTEWEG-DE VRIES EQUATION

AND SOME FUNCTIONAL EQUATIONS.

In this paragraph we display the connection between

Korteweg-de Vries and other equations and many-particle

systems with potentials x-2 ~ x ~ introducing pole expansions

of certaion solutions of various partial differential 

equations, and showing that the time evolution of the position

of the poles corresponds to the motion of classical particles,

In this paragraph we concentrate mainly on the following

two types of systems of differential equations:

satisfied by the system of functions x. i (t) , i E I. The

analogy between (1) and (2) and the equations of hydrodynamics

describing the motion of systems of vortices or dipoles

should be noted. For this, however, one should consider

complex xi (t) . This analogy (in relation with (2) and the
i

Korteweg-de Vries (KdV) equation) was mentioned by W.

Thikstun [6 ] but this analogy isincomplete, because in real

hydrodynamical equations, kt should appear in place of k.
i i

in (1) and (2) (this is a mistake in [ 6 ] ) .
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Recently (independent from [ 1 ] , [21] ) rational

solutions of KdV equations and Boussinesq equations were

investigated by Air ault, McKean, Moser [8], Air adult

and Moser [26]J [:9], Satsuma, Ablowitz and [8].

Methods of [2?]. [28], [ ] , are different: they

consider rational solutions as a limit case of multi-

soliton ones. On the other hand detailed investigations of

rational and elliptic solutions of KdV were made in [1 ],

] ; the paper [ 8 ] contains especially some interesting

exact formulae for solutions of KdV.

We show below that any solution of (1) is a trajectory

of the one-dimensional many-body system with two-body potential

x®2 [2-1], [3 ]. . On the other hand, solving (1) for

xi 
= x. i (t) is equivalent to solving the Burgers-Hopf (BH)

equation 2ut - -2kuu - ku for the function
" t x xx

= x. 1. (t)]-l. The BH equation, as is well

known, by putting u = is transformed into the

heat equation and can be explicitly solved. The systems of

’ type (2) with additional algebraic restrictions describe

the evolution of poles of solutions of the KdV equation or

of the modified KdV equation (mKdV).

In the pole interpretation, to the KdV equation there

corresponds a system (2) with the invariant algebraic

restrictions z . /. fl’ (x. - x . ) - OJ i E I. The set of such
3- J
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(xi: i E I) is the manifold M characterized by grad H - 0

(where the variables x. are independent of the conjugate

variables x.). Then system (2) restricted to the manifold
1

M coincides with the action of J3 also restricted to M.

Analogously the second KdV equation in the pole interpre-

tation leads to J5 with the restriction to the same manifold

M, etc. 
-

We also give some systems of equations, connected with

. other nonlinear partial differential equations, that do not

appear to be related to Hg or J5’

2.1: We consider several classes of functional equations

analogous with the Calogero equation [5], [9] and the

Sutherland equation [ 10] , [ ~1 ] . All equations of this kind

are variants of the law of addition for Abelian varieties

of genus greater than 0.

Proposition 2.1: All (analytical) solutions of the system

of functional equations

with given asymptotic in zero .

.
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have the form

where C (x) is an arbitrary Weierstrass zeta-function

(including degenerate cases). If is a solution of

(3)-(5)~ then r(x) has the form

The law of addition for the ,-function [ I~] shows that,

+ yx and r(x) having the form (7 ) , conditions

(3)-(5) are satisfied. On the other hand, for any solution

gp (x) of the system ( 3 ) -- ( 5 ) we put in (3) y = -z, x = z + c

and, taking into account (4 ) - (5 ) , we expand right- and left-

hand sides of (3) in powers of e. Then we immediately obtain

and

We put Y(z) = _~I (z). Then

This implies that ~(z) = ~g(z) - y, where 9(z) is the

Weierstrass function. + yz + p and from

(5) we have p = 0.
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Corollary 2.2: For the functions x - x 1
#p (x) = actgh (ax) , we have

2.2: Let us link (1) with the BH equation. We consider a

solution of the BH equation of the form .

a = a (t) , v c I. For finite I, U(x,t) is a rational
v v

function of x. For infinite I, it is necessary to

~ investigate the convergence of the series E - (x - av)-1.
We work with Z as with a formally convergent series.

Proposition 2.3: For the function

the BH equation ut 
= 2cuu x + cu xx is satisfied if and only

if the following system of differential equations is satisfied:

We use (3) or (8) for ~(x) = x . Then
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2.3: We will show that the systems of types ( 1 ) - ( 2 ) ,

that are not Hamiltonian by themselves, may be imbedded

into Hamiltonian systems. The similarity of this situation

with previously known cases should be mentioned. For

instance, the Kac-Moerbeke lattice [l~ ] , [14 ] : 
’

that is not itself Hamiltonian, may be imbedded into the

. 

system corresponding to the Toda lattice (see supra and

[3 ]):

We put this problem in the wider context of the following

problem: for what Y(z) and ~(z) the system

is the corollary of

Lemma 2.4: If the odd function satisfies the functional

equation
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for x ~ y + z = 0, then from (11) it follows (10) for

Lemma 2.5: If ~(z) is an odd function and

is satisfied whenever x + y + z = 0 for odd F(z), then from

(11) for finite I it follows (10) with

As T and F are odd, eq. (13) coincides with (3)

and (12) coincides with (8). Thus for any zeta-function

j(x) and the corresponding Weierstrass function 9(x) the

system ,

implies

System (14) is Hamiltonian with the Hamiltonian
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We would like to attract attention to the evident

relation of this Hamiltonian, as well as to the functional

equations ( 12 ) , (13) with the quantum-mechanical problems

of Sutherland and Calogero [.10], [11].

Corollary 2.6: Any system of equations

implies

For a finite system,

implies

2a4: ’ 

The problem of the connection of (10) with (11)

for can be treated analogously. 

Propcsition 2.7: Any solution of the system of equations
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is a trajectory of the system with the Hamiltonian

Indeed

Thus the particles satisfying (2) with the restriction

can be considered as one-

dimensional particles interacting via the Maxwell potential

-4
x .

Now we exhibit the connection between the many-body

problems (2) and the KdV equation.

Proposition 2.8: , then u(x,t)
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satisfies the equation 12cuu - x cu 
x xx 

if and only if

and

To prove this it suffices to apply the law of addition

for %(x) = to uu .
x

2.9: If. , then u (x, t )

satisfies the e uati cn u - 12cd2uu - cu xxx if and only ifx xxx

2. 5: Thus, for u(x,t) = ¿. o ~ (x - a, ) the satisfi-ability
I EE I I

of the Kdv equation is equivalent to the system

with the algebraic restrictions



17

It is easy to verify that (2’) describe the Hamiltonian

flow induced by J3 with

and

with G = -12c.

2.6: Now let us consider the pole expansions of solutions

of the mKdV equation.

Proposition 2.10: If u(x,t) = E c (x - av then the
equation of mKdV type u t 

= 6du2u - x du xxx is satisfied if
and only if

2~ Thus it appears that certain solutions of the KdV and

mKdV equations, whose evolution may be obtained by the inverse-
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scattering method, are precisely related to certain solutions

of the one-dimensional many-body problem with potentials

x-4 or 2 x . This raises the following question: which

other kinds of potentials besides ~2 ~ x )~ where a(x) is a

solution of the Calogero functional equation [~], generate

an integrable many-body problem of type [ 3 ] , [ 4 ]. In

this connection we note that there exists an immediate general-

ization of the Calogero equation, namely

which is satisfied by a(x) = V2(x) = ~(x)~ v1(x) = ~’ (x) .
Thus one could hope that for the potential % (x) there

is also an analogue of the Lax representation. This is true

to some extent. Consider the equivalent of the KdV equation:

According to proposition 2.7, all the solutions of

this system are trajectories of the Hamiltonian

Proposition 2.11: There exists a Lax representation
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L = [L,A] for system (17) in which the matrices L and A

are of the form

Thus the Lax representation follows from the law of

addition for %(x) (including the special case 9(x) = x - 2 . )

Note that these calculations can be considered as analytical

variants of the considerations of [15], [2~]. Certainly the

Lax representation for the KdV equation and (17) are

equivalent.

2.8: The complete description of the meromorphic solutions

of KdV having the form 9 (x - ai ) for finite I

can be given. For the finite set I
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is non-void if and only if l . In this situation
2

the corresponding M has the dimension n and is an

invariant manifold for all J . In fact to this class
m

corresponds exactly a n-lacunary potential n(n + 1 ) ~ (x) ,
/

which arises in the theory of the Lame equation. Really,

all the potentials of the form u (x) - E. - 9-(x - ai) for
ieI . 1-

such I and ( as ) E M are periodical n-band potential and,
1.

conversely, all the doubly periodical n-band potentials have

the form i 
I 

P(x - a. ) for some (a. ) E M. The last result
ieI i i 

_

belongs to Moser and McKean [8 ] Ii .

, 

Moreover the answer to the question posed in [8], as

to whether the pole interpretation for higher order KdV

equations [20]~ [2.4] ~ is connected with j2n+l’ can be given.

In fact, the evolution of system of poles of solutions of

the n-th order KdV equation [ZO], [24] is governed by 

with constrants M: grad H - 0. For example, for the second

KdV equation

and u (x9 t) - -2 ai ) we obtain the many-body

problem related with J5:

with restrictions M.
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In this context instead of a clever conjecture of [8 ] ,

Khrichiver[l5] had made a wrong conjecture about the

coincidence of the action Ji on M with the motion of poles

of the i-th KdV which corresponds in fact to J2i+1’ .

Generally speaking in review [~~J, interesting because

of the reproduction of the results on the algebra of

differential equations, obtained in general form by Burchnall

and Chaund y [2~], Krichiver makes some claim for two-

. dimensional KdV equation. But for the 2-dimensional KdV

equation as well as for 1-dimensional the motion of the

poles was completely described in §10 of the paper [1 ].

2.9: There is another variant of the second KdV equation

[18 ], [19] (see below) : .

different from the usual second KdV equation (18). In the

pole interpretation, (19) gives the system of equations

with restrictions

This system is new (see also two-dimensional variant

of (19)).
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§3. HIGHER BURGERS-HOPF EQUATIONS AND

THEIR POLE INTERPRETATION.

There are natural generalizations of Burgers-Hopf

equation u x = 2uux + uxx []7] . These equations

called in [I ] , [21] higher Burgers-Hopf equations play

a very important role for solutions of two-dimensional

equations.

Higher (n-th order) Burgers-Hopf equation can be

described as

These equations are generated as follows:

and

Then Cn [u] and so BH n [u] are the polynomials in

8 The first terms are the following:
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In fact the main property of higher Bli’ equations is

that they can be linearized by Hopf-Cole substitution

Proposition 3.1: If u = 6- (log T), then ut = BH [u] iffp.. 
ax 

( - t H n [u] 
f

for some X E C.

The pole interpretation of BH is connected with J
n n

from 81, (1.4) for

Theorem 3.2: 1) For meromorphic functions

the fulfilment of the equation 
_

ut = .

is equivalent to the fulfilment of the system

2 ) Any system (3. 3 ) is embedded into the system with

Hamiltonian J in (1.4) for ~9(x) = x-2 , G = -1. The system
n

(3.3) is equivalent to J n under the following invariant

restriction

Moreover for finite I, the trajectories of Jn on which
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all the integrals Jn vanish, J m = 0, are precisely the

solutions of the system (3. 3 ) .
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