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§ 0. INTRODUCTION

This paper contains description of general approach to Hamil-

tonian completely integrable systems in one space, one time (x,t) or

two-space, one time (x,y,t) dimensions. Also significant part of this

paper contains detailed investigation of many concrete two(space)
dimensional completely integrable systems and complete analysis of

their meromorphic solutions.

In § 1 we explain "formal variational calculus" of Gelfand,

Dikij and give the definition of Poisson-Gardner brackets for one

(space) dimensional Hamiltonian systems.

In § 1 we discuss in details proper definition of "complete integra-

bility" one one- and two-dimensional systems. We consider the existen-

ce of wide class of meromorphic solutions and systems of equations

associated with some algebra of commutative differential operators.

In § 2 we present infinite systems of non-linear equations

in derivatives a a : (C) : k= 0,1,2,... the meromorphic solutions() tk p

of which have evolution of poles ai ( t ) according to Hamil-k 
-2 

IL

tonian H with potential Gx 2.
Using this system we describe exactly evolution of poles of all higher

Korteweg-de Vries equation As it was conjec-

tured by Airault, McKean, Moser ~8~ the evolution of poles is given

by Hamiltonian rJ’2n+1 with restriction grad H= 0.
In § 3 we give brief discussion of Zakharov-Shabat equation

for n= 4, m= 2. Detailed picture is given in the paper of D.V. Chudnov-

sky "Meromorphic solutions of two-dimensional equations with algebraic

laws of conservation", part B, (this volume) L14].
The most interesting part is § 4. In this part we present

convenient form of two-dimensional completely integrable systems of

Zakharov-Shabat form

for m= 3, n= 4,5. For this case the character of meromorphic solutions

either is connected with potential Gx~2 (for n= 4 and in some cases of

n= 5), or can lead to absolutely new completely integrable many-particle

system (e.g. some cases of n= 5).

As an Appendix to § 4 we give results of Manin and Kypershmidt

on Benney equation.
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The material of this paper was presented in parts on seminars

at C.E.R.N. (December, 1977 - §§ 1,2) ; Ecole Polytechnique (November-

February, 1978 - § 3), at City College, New York (March, 19?8 - 4)

and Princeton University.
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§1. We will discribe a formal algebraic approach leading

to the complete integrability of equations connected with

algebraic curves.

We have the following notations. Let B be the associa-

tive ring with unit over Q with differentiation

6: B ~ B; C the set of constant C = (b E B: 6b = 0). B[D]

be the algebra of differential operators over B, i.e. the

algebra generated by B and one additional element D

with relation Db -- bD = ab = b’ I for any b E B. Then for

n ~ 0, Bn [D] be the set of differential operators of

order &#x3E; n from B[D], B and B[D] = UnBn [D] .
The most interesting case is when B is the ring

generated by finite set of functions and their derivatives.

Now for P E B we write p ôJp: j = 0 1 2 .... We suppose

1.0: There are such u 1 ° ° ° "~q ~ ~ that

Partially supported by NSF Grant MCS77-07660 and DNR Grant
N00014-78-C-0318.



-4-

This B is called a differential algebra of free type

with the generators Now in B there are defined

C-differentiations 
r

and we can define also gradient or partial variational

derivative:

and we put

In these notations Gelfand, Dikij and Manin have

developed [ 1 1 , [2], [4] the "formal variational calculus"

and have shown how to introduce in general the Hamiltonian

structure on the nonlinear evolutionary equations.

First of all we have Gelfand’s

Proposition 1.1: Let C = k [and ak = (0) ] , then

Ker 8/6u = Im 6 + k for a given B. So for b E B = k[i.1 ],
1

6/6ub = 0, if b is a derivative of some element of

k[u
We can put B = and for P,Q c B, P - Q or P = Q(mod bB),
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if P - Q c Im 2~.

For B-module N, the elements of N q we understand as

vector-column of height q and i-th coordinate of P c N q

being P.; pt will be the vector row (Pl’...,p). The
i I q

operator of transponing we’ll also use to q x q matrices

from M (B [8] ) . Analogically 6P/6u be the column from
q

6P/8ui and the 6P/8u the row. For P c B, Q e N , the

P Q is the "scalar p roduct" E P.Q. 1 1 c N etc.

Then on B = B/bB there is a natural structure of Lie

algebra with brackets [ , ]:

Theorem (Lax-Gelfand-Gardner)1.2: Let A c M [k] [8] be the
2013 ° "  ’ 2013201320132013201320132013201320132013 

q

skew symmetric operator, i.e. for all P,Q ~ B q we have

(mod 88) . We define bracket [ , ] :

B x B ~ B by the formula

(1.5) for P* _ P (mod 6B) , Q* = Q (mod bB) ;

Then the brackets [P*, Q* ] satisfy Jacobi identity and

so make B = B/Im 8 a Lie algebra.

The brackets [ , ] are defined because of Proposition 1.1.

Gardner [3] was the first to realize what the Poisson

brackets in the infinite-dimensional cases were. The theorem

1.2 in the complete generality both for the cases of scalar
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and vector functions belongs to Gelfand-Dikij and Gelfand-

Manin - Shub in I I I &#x3E; [ 2 ] , [ ] .

Why is it interesting? Because this enables us to

interpret all evolutionary equations as Hamiltonian. For

example, let’s consider the one-dimensional situation and

vector function u = u ~x, t) . If A = A[8/bx] then for the

system .

For functional I Q * - Q dx (Q E B) [wh ich are defined

as class of equivalence Q* of Q, up to full derivatives of

elements of B (i.e. and exist analytically for: a) rapidly

decreasing u r {x, t) for (x( + 00; b) for periodical u r (x, t)
on x; c) for quasi-periodical functions u r {x, t) as mean

values] this means

Now we have the Liouville formula in infinite dimensional

situations:

For example, the fact that Ip* is a first integral of

(1.6)’ I means that
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or

This is equivalent to

or

for R P, Q E k [ii r (i) ] .

In fact there is a deep connection between nonstationary

Hamiltonian problem (1.6) and the corresponding time

independent (stationary) problem corresponding to the case

0. This connection will be shown below.

Now we can already consider special Hamiltonian systems

( l. 6 ) and show how they are connected with " i sospectral

deformations" and Lax pairs. In fact these systems having

the Lax pairs have infinitely many first integrals Ip* and so they

are called completely integrably or nearly completely integrable.

We must say that only for Hamiltonian with n degrees of

freedom the existence of n commuting (in involution) and
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functionally independent first integrals implies real complete

integrability and allow to obtain formulae for solutions

through hyperelliptic integrals. In infinite dimensional

situations the existence of infinite numbers of conservation

laws shows nothing [take for example the product of an ergodic

finite dimensional system and a completely integrable one].

In this paper we will try to consider mainly focusing

at particular equations which are the good properties of two

dimensional equations that are supposed to be completely

integrable. As a natural test for complete integrability

we take: 
_

a) the existence of good "multisoliton" solutions;

. b) the existence of additional conservation laws.

By multisoliton solutions we do not mean precisely localized

and elastically interacting soliton shape like solutions.

Our point of view is slightly different from the ordinary

framework of inverse scattering.

In fact the main class of solutions which we consider

is the class of meromorphic solutions u(x,y,t) as functions

on x in the complex plane for ~y, t) ~ 

Fcr different reasons algebraic as well as analytical methods of

inverse scattering produces mainly meromorphic solutions.
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These are "multisoliton" and rational solutions of course;

solutions expressed through 9-function corresponding to general-

ized finitely lacunary quasipotentials and many others.

As meromorphic solutions are described by positions of their

poles our criteria of complete integrability can be reformulated

in the following way:

-

Problem: To find non-linear equations in u(x,y,t) such that

the evolution of poles ai (y, t) correspond to solvable
1

(completely integrable) many particle problems.

If we can solve a non-linear equation at least for the

meromorphic case, then we are absolutely sure that such an

equation is a good candidate for complete integrability, as

for example it has very good generalized multisoliton solutions.

Remark 1: The idea of pole interpretation on the example of

the KdV belongs to Kruskal but even now the precise

evolution of poles for arbitrary n-soliton solutions is

not absolutely clear.

Remark 2: Pole and only poles interpretation produces, for

example, complete integrability of Ben;amin-ono equation,

where poles correspond to particles with two charges +i and -i.

In general all known two dimensional systems suspicious
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on complete integrability arise from conditions of commuta-

tivity of two operators

where Ll and L 2 are differential operators in 

and 8/8t. Then the condition of their commutativity is

expressed as a system of non-linear partial differential

equations on coefficients of operators Ll, L2* There are

. 
different forms of presenting conditions of commutativity of

operators especially for operators in many dimensions. For

example it can be the condition of existence of common

eigenfunction for the operators corresponding to all

eigenvalues or to one prescribed eigenvalue. The latter

condition is less restrictive then the condition of commuta-

tivity of Ll and L2. However this situation is not so

carefully examined (this is the "less completely integrable

case").

We have more or le ss information for the strong condition

of commutativity 0. In this situation noun-trivial

equations arise only in the case when L1 and L2 are at most

linear operators on 6/6t and 6/by. In this situation, we

can write
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and the equation, which is called Zaharov-Shabat equation

has the form

For this system we know of the existence of a lot of solutions

arising from algebraic curves. Existence of these solutions

obtained by Burch nall, Chaudy, Novikov, McKean, Trubowitz,

Krichiver, is explained easily by the fact that each of the

Zaharov-Shabat systems has a lot of invariant submanifolds.

These invariant manifolds have the form

for appropriate differential operators Q. These invariant

manifolds are simply (y, t) independent parts of algebraic

conservation laws existing for y or t independent Zaharov-

Shabat systems (these one dimensional (x, t) -dimensional systems

are called Lax systems). However such solutions are very

specific for general two dimensional solutions. Moreover, for

the two dimensional case we have no precise sense of the spectral

problem corresponding to arbitrary "quasipotentials" (by

quasipotentials we always understand coefficients of the

operators Ln and Lm). There are even more difficult questions:
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a) What is the sense of Hamiltonian structure for

two dimensional equations?

b) What are the solutions analogical to soliton solutions

with respect to genericity;

c) Does there exist a good analogue of finitely lacunary

potentials?

We (specialist, not necessarily author ) start to collect

the information on a), b), c) only for some special two-dimen-

sional equations and in particular, when m = 2, n = 3, however

we still have no idea of how to answer b) or c) (cf. Manin,

Kupersehmidt [13] for a) and Benney equation) L2-0 "

There is a lack of information for one dimensional Lax

cas
systems. For m = 2,3 and y independen , we have some good

results, but generally speaking, the situation with

min(m,n) &#x3E; 2 is unclear. Especially when this corresponds

to the case when m and n are not relatively prime. Then

even the problem of finding solutions corresponding to

albebraic curves becomes extremely difficult and we still don’t

know what kind of 9-functions arise here. Moreover for

non-relatively prime m and n we don’_t even have good

multisoliton formulae and there are even several points of

view on evolution and interaction of such multi-soliton

solutions (that clearly exist!). Because of the lack of a

precise analytical inverse scattering theory of higher order
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multi-dimensional equation we restrict ourselves to good

solutions in the whole complex plane- meromorphi c solutions.

The first difficult case will be m = 3, n = 5.

§2. Meromorphic Solutions of Two-Dimensional Equations and

Their Poles.

We know by [x2] , [8 ] , [~~] that the evolution of poles of

several one-dimensional equations (e.g. KdV, Boussinesq...)

is connected with the Hamiltonian

for the Weierstrass elliptic function 9(X) and with the

corresponding first integral Is J 
n 

- 1 n n = 1, 2,... of
n n

H9 described in [15 ] and [2] . ’

These one-dimensional systems have Lax. form

and so are included in more general two-dimensional equation

(2 dim). In this paper we shall confirm some natural conjuectures

about meromorphic solutions of (2 dim) and obtain new

solutions in terms of elliptic functions. 

In general the idea of the pole interpretation and the
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establishment of a connection with the Hamiltonian H 
6P 

can

be described along the lines of the following general scheme [9].

We consider the following special class of meromorphic

functions, residues and poles of which are expressed in

terms of the variables (x.x.) of Hn:1 1 -y

There exists a special sequence of differential equations

connected with (21) : :

Theorem 2.1: Let u have the weight k 
+ m + 2. Then

mm
there exist polynomials in

of degree

two and having all the monomials of weight k + 3 such that the

system of equations

satisfies the following properties:

1) the functions u k satisfy (C) if and only if x. 1 = x. 1 (t)
move according to H;
2) if u k (x, t) satisfy (C) and are meromorphic functions

with poles of order 2, then u 
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Here are the f irst few Q :

Corollary : If in the system (C) we put un _ 0 , then the

system (C)1 - possesses infinitely many polynomial

conservation laws.

The first such non-trivial system coincides with

the Boussinesq equation [10] u tt + ( u2 )xx + u xxxx = 0. In

general the system (C) describes one of the scheme of appro-

ximations of two-dimensional shallow water equation [11].

In fact the infinite chain system (C) is connected with

Lax or Zaharov-Shabat system corresponding to the

Schrodinger operator L 2 = d dx + u. Let us consider the

Zaharov-Shabat system corresponding to the case min(n,m) = 2,

i.e.

If we consider polynomials "k 0 k-1

then the following system
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is equivalent to the Zaharov-Shabat system

Here the coefficients of polynomials L2, Ln are expressed

in terms of functions uk- For example u = -2uO and if

then v n-2 = -nuo3

Thus using the main

property of the chain system (C) and putting u" ’ " " " " 

Oy

we obtain the following corollary* :

Pole evolution for Zaharov-Shabat system (L2 ,n ) for

each of the functions u, u. or v . coincides with the evolution’ k ]

of the particle system ai (y, t) , where in t direction

evolution is according to J2 = H and in y direction

according to J . a
n

*For the first time the infinite chain system (C) together
with the pole interpretation of meromorphic solutions and
formulation of conservations laws was given in D. V.

Chooduovsky, Infinite chains of non-linear equations of
evolution associated with one-dimensional many body problems
I. N.A.M.S. 24, no. 4 (1977 ) , A-387.
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Here for general n the coupling constant G for normal-

ization condition must be chosen as

Consequence. If we consider the Lax system, i. e. y or t

independent, then the evolution of poles is described by J 2
or Jn, respectively, with restrictions grad Jn - 0 or grad

2 = 0, correspondingly. 

For example let us consider a n-th order higher Kd V

equation. This equation as usual [1], [5]) [ 7 ] has the

form

This equation is equivalent to the Lax representation

where and :

then for u = -2 E. (x - ai)-2 the evolution of poles
i  is according to J with restriction grad J = 0 i. E

This was well known for n = 1 for ordinary KdV [1~ J , [8 ] and

also was proved in 1976 [12], [8 ] for a second KdV. Thus
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we confirm our general conjecture for the case min(m,n) = 2.

Mcreover infinite chain systems give us the possibility

to examine two dimensional laws of conservation. What do

we understand by two dimensional law of conservation? If

we have one component two dimensional function u = u(x,y,t)

then by law of conservation we understand

were P(u) and R(u) are polynomials in u, u x ,..., etc. But

this is a one-dimensional conservation law and it is possible

to introduce two dimensional laws of conservation:

where now P (u , R (u , T(u) are polynomials in u, uxx, ..
x xx

, 

u, u , Of course now triviality conditions
. x xx y yy

are different. In the first case we assume that P(u) is not

a full derivative in x., in the second case we assume that

P (u) is not a full derivative in x,y.

Infinite chain (C) allows us to find for any n &#x3E; 2

and any system (L2 j n) of two-dimensional equations infinitely

many two-dimensional conservation laws. Unfortunately in

this case we don’t know what precisely Hamiltonian structure

means and what is the condition of the involution of these
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conservation laws.

There is another possibility to obtain two dimensional

conservation laws for Kadomzev-Petviashvili and similar

two-dimensional equation: this is a Backlung transformation

arising from a spectral problem for Ln and L .
n ill

’ 

In general in order to obtain two-dimensional equations

with algebraic laws of conservation or with Backlung trans-

formation it is unnecessary to suppose that two operators

commute. As it was mentioned before it is quite enough that

they have common eigenfunction corresponding to only one

common eigenvalue. This gives us the possibility to investi-

gate the cases when two operators have higher order

derivatives and a
at any

§3. In general it is impossible by analogy to generalize

soliton theory from KdV equations to other infinite-dimensional

completely integrable systems. First of all we have no

solution of inverse scattering problem for operators of order

more than 2 (unlike with Schrodinger). Secondly we still

cannot solve the Gelfand-Levitan equation for this case. We

do not know exactly multisoliton solutions and we don’t know

how they interact. Our equations as usual have the form
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or, for the one dimensional case

In this case we know that for m and n non relatively

prime, the solution in general cannot be written down

through some 9-function of an algebraic curve. In this case

multisoliton behavior is also different from those of KdV.

E. g® for n = 4, m = 2 there can appear "gaizeron" and

multisolitons with non-elastic interaction (connected solitons).

However in any case it is possible to find explicitly all

meromorphic (rational, etc) solutions of one and two-dimen-

sional systems. This is based on the fact that for the

general system (L n,m ) the evolution of poles ai - a. i (t) is

goverened on y by J and on t by J . This result is
m n

proved for any meromorphic solution, when max (n, m) - 2. * So

in this case we have extremely simple formula for meromorphic

solutions. Corresponding solutions can be called solitons

because they are of course asymptotically stable and naturally

generic in the class of asymptotical states. For the case

min (m, n) ~ 2 we have proved that for any many particle

system a. - a. 1. (t) goverened in y by J 
n 

in t by J 
m 
we

i i n m
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get meromorphic solutions of (L n, m ) with poles a. i 
= a. i (t).

However for 3 and max(m,n) 2 5 there arise meromorphic

solutions with different behavior of poles corresponding to

another completely integrable many particle system.

If we consider operators in the form

then the equation

is equivalent to a system of equations for UOJ ul, u2 in
x,y,t. We’ll write this equation in a more convenient form.

For

we have the system
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From an analytical point of view this system of equations

possesses excellent meromorphic solutions. However for real

x the shape of the corresponding soliton traveling wave

solution differs completely from those of KdV. For example,

general soliton solutions consist of connected pieces with

different amplitude, but the same velocity. We present

examples Manin of one-soliton solution that can be

called "geizeron". This solution corresponds to the usual

. 
one dimensional case

This solution:

a) decreases on infinity

b) is periodic on t with period but

c) when cos 4a~t = -1 soliton gives explosion at the

origin x = 0.
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However it is possible to write down the expression for

multisoliton and general meromorphic solutions of our system.

These solutions in general have the form

for G = -4. Here poles ai move in y according to J4
and in t according to J2, for G = -4. In particular
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ê4. Completely integrable systems associated with a linear

operator of third order.

4.1. We have already considered the case min(n,m) = 2

and now we can come to the case min(n,m) = 3. This case

displays some very interesting particular features.

A. First of all any Lax equation .

or Zaharov-Shabat equation

is the system of non-linear equations for

coefficients of Lm or Ln depending on m  n or n  m

respectively. Here we assume at least that n and m do

not contain another number as a factor. Thus for min(m,n) = 2

we have a non-linear equation only for one function u. * For

the Lax system and m = 2 these are simply higher KdV equations.

For m &#x3E; 2 = n we obtain Lax systems resembling a Bonsinesq

equation but not having evolutionary form. So a question

arises whether it is possible to find some Lax system with
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min (n,m) &#x3E; 2 and having evolutionary form

for Q’ -polynomial in u and derivatives in x.

This must correspond to the situation where m  n and among

n - m coefficients of L n there is only one independent. In

this direction there was found in 1974 by Sawada and Kotera

( Prog. Theor. Phys. 51 no 5 ( 1974 ) ) and then by Caudrey,

Dodd and Gibbon (Proc. R. S. LOND A351 (1976)) a new

evolutionary equation of 5th order, which possesses 
"

n-soliton solutions. Later it was shown by Satsuma and

Kaup (J. Phys. Soc. Japan v 43 (1977) no. 2) and Dodd,

Gibbon (Proc. R. Soc. LOND A358 (1977), 287-296) that this

equation in fact corresponds to the Lax system with m = 3,

. 

n = 5 where L3 - d3 3 + u and the equation (second type KdV~ 
dx

equation) has the form (up to scalar transformation)

at the time as the usual second KdV equation has the form

In our paper (N. Cim. v 40B (1977 ~ no 2) it was given

precise pole interpretation for equation (E ) and it was
1
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mentioned that pole interpretation here leads to many new

particle problems, &#x26; Here we’ll give general descriptions

of the two-dimensional Zaharov-Shabat generalization of

(E ) and the precise form of a new many particle problem

on the line having additional first integrals. For this

we consider Zaharov-Shabat systems for m = 3, n = 4,5.

The possibility of finding a Lax system with 2  m  n

and with only one nonzero coefficient in Lm at least for" 
- m

m = 3, n = 5 gives us hope that it will be possible to

construct a really new evolutionary of first order in t

equations.

Pole interpretation suggests the following interesting

conjecture. e

Conjecture: There are completely integrable, in the sense

of multi-soliton solutions and algebraic conservation laws,

ev,, olutionary equations

for Q 
n 

polynomial in u, of weight 2n + 3,

where the number of non-equivalent up to scalar transfor-

mation equations for given n is not less than n (equal n).

Here by weight we understand that u has weight 2

and each space derivative adds weight one.
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A KdV equation gives one example and a second type KdV

equation gives the second for n 2 2.

4.2. We consider the Za .harov-shabat system in the first

non-trivial case, when min[n,m) &#x3E; 2. This means that we

consider the case n = 3, m = 4 and

.for operators L3 and L4 of orders 3 and 4, respectively.

If we denote

Then the two-dimensional equation

is equivalent to the following system of equations for
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(4.4 cent.) I

Now it is possible to exclude 

Here we omit possible constants, appearing in (4.5) after

solution (4.4) in general, since these constants are absolutely

not important.

We define

Then, taking into accoutn (4.4), (4.5) and (4.6) we obtain the

following simple system of equations for uolu1:
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Taking into account (4.7) into (4.8) we simplify (4.7)-(4.8)

to such system

Now we find the class of meromorphic solutions of(~ 3~4 ).
The form of these solutions is the following

and

or for an arbitrary Weirstrass elliptic function 9 (z) :
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Then the system of equations for ai . ei: i c I equivalent to

3,4 i s in f act the system, induced by J3and J . 4 We

have for the cannonical variables i E I and two

Hamiltonian flows

in other words in our traditional notations

Then, for from (4.12) the satisfiability of (4.9)-

4 i s equivalent to the fact that a a are governed on t

according to J3 and on y according to J4:

Lemma 1: For
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the system (£3,4) is equivalent to

and

This system (4. l~ ) - (~, l7 ) is, of course, consistent

and in terms of a. and e. can be written in precise form

-2 
1

for %(x) = x

and for arbitrary (x)., (a. - a.) 20132 must be substituted for
i j

In other words, pole interpretation for n = 3, m = 4

is consistent with our conjecture on the connection of

meromorphic solutions with many-particle Hamiltonian J : n 2 2.
n
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4.3. We consider the case m = 3, n = 5. Then the equations

have the following form

Here we find an extremely important fact: the conditions

gives us an invariant submanifold for (L 3,5 ). Then



33-

Then instead of (L3~5) under the restrictions (R) we have

the following two-dimensional equation

This system is equivalent to

for

For the y-independent case we obtain a simply Lax system

equivalent to (E ) -second type KdV equation.
In fact equation (A) possesses not only multisoliton

solutions but also excellent general elliptic and arbitrary

meromorphic solutions.

Lemma :, If u 1 = is the meromorphic solution of (A)
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for some ~9 (x) , at least for 9 (x) = x . Here the function

satisfy (A) iff

This system is consistent and (Al) gives new many-particle

problems having many invariant submanifolds.

We must mention that in the y-independent case the

system ( 1 ) - (A2) was written in as pole interpretation- 1 2

of equation (E1) . The new system (An) corresponds to many-

particle problems not governed by any Hamiltonian J .
n
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Appendix to §4.

There exists one two-dimensional system of equations,

having physical sense and having Hamiltonian form and two-

dimensional laws of conservations. This is the so-called

theory of long waves in shallow water: Benney equations:

x-horizontal, Y 2 0-vertical coordinates, u (x, y, t) -horizontal

component of velocity at (x,y) ; h (x, t) -the height of a free

surface over (x, 0 ) at t. 
-

For this system is equivalent to

According to Benney D. J. [Studies App. Math., Lll,No 1,

(1973), 45-50] and Miura R.M. [Studies App. Math. LIII, No 1,

(1974)~ 45-56] there are conservation laws for this system:

and
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Many recurrent formulae for H , H were given by Manin Y.M.,
n n

Kuperschmidt B. A. (Funct. Anal. Appl. v,ll, No3, (1977 ) ] .

Simultaniously Manin-Kuperschmidt established a Hamiltonian

structure for this equation for the y-independent case.

Then we have the Hamiltonian form

or the Hamiltonian system with skewsymmetric operator

However we must add the following observation, made

first by G. B. Whitham [Linear and Nonlinear Waves, 1974]. The

system of equations (Sh W ) is linearized by the hodograph2

transformation

Analytical solutions for (Sh ’2 or for (Sh W1) in

an An representation can also be obtained by using the chain

system (C) if we put in this system G ~ 0.
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