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¢ 0. INTRODUCTION

This paper contains description of general approach to Hamil-
tonian completely integrable systems in one space, one time (x,t) or
two-space, one time (x,y,t) dimensions. Also significant part of this
paper contains detailed investigation of many concrete two(space)
dimensional completely integrable systems and complete analysis of
their meromorphic solutions.

In § 1 we explain "formal variational calculus'" of Gelfand,
Dikij and give the definition of Poisson-Gardner brackets for one
(space) dimensional Hamiltonian systems.

In § 1 we discuss in details proper definition of "complete integra-
bility" one one- and two-dimensional systems. We consider the existen-
ce of wide class of meromorphic solutions and systems of equations
associated with some algebra of commutative differential operators.

In § 2 we present infinite systems of non-linear equations

s

. . . 5 . .
in derivatives 5% 5% ¢ (C)k : k=0,1,2,... the meromorphic solutions

uk(x,t) of which have evolution of poles a. = ai(t) according to Hamil-
tonian H with potential 6x~2.

Using this system we describe exactly evolution of poles of all higher
Korteweg-de Vries equation ut::Qn(u,x;,...,uX.'_x). As it was conjec-
tured by Airault, McKean, Moser [8] the evolution of poles is given

by Hamiltonian J2n with restriction grad H= 0.

In § 3 we+;ive brief discussion of Zakharov-Shabat equation
for n=4, m= 2. Detailed picture is given in the paper of D.V. Chudnov-
sky '"Meromorphic solutions of two-dimensional equations with algebraic
laws of conservation", part B, (this volume) | 14].

The most interesting part is § 4. In this part we present
convenient form of two-dimensional completely integrable systems of

Zakharov-Shabat form

dL dL
m n

dat T Tay [Ln’Lm] ’
for m=3, n=4,5. For this case the character of meromorphic solutions
either is connected with potential Gx_2 (for n=4 and in some cases of
n=5), or can lead to absolutely new completely integrable many-particle
system (e.g. some cases of n=5).
As an Appendix to § 4 we give results of Manin and Kypershmidt

on Benney equation.
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§1. We will discribe a formal algebraic approach leading
to the complete integrability of equations connected with
algebraic curves.

We have the following notations. Let B be the associa-
tive ring with unit over Q with differentiation
d: B > B; C the set of constant C = {b € B: 8b = 0}. BI[D]
be the algebra of differential operators over B, i.e. the
algebra generated by B and one additional element D
with relation Db - bD = 8b = b' for any b ¢ B. Then for
n > 0, Bn[D] be the set of dififerential operators of
order > n from B[D], BO[D] = B and B[D] = Uan[D].

The most interesting case is when B 1is the ring

generated by finite set of functions and their derivatives.

Now for P ¢ B we write P(J) E]P: j=0,1,2,... . We suppose
1.0: There are such u, ...,uq e B that

_ (3) . _ L= 0.1.2 ]
(1.1) B = C[ur c:r=1...9g. 3 ,1,2,...1.

Partially supported by NSF Grant MCS77-07660 and DNR Grant
N0O0O0O14-78-C-0318.



This B 1is called a differential algebra of free type

with the generators ul,...,uq. Now in B there are defined

C-differentiations E/Buéj)

(1.2) a. : B> B, as B = C[uéj)],

and we can define also gradient or partial variational

derivative:

(o0
(1.3) e =Z -1)789.—— : i=1,...,q
su, (3)
i . du,
J=0 i
and we put
8 8 8
= . q
(1.4) (Su T ): B »> BY,

su 1
In these notations Gelfand, Dikij and Manin have
developed [1], [2 1, [4] the "formal variational calculus"
and have shown how to introduce in general the Hamiltonian

structure on the nonlinear evolutionary equations.

Eirst of all we have gelfand's

Proposition 1.1: Let C = k [and 3k = {0}], then
Ker 8/8u = Im & + k for a given B. So for b € B = k[uijl],

8/8ub = 0, if b 1is a derivative of some element of

(3)
k[ui 1.

We can put B = B/3B and for P,Q ¢ B, P ~ Q or P = Q(mod

3B) ,



if P - Q € Im 3.
For B-module N, the elements of Nq we understand as
vector-column of height g and i<th coordinate of P ¢ N9

being Pi; ﬁt will be the vector row (P

l,...,Pq). The

operator -t of transponing we'll also use to g X g matrices
from Mq(B[a]). Analogically 8P/su be the column from

_t — —
8P/6u, and the 8P/6u  the row. For P ¢ BY, 0 e N9, the

Eté is the "scalar p roduct" z? PiQi e N etc.

=1

Then on B = B/3B there is a natural structure of Lie

algebra with brackets [ , ]:

Theorem (Lax-Gelfand-Gardner)l.2: Let A ¢ Mq[k][a] be the
skew symmetric operator, i.e. for all ﬁ,é € Bq we have

t -

P AQ ~ étA§ (mod 3B). We define bracket [ , ]:

B XB > B by the formula

(1.5) for P* = P(mod 3B), Q* = Q(mod 3B);

= 2P

[P*,Q*] = A-‘ég(mod 3B).

su du

Then the brackets [P*,Q*] satisfy Jacobi identity and
so make B = B/Im 3 a Lie algebra.
The brackets [ , ] are defined because of Proposition 1l.1.
Garxdner [3 ] was the first to realize what the Poisson
brackets in the infinite-dimensional cases were. The theorem

1.2 in the complete generality both for the cases of scalar
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and vector functions belongs to Gelfand-Dikij and Gelfand-
Manin -shubin [1], [2], [4].

Why is it interesting? Because this enables us to
interpret all evolutionary equations as Hamiltonian. For
example, let's consider the one-dimensional situation and

vector function u = ﬁ(x,t). If A = A[3/3x] then for the

system
(1.6) U _ ara/ex] x 29,
3t -
du
For functional IQ* = SQ dx (Q € B) [which are defined

as class of equivalence Q* of Q, up to full derivatives of
elements of B (i.e. 3B), and exist analytically for: a)rapidly
decreasing ur(x,t) for |x| » =; b) for periodical ur(x,t)

on x; c) for quasi-periodical functions ur(x,t) as mean
values] this means

2u

(1.6) a3 = A. I

Q*’

o Io»
ol

Now we have the Liouville formula in infinite dimensional
situations:

o3I,

ot

(1.7) = I[ for I = SP dx , P e B.

P*, Q%] p*

For example, the fact that IP* is a first integral of

(1.6)' means that
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TIp*,0%]
or

[P*,0Q*] = O.

This is equivalent to

(1.8) 8P . 20 € 9B,
_t -—
du su

or

(1.8)" 2Ea. £2 = S
du du % »Q

(3)
for RP 0 € k[u 1.

r
3

In fact there is a deep connection between nonstationary
Hamiltonian problem (1.6) and the corresponding time

independent (stationary) problem correspending to the case

3u/at = 0. This connection will be shown below.

Now we can already consider special Hamiltonian systems
(1.6) and show how they are connected with "isospectral
deformations" and Lax pairs. In fact these systems having

the Lax pairs have infinitely many first integrals I and so they

P*
are called completely integrably or nearly completely integrable.

We must say that only for Hamiltonian with n degrees of

freedom the existence of n commuting (in involution) and



functionally independent first integrals implies real complete
integrability and allow to obtain formulae for solutions
through hyperelliptic integrals. In infinite dimensional
situations the existence of infinite numbers of conservation
laws shows nothing [take for example the product of an ergodic

finite dimensional system and a completely integrable one].

In this paper we will try to consider mainly focusing
at particular equations which are the good properties of two
dimensional equations that are supposed to be completely
integrable. As a natural test for complete integrability
we take:

a) the existence of good "multisoliton" solutions;

b) the existence of additional conservation laws.

By multisoliton solutions we do not mean precisely localized
and elastically interacting soliton shape like solutions.
Our point of view is slightly different from the ordinary
framework of inverse scattering.

In fact the main class of solutions which we consider
is the class of meromorphic solutions u(x,y,t) as functions
on x in the complex plane for (y,t) = [yo,yl] X [tO’tl]'
Fcr different reasons algebraic as well as analytical methods of

inverse scattering produces mainly meromorphic solutions.



These are "multisoliton" and rational solutions of course;
solutions expressed through g-function correspcnding to general-
ized finitely lacunary quasipotentials and many others.

As meromorphic solutions are described by positions of their
poles our criteria of complete integrability can be reformulated

in the following way:

Problem: To find non-linear equations in ﬁ(x,y,t) such that
the evolution of poles ai(y,t) correspond to solvable
(completely integrable) many particle problems.

If we can solve a non-linear equation at least for the
meromorphic case, then we are absolutely sure that such an
equation is a good candidate for complete integrability, as

for example it has very good generalized multisoliton solutions.

Remark 1l: The idea of pole interpretation on the example of
the KAV Dbelongs to Kruskal but even now the precise
evolution of poles for arbitrary n-soliton solutions is

not absolutely clear.

Remark 2: Pole and only poles interpretation produces, for
example, complete integrability of Benjamin-Ono equation,
where poles correspond to particles with two charges +i and -i.

In general all known two dimensional systems suspicious
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on complete integrability arise from conditions of commuta-

tivity of two operators
[Ll}Lz] = O)

where Ll and L, are differential operators in 3/ox, 3/dy,
and 3/3t. Then the condition of their commutativity is
expressed as a system of non-linear partial differential

equations on coefficients of operators L L

12 Loy There are
. different forms of presenting conditions of commutativity of
operators especially for operators in many dimensions. For

example it can be the condition of existence of common

eigenfunction for the operators Ll’L2 corresponding to all

eigenvalues or to one prescribed eigenvalue. The latter
condition is less restrictive then the condition of commuta-

tivity of Ll and L2. However this situation is not so

carefully examined (this is the "less completely integrable
case").

We have more or le ss information for the strong condition
of commutativity [Ll’L2] = 0, In this situation non-trivial

equations arise only in the case when Ll and L_ are at most

linear operators on 3/3t and 3/dy. In this situation, we

can write
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and the equation, which is called Zaharov-Shabat equation

has the form

(2 dim) [Ln,Lm] = -

For this system we know of the existence of a lot of solutions
arising from algebraic curves. Existence of these solutions
obtained by Burchnall, Chaudy, Novikov, McKean, Trubowitz,
Krichiver, is explained easily by the fact that each of the
Zaharov-Shabat systems has a lot of invariant submanifolds.

These invariant manifolds have the form
[Ln,Q] =0 and [Lm,Q»] =0

for appropriate differential operators Q. These invariant
manifolds are simply (y,t) independent parts of algebraic
conservation laws existing for y or t independent Zaharov-
Shabat systems (these one dimensional (x,t)-dimensional systems
are called Lax systems). However such solutions are very
specific for general two dimensional solutions. Moreover, for
the two dimensional case we have no precise sense of the <epectral
problem corresponding to arbitrary "quasipotentials" (by
quasipotentials we always understand coefficients of the

operators Ln and Lm). There are even more difficult questions:



a) What is the sense of Hamiltonian structure for

two dimensional equations?

b) What are the solutions analogical to soliton solutions

with respect to genericity;

c) Does there exist a good analogue of finitely lacunary

potentials?

We (specialist, not necessarily author ) start to collect
the information on a), b), c¢) only for some special two-dimen-
. sional equations and in particular, when m = 2, n = 3, however
we still have no idea of how to answer b) or c) (cf. Manin,
Kupersehmidt [13] for a) and Benney equation)(see [IQJ)LZCDJ)Q

There is a lack of information for one dimensional Lax
systems. For m = 2,3 and y independenE%2%Z have some good
results, but generally speaking, the situation with
min(m,n) > 2 is unclear. Especially when this corresponds
to the case when m and n are not relatively prime. Then
even the problem of finding solutions corresponding to
albebraic curves becomes extremely difficult and we still don't
know what kind of g-functions arise here. Moreover for
non-relatively prime m and n we don't even have good
multisoliton formulae and there are even several points of
view on evolution and interaction of such ' multi-soliton
solutions (that clearly exist!). Because of the lack of a

precise analytical inverse scattering theory of higher order
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multi-dimensional equation we restrict ourselves to good
solutions in the whole complex plane- meromorphic solutions.

The first difficult case will be m = 3, n = 5,

8§2. Meromorphic Solutions of Two-Dimensional Egquations and

Their Poles.

We know by [12], [81, [14] that the evolution of poles of
several one-dimensional equations (e.g. KdV, Boussinesd,...)

is connected with the Hamiltonian

1 2
Hy, =7 Z y; + GZ Q(Xi xj)
iel i#j
for the Weierstrass elliptic function #(X) and with the
corresponding first integralé Jn = i tr(Ln): n=1,2,... of
H@ described in [15] and [12].

These one-dimensional systems have Lax' form

daL
at - (LoD,

and so are included in more general two-dimensional equation

(2 dim). 1In this paper we shall confirm some natural conjuectures
about meromorphic solutions of (2 dim) and obtain new

solutions in terms of elliptic functions.

In general the idea of the pole interpretation and the
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establishment of a connection with the Hamiltonian H_ can
be described along the lines of the following general scheme [9].
We consider the following special class of meromorphic

functions, residues and poles of which are expressed in

terms of the variables (x.,%X.) of H :
i1 2
)
A Z K+l
(2.1) uk(z,t) = — @z - Xi)’ k=0,1,2,... .
. oxX.,
1el 1

There exists a special sequence of differential equations

connected with (21)

Theorem 2.1: Let U % have the weight k + m + 2. Then
3Ky e o
k&vN”;J
m
there exist polynomials Qk(uo,...,uk_l) in
uO’uO,x""’ul’ulx"'"uk~l""’uk—l,xx..."" of degree

two and having all the monomials of weight k + 3 such that the

system of equations

d
(C)k uk,t + uk+l,x + ax Qk(uo,...,uk_l) = 0, k =0,1,...

satisfies the following properties:

1) the functions ak satisfy (C) if and only if x, = Xi(t)

move according to H97

2) 1if uk(x,t) satisfy (C) and are meromorphic functions

with poles of order 2, then = &k.



-15-

Here are the first few 0

nak:
G 2 G G
= 5 = - - + — , & = - —
Ay = 0. 0y 2 Yo T 12 Yoxx® 2 Guoty * e Y1k’
.82 . .82 . [
3 2 "1 072 T 8 “ox ~ 12 “0"0oxx ' 120 “oxxxx
+ s u
4 T2xx’ ot
Corollary : If in the system (C) we put u = 0, then the
system (C)l - (C)n_l possesses infinitely many polynomial

conservation laws.
The first such non-trivial system coincides with

the Boussinesqg equation [10] u + (u2)X + u = 0. 1In

tt X XXXX

general the system (C) describes one of the scheme of appro-
ximations cf two-dimensional shallow water equation [11].
In fact the infinite chain system (C) is connected with

Lax or Zaharov-Shabat system corresponding to the

Schrdédinger operator L2 = d2/dx2 + u. Let us consider the
Zaharov-Shabat system corresponding to the case min(n,m) = 2,
i.e.

e

[Ly-Ln] = %¢ dy

If we consider polynomials Qk(uo,...,uk_l) in
...3 k=0,1,2,...

B0 %0,k oM Mk e T ’

then the following system
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d
+ — 0, (u

uk,t + uk+l,x ax Ok O,...,uk_l) =0: k =0,...,n-3
(Cn) and

u + u + 4 (u u ) =0

n-2,t 0,y dx n-2"0°"""7 k-1 :

is equivalent to the Zaharov-Shabat system

3L oL,
(L, Q) [Lpebl =38 - %5

Here the coefficients of polynomials L Ln are expressed

2)
in terms of functions u - For example u = —2u0 and if
n n-2

! d + + v then v = -nu
n n n-2 n-2 " 0’ n-2 0’

Vo3 = -n(n-2)/2 uO,x - n/4 Upsenn Thus using the main

property of the chain system (C) and putting un—l,x = uo’y

we obtain the following corollary*:

Pole evolution for Zaharov-Shabat system (L2 n) for
3

each of the functions u, u, or vj coincides with the evolution

of the particle system ai(y,t), where in t direction

evolution is according to J2 = H and in y direction

according to Jn.

*For the first time the infinite c¢hain system (C) together
with the pole interpretation of meromorphic solutions and
formulation of conservations laws was given in D. V.
Chooduovsky, Infinite chains of non-linear equations of
evolution associated with one-dimensional many body problems
I. N.A.M.S. 24, no. 4 (1977), A-387.
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Here for general n the coupling constant G for normal-

ization condition must be chosen as

Consequence. If we consider the Lax system, i.e. vy or t

independent, then the evolution of poles is described by J2

or J, respectively, with restrictions grad J, = 0 or grad
J2 = 0, correspondingly.
For example let us consider a n-th order higher Kd Vv

equation. This equation as usual []], [51, [7 ] has the

form

dL2
ac - Paolonls
-1
where L_ = QE— + d L = gffj}— + v QEE—-— + +
2 T 2T A bonin T one1 T Von-1 _2n-1 70T Yoo
. dx dx dx
then for u = -2 ZieI(X - ai)_2 the evolution of poles
ai = ai(t) 1s according to J2n+l with restriction grad J2 = 0 1.
-3 .
}[: (a. - a.) = 0: i e I.
1 J
j#i

This was well known for n = 1 for ordinary Kdv [12], [8 ] and

also was proved in 1976 [12], [8 ] for a second KdVv. Thus

UiiVedohe ol aRCiuoLE
LABORATCIRE
[“ENUXTHENUXT“)UES
1NSﬂTUTFOUHER
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we confirm our general conjecture for the case min(m,n) = 2.
Mcreover infinite chain systems give us the possibility
to examine two dimensional laws of conservation. What do
we understand by two dimensional law of conservation? 1If
we have one component two dimensional function u = u(x,y,t)

then by law of conservation we understand

=N - -
ot P(u) + % R(u) = 0,
" where P(u) and R(u) are polynomials in u, U s etc. But

this is a one-dimensicnal conservation law and it is possible

to introduce two dimensional laws of conservation:

S 2 8 -
3t P(u) + x R(u) + ay T (u) o,

where now P(u), R(u), T(u) are polynomials in u, Us U oo e

U, U , U _ ,.e., ... Of course now triviality conditions

u _,u_ .

X XX Y YY
are different. 1In the first case we assume that P(u) is not
a full derivative in x , in the second case we assume that
P(u) is not a full derivative in X,Y.

Infinite chain (C) allows us to find for any n > 2
and any system (L2 n) of two-dimensional equations infinitely
3

many two-dimensional conservation laws. Unfortunately in

this case we don't know what precisely Hamiltonian structure

means and what is the condition of the involution of these
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conservation laws.

There is another possibility to obtain two dimensional
conservation laws for Kadomzev-Petviashvili and similar
two-dimensional equation: this is a Backlung transformation
arising from a spectral problem for Ln and Lm.

In general in order to obtain two-dimensional equations
with algebraic laws of conservation or with Backlung trans-
formation it is unnecessary to suppose that two operators
commute. As it was mentioned before it is quite enough that
they have common eigenfunction corresponding to only one

common eigenvalue. This gives us the possibility to investi-

gate the cases when two operators have higher order

derivatives on %E and %;.
§3. 1In general it is impossible by analogy to generalize

soliton theory from KdV equations to other infinite-dimensional
completely integrable systems. First of all we have no
solution of inverse scattering problem for operators of order
more than 2 (unlike with Schrodinger). Secondly we still
cannot solve the Gelfand-Levitan equation for this case. We

do not know exactly multiscoliton solutions and we don't know

how they interact. Our equations as usual have the form
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S
3

dt  dy N [Ln’Lm]

or, for the one dimensional case

at [Ln’Lm]'

In this case we know that for m and n non relatively

prime, the solution in general cannot be written down

through some g-function of an algebraic curve. In this case

multisoliton behavior is also different from those of Kdav.

E.g. for n = 4, m = 2 there can appear "gaizeron" and

multisolitons with non-elastic interaction (connected solitons).

However in any case it is possible to find explicitly all

meromorphic (rational, etc) solutions of one and two-dimen-

sional systems. This is based on the fact that for the
general system (Ln m) the evolution of poles a, = ai(t) is
3

goverened on y by Jm and on t Dby Jn. This result is

proved for any meromorphic solution, when max(n,m) = 2. So
in this case we have extremely simple formula for meromorphic
solutions. Corresponding solutions can be called solitons
because they are of course asymptotically stable and naturally
generic in the class of asymptotical states. For the case

min(m,n) > 2 we have proved that for any many particle

system ai = ai(t) goverened in y by Jn in t Dby Jm we



get meromorphic solutions of (Ln m) with poles a, = ai(t).

3

However for min(m,n) > 3 and max(m,n) > 5 there arise meromorphic

solutions with different behavior of poles corresponding to
another completely integrable many particle system.
If we consider operators in the form

L _.QE_ + u, L, = gﬁ* + u QE— + u a4 + u
2 dx2 4 dX4 2 dx2 1 dx 0

then the equation

4

u_ in

is equivalent to a system of equations for u 10 Yy

o’ Y

X,y,t. We'll write this equation in a more convenient form.

For _
_ !
U1 T Yox 2
-2 4 L oxx 1 .2, 0
Yo T 12 Toxx T 4 8 2 4
we have the system
(w. = -a
Yor T TMix
5. —ua. +=u
¢ Y1t T Yox T 3 Taoxxx 2 2x
a - 2u _ 2 u + U, u. + u,u__.
0ot 2y 3 T1lxxx 1x 2 1 2x
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From an analytical point of view this system of equations

p ossesses excellent meromorphic solutions. However for real
x the shape of the corresponding soliton traveling wave
solution differs completely from those of KdV. For example,
general soliton solutions consist of connected pieces with
different amplitude, but the same velocity. We present

examples Manin [16] of one-soliton solution that can be

called "geizeron". This solution corresponds to the usual

. one dimensional case

_ 2a2 ch 2ax - cos 2ax - 2 sin 4a2t

B 2
ch 2ax + cos 2ax + 2 cos 4a t©
sh 2ax - sin 2ax
by = -2a 2
ch 2ax + cos 2ax + 2 cos 4a t
u2 4u2x’ Y 6“2xx 4“blx 4“2M2x
u. = -4 - 6 + 8. )2 + 4 )
0 Hoxxx B 1xx Hox Hito/y

2
+ 6p‘2"L2xx - 4“’2}{”"2'

This solution:
a) decreases on infinity
b) 1is periodic on t with period n/2a2, but

c) when cos 4a2t = -1 soliton gives explosion at the

origin x = 0,
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However it is possible to write down the expression for
multisoliton and general meromorphic solutions of our system.

These solutions in general have the form

=g
i

5 -4 E:' P(x - ai);
iel
u, = -4 Z ¢ @ (x - ai)
iel
u,. = -4 (azl + G fa., - a.))P(x - a.)
0 it i Jj i
ieI j#L
for G = -4. Here poles a; move in y according to J4
and in t according to J2, for G = -4. In particular

aiie = 4 E 0'(ai - aj): ie I.

jAL



§4. Completely integrable systems associated with a linear

operator of third order.

4.1. We have already considered the case min(n,m) = 2
and now we can come to the case min(n,m) = 3. This case
displays some very interesting particular features.

A. First of all any Lax equation

dL
at [Ln’Lm]

or Zaharov-Shabat equation

aL 3L
n

m
3t day [T L]

is the system of non-linear eqguations for
min{m - 1, n - 1}

coefficients of Lm or Ln depending on m < n or n< m
respectively. Here we assume at least that n and m do

not contain another number as a factor. Thus for min(m,n) = 2
we have a non-linear equation only for one function u, For
the Lax system and m = 2 these are simply higher KdV equations.
For m > 2 = n we obtain Lax systems resembling a Bonsinesqg

equation but not having evolutionary form. So a question

arises whether it is possible to find some Lax system with
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min(n,m) > 2 and having evolutionary form

u = Q’(u,ux,...)

for Q'-polynomial in u and derivatives in x.

This must correspond to the situation where m < n and among
n - m coefficients of Ln there is only one independent. 1In
this direction there was found in 1974 by Sawada and Kotera
(Prog. Theor. Phys. 51 no 5(1974)) and then by Caudrey,
Dodd and Gibbon (Proc. R.S. LOND A351 (1976)) a new
evolutionary equation of 5th order, which possesses
n-soliton solutions. Later it was shown by Satsuma and
Kaup (J. Phys. Soc. Japan v 43 (1977) no. 2) and Dodd,
Gibbon (Proc. R. Soc. LOND A358 (1977), 287-296) that this
equation in fact corresponds to the Lax system with m = 3,

3

d
n = 5 where L3 =3 + u and the equation (second type KdV
dx

equation) has the form (up to scalar transformation)

(E.) u, + 45u2u + 15(u_ u + uu ) + u =0
1 t X X XX XXX KXXXX

at the time as the usual second KAV equation has the form

u, + 10uu + 20u u + 30u2u + u = 0
t XXX X XX X XXXXX

In our paper (N. Cim. v 40B(1977)no 2) it was given

precise pole interpretation for equation (El) and it was
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mentioned that pole interpretation here leads to many new
particle problems. Here we'll give general descriptions
of the two-dimensional Zaharov-Shabat generalization of
(El) and the precise form of a new many particle problem
on the line having additional first integrals. For this
we consider Zaharov-Shabat systems for m = 3, n = 4,5,

The possibility Qf finding a Lax system with 2 < m < n
and with only one nonzero coefficient in Lm at least for
m = 3, n =5 gives us hope that it will be possible to
construct a really new evolutionary of first order in t

equations.

Pole interpretation suggests the following interesting

conjecture,.

Conjecture: There are completely integrable, in the sense

of multi-soliton solutions and algebraic conservation laws,

eve olutionary equations

Ue T Qn(u’ux""’ux...x)
Mg
2n+1
for Qn polynomial in u, ux""’ux...x of weight 2n + 3,
| W
2n+1

where the number of non-equivalent up to scalar transfor-
mation equations for given n is not less than n (equal
Here by weight we understand that u has weight 2

and each space derivative adds weight one.
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A KdV equation gives one example
equation gives the second for n > 2.
4.2. We consider the Za harov-Shabat

non-trivial case, when min{n,m} > 2.

consider the case n = 3, m = 4 and
dL dL

(L ) = -2 =
n,m dt dy
. for operators L, and L, of orders 3

3 4

If we denote

and a second type KA4dv

system in the first

This means that we

(LT ]

and 4, respectively.

d d
(4.1) L3 = N + uy T + Uqs
4 2
ad d d
(4.2) L4 = + v2 + vl e + vy
dx dx

Then the two-dimensional equation

dL
(4.3)

[L3,L

4l

for



(4.4 cont.)| v + 3vy + 3v! + u.v! - 4u? - 6uf

2 1 0 12 1 0
- 2v2ul = Vol
1
IJ "t n 1 'v 4 ne n
E v+ 3vO + ulvl ul uO v2ul
LT 2Vl T Yy T Ve T oMyt
; "o+ ou, vl - u'v - v u' - v,u!l =v - u
Yo 1Yo 0 2Y0 1% T Vot oy
Now it is possible to exclude vo,vl,v2:
_4 .
Vo T3 %
2 ., .4
(4.5) vy =349 + 3 Ui
vl_.éu +—u|ll+_2—ull+_.uul
0 9 "1t 9 370 171

Here we omit possible constants, appearing in (4.5) after

solution (4.4) in general, since these constants are absolutely

not important.

We define
ul
- 1
4.6 = J——
( ) u u >

Then, taking into accoutn (4.4), (4.5) and (4.6) we obtain the

following simple system of equations for ao,ul:

- u - u 7

2 -— 4 —
4.7 I mo_ = -
( ) 3 4% 3(u u.) ot 197

01

w I
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1 v 1
4.8 e -4 4 Co_ 2 Vo
(4.8) g uy -3y * 7)) 3 (ug)
— " —l " — |2 1] — 11} 1
3 (uguy) o%1e T gluy )t + S(ujuy)
_4 2=, _ - iy
T 9 f Sree®® 3 Uoe T Uy, T T

Taking into account (4.7) into (4.8) we simplify (4.7)-(4.8)

to such system

- 2 am é(‘l-l u )l _é 'G. - u .
4.9) 3 3V701 3 ot ly
l—- v —_— 3 ] _‘2 2 ] _]_' n - |2 '
ox 18 U1t 57 () 3(8g)" - g ul g w)
£, ,) 1 Wy _ 4 f -
3,4 + 3(ulul) -5 ulttdx + uOy = 0.

Now we find the class of meromorphic solutions of(;é3 4).
2

The form of these solutions is the following

-2
(4.10) u, = -3 }:? (x - ai)
ieI
and
(4.11) . = 2:: (x - a,) 2
‘ . 0" ©i i
iel

or for an arbitrary Weirstrass elliptic function &(z):

ful=-3 Zé(x—zi);

ieI

(4.12) _
uy = }:: e, f(x - ai).

iel
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Then the system of equations for a;,e;: i ¢ I equivalent to

(£3 4) is in fact the system, induced by J3 and J4. We
3
have for the cannonical variables (ai,bi): i € I and two

Hamiltonian flows

— 1 3 .
(4.13) I —3-{3 j{: bi - EE:‘bi + bj)é’(ai - aj)},

ier i3
e 1 }E: 4 2:: 2 2. :
(4.14) J4 = 4{4 bi (bi + bibj + bj)Q(ai - aj)
iel i#j P

r ,ﬁ
+ ZL_ Z 6>(a.l - aj)Q(ai - ak)
i {j,k}#zi
1 2
+ - —
i#3
in other words in our traditional notations

{ J, = (-3)3,; J, =43, and
(4.15) \‘
G = -1.

Then, for Go,ul from (4.12) the satisfiability of (4.9)-
(23 4) is equivalent to the fact that a, are governed on t

according to.3; and on y according to-EZ:

Lemma l: For

u, = -3 Z@(x - ai),

ieT

u, = E e, f(x - ai),

iel

(4.12)
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the system (2 ) is equivalent to

3,4
(4.16) e. = 3b,.
1 1
and . _
oJ
a =——"—3 b e _a__é .
it 3b. ° it sa, '
1 1
(4.17)
3T T
iy~ ab, °  “ij da, . T & *
1 1

This system (4.16)-(4.17) is, of course, consistent

and in terms of a; and e, can be written in precise form

for #(x) = x_2
__ 1.2 Y -2
a . = 384 + 3 -__(ai - aj) ;
jAL
_4 3 _4 | -2
aiy = 27ei 3 Z(2ei + ej) (ai aj) :
J#AL
e = 6 (e. + e.)(a. - a )_3: ielI
it i 3j i j
j#L
and for arbitrary €(x), (ai - aj)—2 must be substituted for
_3 , _
O(ai - aj) and (ai - aj) for & (ai aj)/( 2).

In other words, pole interpretation for n = 3, m = 4
is consistent with our conjecture on the connection of

meromorphic solutions with many-particle Hamiltonian Jn: n > 2.
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4.3, We consider the case m = 3, n = 5, Then the equations
oL L
5 3 _

(L3,5) dy dt [L3’L5]

3 5 3 2

o) o) fo) o) d 3

= —— - = - 4 —_— —_— _—

for L3 3 + Uy Sx + Uy L5 5 v3 3 + v2 5 + vl 3

ox ax X ox

have the following form

3v! - 5u! =0

3 1
3v3 + 3v2 - lOul - 5uO = 0;
mog "oy ' LI e "o ] - -
v3 3v2 3vl ulv3 lOul lOuO 3ulv3 V3y'
| ni n 1 ] - v - oo n
@ ) ‘/ AVAEE 3vl + 3v0 + ulv2 5ul lOuO 3u1v3a
3,50
- 3u0v3 - 2ulv2 = V2y7
n + 3 n + ) v 5 lv 1] 1]
vl VO ulv1 - ul uo - ul'v3 - 3uov3-
- 2u0v2 - ulv2 - ulvl = viy - ult;
111] ] V n
+ — - - " - ] = - .
\yo U1Vo T Yo T HoV3 T YgV¥z T YoV T Yoy T Yot

Here we find an extremely important fact: the conditions
(R) u, =0, v, =0

gives us an invariant submanifold for (L3 Then

,5)
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- N
2 3 "1
R O 2.2 5
v1 =9 u! + 5 ul + 5 j ulydx.

Then instead of (L3 5) under the restrictions (R) we have
b

the following two-dimensional equation

a ] —
(a) dx(ulxxxx + 5ululxx + 3 u, )=

da
=5 + 5 —_— -
ulxxy J‘ulyydx + 5 dX(ul f ulydx) 9ult.

This system is equivalent to

an! aL!
5 __3 _ v
for
3
4 a
Ly =73 %Y 4% -
ax

For the y-independent case we obtain a simply Lax system
equivalent to (El)—second type KdV equation.

In fact equation ()\) possesses not only multisoliton
solutions but also excellent general elliptic and arbitrary

meromorphic solutions.

Lemma: If u; = ul(x,y,t) is the meromorphic solution of (p)

for (y,t) € [yo,yl] X [to,tl], then
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u, = Z(—6)0(x - ai)

iel
for some #(x), at least for #(x) = x_2. Here the function
u, = Z(-6)9(x - ai)
iel
satisfy (p) iff
= - 6(a, + a. )& . - a.
(Al) aiyy Z (aly ajy) (al aJ)
J#L
+ 72 E (@ (ai - aj)é’(ai - ak)
{3,k}Z1

+ &' (ai - ak)é’(ai - aj): ie I;

5 2 - -
(Az) 3¢ = 7 9%y + 40 E::. 9(ai aj)Q(ai ak)
{i,k}Zi
10 _ . .
+ 3 jz:(aiy + ajy)g(ai aj). ie I.
JAL

This system is consistent and (_/\l) gives new many-particle
problems having many invariant submanifolds.

We must mention that in the y-independent case the
system (Al) - (A2) was written in []J2] as pole interpretation
of equation (El). The new system (Al) corresponds to many-

particle problems not governed by any Hamiltonian Jn.
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Appendix to B4.

There exists one two-dimensional system of equations,
having physical sense and having Hamiltonian form and two-
dimensional laws of conservations. This is the so-called

theory of long waves in shallow water: Benney equations:

- Y =
{ut +ouu - ug Io uxiy=n an +h =0

(sh w,)
h
( ' h, + (j udy) = 0
t X
0
x-horizontal, y > O-vertical coordinates, u(x,y,t)-horizontal
component of velocity at (x,y); h(x,t)-the height of a free

surface over (x,0) at t.

For An(x,t) = Jh un(x,y,t)dy, this system is equivalent to
0
Ant + An+lx + nAn—lAOX = 0: n > 0.

According to Benney D. J. [Studies App. Math., L1l1, No 1,
(1973), 45-50] and Miura R.M. [Studies App. Math. LIII, No 1,

(1974), 45-56] there are conservation laws for this system:
= 0= 0;
H + FY1 0 n >
H ¢ Q[AO,...,An]; F_ e Q[AO,...,An+l]

n

and

= = = Y
= 0O: 1, = - an.
H +F O (an)y 0] n > v jo u il
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Many recurrent formulae for Hn’ ﬁn were given by Manin Y.M.,
Kuperschmidt B. A. (Funct. Anal. Appl. v.1ll, No3, (1977)].
Simultaniously Manin-Kuperschmidt established a Hamiltonian
structure for this equation for the y-independent case.

Then we have the Hamiltonian form

u, = —(u2/2+ h) ,
X
(sh W2)

h, = —(uh)x

or the Hamiltonian system with skewsymmetric¢c operator

0 3/ 3%

2 2
B = (B/Bx 0 ) and H = -(h"/2 + hu“/2).

However we must add the following observation, made
first by G. B, Whitham [Linear and Nonlinear Waves, 1974]. The

system of equations (Sh W2) is linearized by the hodograph

transformation
u-—>t
h —x
" e S
v g *mTT YT T o TTF e

Analytical solutions for (Sh W2) or for (Sh Wl) in

an An representation can also be obtained by using the chain

system (C) if we put in this system G - O,
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