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It is well known that infinite dimensional, completely

integrable systems are connected with the linear eigenvalue

problem. In general, the three dimensional (x, y, t)

case, completely integrable system, appears as a conaition.

of commutativity of two linear operators [1], [2]:

or

for

This system, in u , , v. , is equivalent to the existence
1 J

of many common eigenfunctions for L , L :
n m

for T = y(x, y, t, k) with asymptotics for k - oo

Analogically, we can consider y or t the indepen-

dent case. In the last case, corresponding two-dimensional

systems are called Lax systems [ 3 ] , [4 ] , while one-dimensional
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are called Zaharov-Shabat [1] . This way, when one of the

operators is Schrodinger (n = 2 or m = 2) there arises

the Korteweg-de Vries (KdV) equation ut - 6uux + Uxxx
and higher KdV equations corresponding to the case n = 2 ,

m = 2k + 1 in the y-independent case [3], [4]; Boussinesque

equation u = 2-(6uu + u ) (for n = 2 , m = 3 in
" 

yy 8x x xxx

the t-independent case) , Kadomzev-Petviaskvili equation [5]

(n - 2 , m = 3) , etc.

. All other completely integrable systems (non-linear

Schrodinger, sin -Gordon ...) corresponding to different

n and m are scalar and matrix cases. Meromorphic solu-

tions (among them, in particular, multisoliton, rational and

elliptic) play an important role and are, in general, the

only ones that can be analytically investigated.

In the papers [6 ] , [7 ] , [8], it was shown that for

meromorphic in x solutions u(x, y, t) the evolution of

poles a. 1 = ai (y, t) corresponds to the many particle

Hamiltonian with potential x -2 C 6 J, [9]:

or to Hamiltonian flows commuting with H [6] , [8] (there

are infinitely many such flows and H is completely integrable).
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Here, we investigate the pole interpretation (the

motion of poles) for "quasi-potentials" u., v. by con-
l J

sidering the eigenvalue problem for operators L - n ay
n ðy

for a meromorphic eigenfunction. We consider the case

n = 2 , when the motion of the poles corresponds to

potential x -2 . In general for n &#x3E; 2 , there arises

another completely integrable, many-particle system.

Our results give, e.g., exact formulae for rational

and elliptic solutions of Zakharov-Shabat and Lax systems

for min[n, m} = 2 .

We solve, for meromorphic potentials u(x, t) ,

the eigenvalue problem for the time-dependent Schrodinger

equation: .

t, k) and spectral parameter k , provided

T nontrivially depends on k and is meromorphic as a

function on x . Thus, we restrict ourselves to the func-

tion u (x, t) which, as a function in x , is meromorphic

with poles of order 2 with residues -2 . . Thus,

where ai 
= ai (t) : i E I . Considering asymptotics of

y (x, t, k ) for as ( 1 + 0 (k ) ) , thus giving

proper normalization of T , we can write t, k) :
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in the neighborhood of . Assuming meromorphicity

of y on x and the form (2) of u(x, t) we obtain that

1 = 1(x, t) is a meromorphic function in x with first-
n

order poles. According to ~2), we can write y n in the

following form:

(4) 1 and

Here *8 = Substituting (3) , (4) , (5)
1 1

into (1), we obtain the following system:

and thus

In terms of wn we obtain the following system of
1

equations f w :equations 0 w. 1 :

Now we can define two matrices A and L by putting

[6], [8], [9]: t
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and

for I .

Then, as it is well known, [6], [8 ] , [9], the Lax

system

is equivalent to the many-particle system with Hamiltonian H :

However, if we take G = -4 , then the system (9),

(10) is equivalent to the following equation:

. 

1 
T 

( 1 .

respectively. Here = -vector corresponding to
I- ie- I

residues Consistency of the system (15, (16) is

obviously equivalent to the system

that is equivalent to (13) for G - -4 . Thus, the poles

ai satisfy (14) with G = -4 .
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Conversely, for any system a. = ai (t) of particles
i 1

satisfying ( .8 ) , we can effectively construct the potential

u(x, t) (2) and T(x, t, k) (3) satisfying (1). In parti-

cular, we can easily solve the eigenvalue problem (1) for

the rational function u with poles of order 2.

Results (14) or (17), together with the construction

of higher KdV equations through the Sturm-Liouville problem

[3], [4], give us a complete description of the pole motion

of the k-th order KdV equation, answering the question [8].

If we consider the k-th Kdv equation u x 5u jR k u u , ... dxu x 6u- -k 
[, 

x

corresponding to n = 2, m = 2k + 1 in the y-independent

case [3], then the motion of poles corresponds to Hamiltonian

with the restriction grad H * grad J - 0 for G = -4 .

e.g., all rational solutions of higher KdV are easily

examined.
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