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0. For general two-dimensional completely integrable
systems, we give the exact formulae for multisoliton-type
solutions. These formulae are obtained algebraically from

solutions of two linear partial differential equations

Pp T Py ¢y = Py x . The formulae are similar to
n m

second logarithmic derivatives of Fregholm determinant formulae
occurring frequently in solutions arising from inverse scat-
tering method and Gelfand-Levitan type equations. Our formula
contains all previously known starting from the first multi-
soliton formula of Kay and Moses [l] in 1950, as well as [2],
[3], [4]. Our formalism resembles Crum's investigation [5] on
removing of bound states for the Schrodinger equation. It
should be mentioned that solutions obtained here correspond to

the continuous spectrum as well as to the discrete.

1. We consider the most general form of two-dimensional
nonlinear integrable partial differential equations arising as
a condition of commutativity of two linear operators. These
systems are equations for functions u(x, y, t) with two space
and one time variable. Such systems of the Zaharov-Shabat [3]
or Lax [4] type, have the following operator representation:

L -2, 1 -21=0
y

— =

n 3t /' m



for linear operators Ln' Lm in %; , as a system on non-
linear equations in ﬁ—y é—. 9—  for undetermined coefficients
X dy ot
of L_, L .
n m

In other words, we define a two-dimensional completely

integrable system as

d d
(1) 9Im _ 9Lp L, L.1 .,
dt ay n m
where
n dl m dj
i=0 ax j=0 ax
Yn " Vm T 1. Yn-1 © Ym-1 ~ S

We give the set of solutions for (1), (2) based on solutions
of linear partial differential equations or, equivalently, Burgers-
Hopf (BH) equation [6]. The simplest solutions of this kind
were already constructed by one of us in [7].

Basic (multisoliton) solutions can be constructed using
higher Burgers-Hopf equations W, = BHn[w]: n=1, 2,
that were defined in [6], [7].

These equations can be generated inductively as

BH_[w] = 2= C_[w] and
n 3X n
oWl =u = Ciwl +2-C w], Ciw] =1 .

However, the main property of higher Burgers-Hopf equations
is that it can be linearized using Hopf-Cole substitution

- o .
W—axlogcp.



Proposition 1: If w = w(z, xX) and w = %; log ¢ . then

the equation W, = BHL[w] is equivalent to O = Py 5 T AD
[l

4

for some constant ) .

A series of multisoliton solutions for (1), (2) give us the
following general result. Here, and later, we consider the
Wronskian determinant W .

For arbitrary functions fl, ey fk we put

£ £ ) = det JLlfj i, =1 Xk
(3) W( l' LA 4 k) - e (——-_.___T) 1, ] - ’ .o e, -

Our general result is the following

Theorem 2: For any solutions Pre s of two linear systems

x
(4) = ;

Pit Pix...x wiy - Pix...x
n m

and function n n
kx + k't + k
W((Pll . ® o Cpkl e y)

W(Cpll e o0y tpk)

(5) v (x, V. t, k) =

there exist unique operators Ln' L of the form (2) satisfying

m
= oY - of

Then the coefficients of Ln' Lm constitute the solution of
system (1).

All the coefficients of Ln, Lm - solutions of (1), (2)
corresponding to our solution (5), (6) as well as all eigen-—
functions of Ln' Lm in (6) in this case can be found explicitly.

In particular, we can obtain from theorem 2 the following

corollary expressed in terms of the Burgers-Hopf equation.



Corcllary 3: For any solution w cees W of system

1’ k
(7) wit = BHn[wi]' wiy = BHm[wi]: i=1, ..., k
we can find the solution u. vj' i=1, ..., u, Jj=1, ...,
of system (1), (2). For example, if we put
W = 4 log W( )
T oax 09 WPy e Py
for
d .
W, = % log ;3 1= 1, ..., k
then
un—z = nwW_, Vrn__'2 = mW %
or
2
= n 2 — 109 Wl )
“n-2 2 B1r e o) 7
ax
2
\ =m 4 log W(g )
m-2 2 ey ot %ot
ax

All the eigenfunctions of Lo Lm corresponding to solu-

tions (4)-(6) (or (7)-(8)) have a very simple form:

W((pll s ey (pkl ka+l)
W((Pll LR Cpk)

¥y

is common eigenfunction of Ln' Lm :

Ip¥s = Yie ¢ Dpvy < Yly

for any Prsl also satisfying (4):

Pk+1t  Px...x’ Pr+ly  Px...x

n m
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