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LONG-TIME STABILITY OF NONCHARACTERISTIC VISCOUS

BOUNDARY LAYERS

TOAN NGUYEN AND KEVIN ZUMBRUN

Abstract. We report our results on long-time stability of multi–dimensional non-
characteristic boundary layers of a class of hyperbolic–parabolic systems including the
compressible Navier–Stokes equations with inflow [outflow] boundary conditions, un-
der the assumption of strong spectral, or uniform Evans, stability. Evans stability has
been verified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun.
For large–amplitudes, it may be checked numerically, as done in one–dimensional case
for isentropic gas by Costanzino, Humpherys, Nguyen, and Zumbrun.

1. Introduction

We consider a boundary layer, or stationary solution,

(1.1) Ũ = Ū(x1), lim
x1→+∞

Ū(x1) = U+, Ū(0) = Ū0

of a system of conservation laws on the quarter-space

(1.2) Ũt +
∑

j

F j(Ũ)xj =
∑

jk

(Bjk(Ũ)Ũxk)xj , x ∈ Rd+ = {x1 > 0}, t > 0,

Ũ , F j ∈ Rn, Bjk ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x) and Dirichlet type boundary
conditions specified in (1.5), (1.6) below.

Our studies to boundary layers are restricted to the case that the layers are assumed
to be noncharacteristic, that is, the matrix dF 1

11 in the hyperbolic equations of ũ is either
strictly positive (inflow case) or strictly negative (outflow case). Roughly speaking, the
noncharacteristicity limits the signals to be transmitted into or out of but not along the
boundary. In the context of gas dynamics or MHD, this corresponds to the situation of
a porous boundary with prescribed inflow or outflow conditions accomplished by suction
or blowing, a scenario that has been suggested as a means to reduce drag along an airfoil
by stabilizing laminar flow; see Example 1.1 below.

A fundamental question is whether or not such boundary layer solutions are stable
in the sense of PDE, i.e., whether or not a sufficiently small (initial and boundary)
perturbation of Ū remains close to Ū , or converges time-asymptotically to Ū , under the
evolution of (1.2). Purpose of this note is to report our results in [NZ2], addressing this
time–asymptotic stability question.

1.1. Equations and assumptions. We consider the general hyperbolic-parabolic sys-
tem of conservation laws (1.2) in conserved variable Ũ , with

Ũ =

(
ũ
ṽ

)
, B =

(
0 0

bjk1 bjk2

)
,
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ũ ∈ Rn−r, and ṽ ∈ Rr, where

<σ
∑

jk

bjk2 ξjξk ≥ θ|ξ|2 > 0, ∀ξ ∈ Rn\{0}.

Following [MaZ4, Z3, Z4], we assume that equations (1.2) can be written, alternatively,
after a triangular change of coordinates

(1.3) W̃ := W̃ (Ũ) =

(
w̃I(ũ)

w̃II(ũ, ṽ)

)
,

in the quasilinear, partially symmetric hyperbolic-parabolic form

(1.4) Ã0W̃t +
∑

j

ÃjW̃xj =
∑

jk

(B̃jkW̃xk)xj + G̃,

where

Ã0 =

(
Ã0

11 0

0 Ã0
22

)
, Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, B̃ =

(
0 0

0 b̃

)
, G̃ =

(
0
g̃

)

and, defining W̃+ := W̃ (U+),

(A1) Ãj(W̃+), Ã0, Ã1
11 are symmetric, Ã0 block diagonal, Ã0 ≥ θ0 > 0,

(A2) for each ξ ∈ Rd \ {0}, no eigenvector of
∑

j ξjÃ
j(Ã0)−1(W̃+) lies in the kernel

of
∑

jk ξjξkB̃
jk(Ã0)−1(W̃+),

(A3)
∑
b̃jkξjξk ≥ θ|ξ|2, and g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following technical hy-
potheses:

(H0) F j , Bjk, Ã0, Ãj , B̃jk, W̃ (·), g̃(·, ·) ∈ Cs+1, with s ≥ [(d− 1)/2] + 4 in our analysis
of linearized stability, and s ≥ s(d) := [(d−1)/2]+7 in our analysis of nonlinear stability.

(H1) Ã11
1 is either strictly positive or strictly negative, that is, either Ã11

1 ≥ θ1 > 0, or

Ã11
1 ≤ −θ1 < 0. (We shall call these cases the inflow case or outflow case, correspond-

ingly.)

(H2) The eigenvalues of dF 1(U+) are distinct and nonzero.

(H3) The eigenvalues of
∑

j dF
j
+ξj have constant multiplicity with respect to ξ ∈ Rd,

ξ 6= 0.

(H4) The set of branch points of the eigenvalues of (Ã1)−1(iτÃ0 +
∑

j 6=1 iξjÃ
j)+,

τ ∈ R, ξ̃ ∈ Rd−1 is the (possibly intersecting) union of finitely many smooth curves

τ = η+
q (ξ̃), on which the branching eigenvalue has constant multiplicity sq (by definition

≥ 2).

Condition (H1) corresponds to hyperbolic–parabolic noncharacteristicity, while (H2)
is the condition for the hyperbolicity at U+ of the associated first-order hyperbolic
system obtained by dropping second-order terms. The assumptions (A1)-(A3) and (H0)-
(H2) are satisfied for gas dynamics and MHD with van der Waals equation of state
under inflow or outflow conditions; see discussions in [MaZ4, CHNZ, GMWZ5, GMWZ6].
Condition (H3) holds always for gas dynamics, but fails always for MHD in dimension
d ≥ 2. Condition (H4) is a technical requirement of the analysis introduced in [Z2]. It is
satisfied always in dimension d = 2 or for rotationally invariant systems in dimensions
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d ≥ 2, for which it serves only to define notation; in particular, it holds always for gas
dynamics.

We also assume:
(B) Dirichlet boundary conditions in W̃ -coordinates:

(1.5) (w̃I , w̃II)(0, x̃, t) = h̃(x̃, t) := (h̃1, h̃2)(x̃, t)

for the inflow case, and

(1.6) w̃II(0, x̃, t) = h̃(x̃, t)

for the outflow case, with x = (x1, x̃) ∈ Rd.

This is sufficient for the main physical applications; the situation of more general,
Neumann and mixed-type boundary conditions on the parabolic variable v can be treated
as discussed in [GMWZ5, GMWZ6].

Example 1.1. The main example we have in mind consists of laminar solutions
(ρ, u, e)(x1, t) of the compressible Navier–Stokes equations

(1.7)





∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρutu) +∇p = εµ∆u+ ε(µ+ η)∇divu

∂t(ρE) + div
(
(ρE + p)u

)
= εκ∆T + εµdiv

(
(u · ∇)u

)

+ ε(µ+ η)∇(u · divu),

x ∈ Rd, on a half-space x1 > 0, where ρ denotes density, u ∈ Rd velocity, e specific

internal energy, E = e + |u|2
2 specific total energy, p = p(ρ, e) pressure, T = T (ρ, e)

temperature, µ > 0 and |η| ≤ µ first and second coefficients of viscosity, κ > 0 the
coefficient of heat conduction, and ε > 0 (typically small) the reciprocal of the Reynolds
number, with no-slip suction-type boundary conditions on the velocity,

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) < 0,

and prescribed temperature, T (0, x2, . . . , xd) = Twall(x̃). Under the standard assump-
tions pρ, Te > 0, this can be seen to satisfy all of the hypotheses (A1)–(A3), (H0)–(H4),
(B) in the outflow case (1.6); indeed these are satisfied also under much weaker van der
Waals gas assumptions [MaZ4, Z3, CHNZ, GMWZ5, GMWZ6]. In particular, boundary-
layer solutions are of noncharacteristic type, scaling as (ρ, u, e) = (ρ̄, ū, ē)(x1/ε), with
layer thickness ∼ ε as compared to the ∼ √ε thickness of the characteristic type found
for an impermeable boundary.

This corresponds to the situation of an airfoil with microscopic holes through which
gas is pumped from the surrounding flow, the microscopic suction imposing a fixed nor-
mal velocity while the macroscopic surface imposes standard temperature conditions as
in flow past a (nonporous) plate. This configuration was suggested by Prandtl and tested
experimentally by G.I. Taylor as a means to reduce drag by stabilizing laminar flow;
see [S, Bra]. It was implemented in the NASA F-16XL experimental aircraft program
in the 1990’s with reported 25% reduction in drag at supersonic speeds [Bra].1 Possible
mechanisms for this reduction are smaller thickness ∼ ε <<

√
ε of noncharacteristic

boundary layers as compared to characteristic type, and greater stability, delaying the
transition from laminar to turbulent flow. In particular, stability properties appear to
be quite important for the understanding of this phenomenon. For further discussion,

1See also NASA site http://www.dfrc.nasa.gov/Gallery/photo/F-16XL2/index.html
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including the related issues of matched asymptotic expansion, multi-dimensional effects,
and more general boundary configurations, see [GMWZ5].

Example 1.2. Alternatively, we may consider the compressible Navier–Stokes equations
(1.7) with blowing-type boundary conditions

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) > 0,

and prescribed temperature and pressure

T (0, x2, . . . , xd) = Twall(x̃), p(0, x2, . . . , xd) = pwall(x̃)

(equivalently, prescribed temperature and density). Under the standard assumptions
pρ, Te > 0 on the equation of state (alternatively, van der Waals gas assumptions), this
can be seen to satisfy hypotheses (A1)–(A3), (H0)–(H4), (B) in the inflow case (1.5).

1.2. The Evans condition and strong spectral stability. The linearized equations
of (1.2), (B) about Ū are

(1.8) Ut = LU :=
∑

j,k

(BjkUxk)xj −
∑

j

(AjU)xj

with initial data U(0) = U0 and boundary conditions in (linearized) W̃ -coordinates of

W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h

for the inflow case, and
wII(0, x̃, t) = h

for the outflow case, with x = (x1, x̃) ∈ Rd, where W := (∂W̃/∂U)(Ū)U . Here, Bjk :=
Bjk(Ū(x1)) and AjU := dF j(Ū(x1))U − [dBj1(Ū(x1))U ]Ūx1(x1).

A necessary condition for linearized stability is weak spectral stability, defined as
nonexistence of unstable spectra <λ > 0 of the linearized operator L about the wave.
This is equivalent to nonvanishing for all ξ̃ ∈ Rd−1, <λ > 0 of the Evans function

DL(ξ̃, λ)

a Wronskian associated with the Fourier-transformed eigenvalue ODE.

Definition 1.3. We define strong spectral stability as uniform Evans stability:

(D) |DL(ξ̃, λ)| ≥ θ(C) > 0

for (ξ̃, λ) on bounded subsets C ⊂ {ξ̃ ∈ Rd−1, <λ ≥ 0} \ {0}.
For the class of equations we consider, this is equivalent to the uniform Evans condi-

tion of [GMWZ5, GMWZ6], which includes an additional high-frequency condition that
for these equations is always satisfied (see Proposition 3.8, [GMWZ5]). A fundamental
result proved in [GMWZ5] is that small-amplitude noncharacteristic boundary-layers
are always strongly spectrally stable.2

Proposition 1.4 ([GMWZ5]). Assuming (A1)-(A3), (H0)-(H3), (B) for some fixed
endstate (or compact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small satisfy the strong spectral stability condition (D).

2The result of [GMWZ5] applies also to more general types of boundary conditions and in some
situations to systems with variable multiplicity characteristics, including, in some parameter ranges,
MHD.
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As demonstrated in [SZ], stability of large-amplitude boundary layers may fail for the
class of equations considered here, even in a single space dimension, so there is no such
general theorem in the large-amplitude case. Stability of large-amplitude boundary-
layers may be checked efficiently by numerical Evans computations as in [BDG, Br1,
Br2, BrZ, HuZ, BHRZ, HLZ, CHNZ, HLyZ1, HLyZ2].

1.3. Main results. Our main results are as follows.

Theorem 1.5 (Linearized stability). Assuming (A1)-(A3), (H0)-(H4), (B), and strong

spectral stability (D), we obtain asymptotic L1 ∩H [(d−1)/2]+5 → Lp stability of (1.8) in
dimension d ≥ 2, and any 2 ≤ p ≤ ∞, with rate of decay

(1.9)
|U(t)|L2 ≤ C(1 + t)−

d−1
4 |U0|L1∩H3 ,

|U(t)|Lp ≤ C(1 + t)−
d
2

(1−1/p)+1/2p|U0|L1∩H[(d−1)/2]+5 ,

provided that the initial perturbations U0 are in L1∩H3 for p = 2, or in L1∩H [(d−1)/2]+5

for p > 2, and zero boundary perturbations h = 0.

Theorem 1.6 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H4), (B), and strong
spectral stability (D), we obtain asymptotic L1∩Hs → Lp∩Hs stability of Ū as a solution
of (1.2) in dimension d ≥ 2, for s ≥ s(d) as defined in (H0), and any 2 ≤ p ≤ ∞, with
rate of decay

(1.10)
|Ũ(t)− Ū |Lp ≤ C(1 + t)−

d
2

(1−1/p)+1/2p|U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−1
4 |U0|L1∩Hs ,

provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently small in L1 ∩ Hs

and zero boundary perturbations h = 0.

Remark 1.7. Nonzero boundary perturbations are also treated in [NZ2]. However, for
simplicity, we only report here the case of zero boundary perturbations.

Combining Theorem 1.6 and Proposition 1.4, we obtain the following small-amplitude
stability result, applying in particular to the motivating situation of Example 1.1.

Corollary 1.8. Assuming (A1)-(A3), (H0)-(H4), (B) for some fixed endstate (or com-
pact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small are linearly and nonlinearly stable in the sense of Theorems 1.5 and
1.6.

Remark 1.9. The obtained rate of decay in L2 may be recognized as that of a
(d − 1)-dimensional heat kernel, and the obtained rate of decay in L∞ as that of a
d-dimensional heat kernel. We believe that the sharp rate of decay in L2 is rather
that of a d-dimensional heat kernel and the sharp rate of decay in L∞ dependent on the
characteristic structure of the associated inviscid equations, as in the constant-coefficient
case [HoZ1, HoZ2].

Remark 1.10. In one dimension, strong spectral stability is necessary for linearized
asymptotic stability; see Theorem 1.6, [NZ1]. However, in multi-dimensions, it appears
likely that, as in the shock case [Z3], there are intermediate possibilities between strong
and weak spectral stability for which linearized stability might hold with degraded rates
of decay. In any case, the gap between the necessary weak spectral and the sufficient
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strong spectral stability conditions concerns only pure imaginary spectra <λ = 0 on the
boundary between strictly stable and unstable half-planes, so this should not interfere
with investigation of physical stability regions.

1.4. Discussion and open problems. Asymptotic stability, without rates of decay,
has been shown for small amplitude noncharacteristic “normal” boundary layers of the
isentropic compressible Navier–Stokes equations with outflow boundary conditions and
vanishing transverse velocity in [KK], using energy estimates. Corollary 1.8 recovers
this existing result and extends it to the general arbitrary transverse velocity, outflow or
inflow, and isentropic or nonisentropic (full compressible Navier–Stokes) case, in addition
giving asymptotic rates of decay. Also, the type of boundary layer relevant to the drag-
reduction strategy discussed in Examples 1.1–1.2 is a noncharacteristic “transverse” type
with constant normal velocity, complementary to the normal type considered in [KK].

The large-amplitude asymptotic stability result of Theorem 1.6 extends to multi di-
mensions corresponding one-dimensional results of [YZ, NZ1], reducing the problem of
stability to verification of a numerically checkable Evans condition. See also the related,
but technically rather different, work on the small viscosity limit in [MZ, GMWZ5,
GMWZ6]. By a combination of numerical Evans function computations and asymptotic
ODE estimates, spectral stability has been checked for arbitrary amplitude nonchar-
acteristic boundary layers of the one-dimensional isentropic compressible Navier–Stokes
equations in [CHNZ]. Extensions to the nonisentropic and multi-dimensional case should
be possible by the methods used in [HLyZ1] and [HLyZ2] respectively to treat the related
shock stability problem.

This (investigation of large-amplitude spectral stability) would be a very interesting
direction for further investigation. In particular, note that it is large-amplitude stability
that is relevant to drag-reduction at flight speeds, since the transverse relative velocity
(i.e., velocity parallel to the airfoil) is zero at the wing surface and flight speed outside
a thin boundary layer, so that variation across the boundary layer is substantial.

Our method of analysis follows the basic approach introduced in [Z2, Z3, Z4] for the
study of multi-dimensional shock stability and we are able to make use of much of that
analysis without modification. However, there are some new difficulties to be overcome
in the boundary-layer case.

The main new difficulty is that the boundary-layer case is analogous to the undercom-
pressive shock case rather than the more favorable Lax shock case emphasized in [Z3], in

that Gy1 6∼ t−1/2G as in the Lax shock case but rather Gy1 ∼ (e−θ|y1|+t−1/2)G, θ > 0, as
in the undercompressive case. This is a significant difficulty; indeed, for this reason, the
undercompressive shock analysis was carried out in [Z3] only in nonphysical dimensions
d ≥ 4. On the other hand, there is no translational invariance in the boundary layer
problem, so no zero-eigenvalue and no pole of the resolvent kernel at the origin for the
one-dimensional operator, and in this sense G is somewhat better in the boundary layer
than in the shock case.

Thus, the difficulty of the present problem is roughly intermediate to that of the Lax
and undercompressive shock cases. Though the undercompressive shock case is still
open in multi-dimensions for d ≤ 3, the slight advantage afforded by lack of pole terms
allows us to close the argument in the boundary-layer case. Specifically, thanks to the
absence of pole terms, we are able to get a slightly improved rate of decay in L∞(x1)
norms, though our L2(x1) estimates remain the same as in the shock case. By keeping
track of these improved sup norm bounds throughout the proof, we are able to close the
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argument without using detailed pointwise bounds as in the one-dimensional analyses
of [HZ, RZ].

Other difficulties include the appearance of boundary terms in integrations by parts,
which makes the auxiliary energy estimates by which we control high-frequency effects
considerably more difficult in the boundary-layer than in the shock-layer case, and the
treatment of boundary perturbations. In terms of the homogeneous Green function G,
boundary perturbations lead by a standard duality argument to contributions consisting
of integrals on the boundary of perturbations against various derivatives of G, and these
are a bit too singular as time goes to zero to be absolutely integrable. Following the
strategy introduced in [YZ, NZ1], we instead use duality to convert these to less singular
integrals over the whole space, that are absolutely integrable in time. However, we
make a key improvement here over the treatment in [YZ, NZ1], integrating against an
exponentially decaying test function to obtain terms of exactly the same form already
treated for the homogeneous problem. This is necessary for us in the multi-dimensional
case, for which we have insufficient information about individual parts of the solution
operator to estimate them separately as in [YZ, NZ1], but makes things much more
transparent also in the one-dimensional case.

Among physical systems, our hypotheses appear to apply to and essentially only
to the case of compressible Navier–Stokes equations with inflow or outflow boundary
conditions. However, the method of analysis should apply, with suitable modifications,
to more general situations such as MHD; see an extension to MHD case via a different
approach [N2], and see also the recent results on the related small-viscosity problem in
[GMWZ5, GMWZ6].

Finally, as pointed out in Remark 1.10, the strong spectral stability condition does
not appear to be necessary for asymptotic stability. It would be interesting to develop
a refined stability condition similarly as was done in [SZ, Z2, Z3, Z4] for the shock case.

2. Linearized estimates

We first establish estimates on the linearized inhomogeneous problem

(2.1) Ut − LU = f

with initial data U(0) = U0 and Dirichlet boundary conditions as usual in W̃ -coordinates:

(2.2) W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h

for the inflow case, and

(2.3) wII(0, x̃, t) = h

for the outflow case, with x = (x1, x̃) ∈ Rd.
Let us define low- and high-frequency parts of the linearized solution operator S(t)

of the linearized problem with homogeneous boundary and forcing data, f , h ≡ 0, as

(2.4) S1(t) :=
1

(2πi)d

∫

|ξ̃|≤r

∮

Γξ̃∩{|λ|≤r}
eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃

and S2(t) := eLt − S1(t).
Then we obtain the following linearized estimates.

Exp. no VI— Stability of noncharacteristic boundary layers
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Proposition 2.1 (Low-frequency estimate). Under the hypotheses of Theorem 1.6, for
β = (β1, β

′) with β1 = 0, 1,

(2.5)

|S1(t)∂βxf |L2
x
≤C(1 + t)−(d−1)/4−|β|/2|f |L1

x
+ Cβ1(1 + t)−(d−1)/4|f |

L1,∞
x̃,x1

,

|S1(t)∂βxf |L2,∞
x̃,x1

≤C(1 + t)−(d+1)/4−|β|/2|f |L1
x

+ Cβ1(1 + t)−(d+1)/4|f |
L1,∞
x̃,x1

,

|S1(t)∂βxf |L∞x̃,x1 ≤C(1 + t)−d/2−|β|/2|f |L1
x

+ Cβ1(1 + t)−d/2|f |
L1,∞
x̃,x1

,

where | · |Lp,qx̃,x1 denotes the norm in Lp(x̃;Lq(x1)).

According to [Z4, Corollary 4.11], we can write

(2.6)
S2(t)f =

1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫

Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λt(λ− Lξ̃)−1f̂(x1, ξ̃)dξ̃dλ,

and we obtain the following.

Proposition 2.2 (High-frequency estimate). Given (A1)-(A2), (H0)-(H2), (D), and
homogeneous boundary conditions (B), for 0 ≤ |α| ≤ s− 3, s as in (H0),

(2.7)
|S2(t)f |L2

x
≤ Ce−θ1t|f |H3

x
,

|∂αxS2(t)f |L2
x
≤ Ce−θ1t|f |

H
|α|+3
x

.

2.1. Resolvent bounds. Our first step of proving the linearized estimates is to estimate
solutions of the resolvent equation with homogeneous boundary data ĥ ≡ 0.

Proposition 2.3 (High-frequency bounds). Given (A1)-(A2), (H0)-(H2), and homo-
geneous boundary conditions (B), for some R,C sufficiently large and θ > 0 sufficiently
small,

(2.8) |(Lξ̃ − λ)−1f̂ |Ĥ1(x1) ≤ C|f̂ |Ĥ1(x1),

and

(2.9) |(Lξ̃ − λ)−1f̂ |L2(x1) ≤
C

|λ|1/2 |f̂ |Ĥ1(x1),

for all |(ξ̃, λ)| ≥ R and <eλ ≥ −θ, where f̂ is the Fourier transform of f in variable x̃

and |f̂ |Ĥ1(x1) := |(1 + |∂x1 |+ |ξ̃|)f̂ |L2(x1).

Proof. The proposition follows easily by applying a Laplace-Fourier transformed version
with respect to variables (λ, x̃) of the nonlinear energy estimate in Section 3.1 with
s = 1, carried out on the linearized equations written in W -coordinates. See [NZ2] for
all the details. �

We next have the following:

Proposition 2.4 (Mid-frequency bounds). Given (A1)-(A2), (H0)-(H2), and strong
spectral stability (D),

(2.10) |(Lξ̃ − λ)−1|Ĥ1(x1) ≤ C, for R−1 ≤ |(ξ̃, λ)| ≤ R and <eλ ≥ −θ,
for any R and C = C(R) sufficiently large and θ = θ(R) > 0 sufficiently small, where

|f̂ |Ĥ1(x1) is defined as in Proposition 2.3.

Toan Nguyen and Kevin Zumbrun
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Proof. Immediate, by compactness of the set of frequencies under consideration together
with the fact that the resolvent (λ− Lξ̃)−1 is analytic with respect to H1 in (ξ̃, λ); see

Proposition 4.8, [Z4]. �
We next obtain the following resolvent bound for low-frequency regions as a direct

consequence of pointwise bounds on the resolvent kernel.

Proposition 2.5 (Low-frequency bounds). Under the hypotheses of Theorem 1.6, for

λ ∈ Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

(2.11) |(Lξ̃ − λ)−1∂βx1 f̂ |Lp(x1) ≤ Cγ2ρ
−2/p

[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]

for all 2 ≤ p ≤ ∞, β = 0, 1, where

(2.12) γ2 := 1 +
∑

j

[
ρ−1|=mλ− η+

j (ξ̃)|+ ρ
]1/sj−1

,

and sj , η
+
j (ξ̃) are as defined in (H4).

Proof. Applying the following pointwise bounds on the resolvent kernel deliberately
constructed in [Z3] and recalled in [NZ2], Proposition 2.5,

|∂βy1Gξ̃,λ(x1, y1)| ≤ Cγ2(ρβ + βe−θy1)e−θρ
2|x1−y1|,

and using the convolution inequality |g ∗ h|Lp ≤ |g|Lp |h|L1 , we obtain

|(Lξ̃ − λ)−1∂βx1 f̂ |Lp(x1)

=
∣∣∣
∫
∂βy1Gξ̃,λ(x1, y1)f̂(y1, ξ̃) dy1

∣∣∣
Lp(x1)

+ β|Gξ̃,λ(x1, 0)f̂(0, ξ̃)|Lp(x1)

≤
∣∣∣
∫
Cγ2(ρβ + βe−θy1)e−θρ

2|x1−y1||f̂(y1, ξ̃)| dy1

∣∣∣
Lp

+ Cγ2β|f̂(0, ξ̃)||e−θρ2x1 |Lp(x1)

≤ Cγ2ρ
−2/p

[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]

as claimed. �
Remark 2.6. The above Lp bounds may alternatively be obtained directly by the
argument of Section 12, [GMWZ1], using quite different Kreiss symmetrizer techniques,
again omitting pole terms arising from vanishing of the Evans function at the origin,
and also the auxiliary problem construction of Section 12.6 used to obtain sharpened
bounds in the Lax or overcompressive shock case (not relevant here). See also [N2] in
this direction with treatment of the boundary layer case.

2.2. Estimates on homogeneous solution operators. We sketch the proof of Propo-
sitions 2.1 and 2.2.

Proof of Proposition 2.1. The proof will follow closely the treatment of the shock case
in [Z3]. Let û(x1, ξ̃, λ) denote the solution of (Lξ̃ − λ)û = f̂ , where f̂(x1, ξ̃) denotes

Fourier transform of f , and

u(x, t) := S1(t)f =
1

(2πi)d

∫

|ξ̃|≤r

∮

Γξ̃∩{|λ|≤r}
eλt+iξ̃·x̃(Lξ̃ − λ)−1f̂(x1, ξ̃)dλdξ̃.

Recalling the resolvent estimates in Proposition 2.5, we have

|û(x1, ξ̃, λ)|Lp(x1) ≤ Cγ2ρ
−2/p|f̂ |L1(x1) ≤ Cγ2ρ

−2/p|f |L1(x)
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where γ2 is as defined in (2.12).
Therefore, using Parseval’s identity, Fubini’s theorem, and the triangle inequality, we

may estimate

|u|2L2(x1,x̃)(t) =
1

(2π)2d

∫

x1

∫

ξ̃

∣∣∣
∮

Γξ̃∩{|λ|≤r}
eλtû(x1, ξ̃, λ)dλ

∣∣∣
2
dξ̃dx1

=
1

(2π)2d

∫

ξ̃

∣∣∣
∮

Γξ̃∩{|λ|≤r}
eλtû(x1, ξ̃, λ)dλ

∣∣∣
2

L2(x1)
dξ̃

≤ 1

(2π)2d

∫

ξ̃

∣∣∣
∮

Γξ̃∩{|λ|≤r}
e<eλt|û(x1, ξ̃, λ)|L2(x1)dλ

∣∣∣
2
dξ̃

≤ C|f |2L1(x)

∫

ξ̃

∣∣∣
∮

Γξ̃∩{|λ|≤r}
e<eλtγ2ρ

−1dλ
∣∣∣
2
dξ̃.

Specifically, parametrizing Γξ̃ by

λ(ξ̃, k) = ik − θ1(k2 + |ξ̃|2), k ∈ R,
and observing that by (2.12),

(2.13)

γ2ρ
−1 ≤ (|k|+ |ξ̃|)−1

[
1 +

∑

j

( |k − τj(ξ̃)|
ρ

)1/sj−1]

≤ (|k|+ |ξ̃|)−1
[
1 +

∑

j

( |k − τj(ξ̃)|
ρ

)ε−1]
,

where ε := 1
maxj sj

(0 < ε < 1 chosen arbitrarily if there are no singularities), we estimate
∫

ξ̃

∣∣∣
∮

Γξ̃∩{|λ|≤r}
e<eλtγ2ρ

−1dλ
∣∣∣
2
dξ̃ ≤

∫

ξ̃

∣∣∣
∫

R
e−θ1(k2+|ξ̃|2)tγ2ρ

−1dk
∣∣∣
2
dξ̃

≤
∫

ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣
∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣
2
dξ̃

+
∑

j

∫

ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣
∫

R
e−θ1k

2t|k − τj(ξ̃)|ε−1dk
∣∣∣
2
dξ̃

≤
∫

ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣
∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣
2
dξ̃

≤ Ct−(d−1)/2.

In the same way as above, we also obtain similar estimates for |u|2
L2,∞
x̃,x1

and |u|L∞x̃,x1 .

The x1-derivative bounds follow similarly by using the resolvent bounds in Proposition

2.5 with β1 = 1. The x̃-derivative bounds are straightforward by the fact that ∂̂β̃x̃f =

(iξ̃)β̃ f̂ .
Finally, each of the above integrals is bounded by C|f |L1(x) as the product of |f |L1(x)

times the integral quantities γ2ρ
−1, γ2 over a bounded domain, hence we may replace t

by (1 + t) in the above estimates. �
Proof of Proposition 2.2. The proof starts with the following resolvent identity, using
analyticity on the resolvent set ρ(Lξ̃) of the resolvent (λ− Lξ̃)−1, for all f ∈ D(Lξ̃),

(2.14) (λ− Lξ̃)−1f = λ−1(λ− Lξ̃)−1Lξ̃f + λ−1f.
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Using this identity and (2.6), we estimate

(2.15)

S2(t)f =
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫

Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1(λ− Lξ̃)−1Lξ̃ f̂(x1, ξ̃)dξ̃dλ

+
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫

Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1f̂(x1, ξ̃)dξ̃dλ

=: S1 + S2,

where, by Plancherel’s identity and Propositions 2.2 and 2.4, we have

|S1|L2(x̃,x1) ≤ C
∫ −θ1+i∞

−θ1−i∞
|λ|−1|eλt||(λ− Lξ̃)−1Lξ̃ f̂ |L2(ξ̃,x1)|dλ|

≤ Ce−θ1t
∫ −θ1+i∞

−θ1−i∞
|λ|−3/2

∣∣∣(1 + |ξ̃|)|Lξ̃ f̂ |H1(x1)

∣∣∣
L2(ξ̃)
|dλ|

≤ Ce−θ1t|f |H3
x

and

(2.16)

|S2|L2
x
≤ 1

(2π)d

∣∣∣P.V.

∫ −θ1+i∞

−θ1−i∞
λ−1eλtdλ

∫

Rd−1

eix̃·ξ̃ f̂(x1, ξ̃)dξ̃
∣∣∣
L2

+
1

(2π)d

∣∣∣P.V.

∫ −θ1+ir

−θ1−ir
λ−1eλtdλ

∫

Rd−1

eix̃·ξ̃ f̂(x1, ξ̃)dξ̃
∣∣∣
L2

≤ Ce−θ1t|f |L2
x
,

by direct computations, noting that the integral in λ in the first term is identically zero.
This completes the proof of the first inequality stated in the proposition. Derivative
bounds follow similarly. �

2.3. Proof of linearized stability.

Proof of Theorem 1.5. Applying estimates on low- and high-frequency operators S1(t)
and S2(t), we obtain

(2.17)

|U(t)|L2 ≤ |S1(t)U0|L2 + |S2(t)U0|L2

≤ C(1 + t)−
d−1
4 |U0|L1 + Ce−ηt|U0|H3

≤ C(1 + t)−
d−1
4 |U0|L1∩H3

and

(2.18)

|U(t)|L∞ ≤ |S1(t)U0|L∞ + |S2(t)U0|L∞
≤ C(1 + t)−

d
2 |U0|L1 + C|S2(t)U0|H[(d−1)/2]+2

≤ C(1 + t)−
d
2 |U0|L1 + Ce−ηt|U0|H[(d−1)/2]+5

≤ C(1 + t)−
d
2 |U0|L1∩H[(d−1)/2]+5 .

These prove the bounds as stated in the theorem for p = 2 and p =∞. For 2 < p <∞,
we use the interpolation inequality between L2 and L∞. �
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3. Nonlinear stability

3.1. Auxiliary energy estimates. For the analysis of nonlinear stability, we need
the following energy estimate adapted from [MaZ4, NZ1, Z4]. Define the nonlinear
perturbation variables U = (u, v) by

(3.1) U(x, t) := Ũ(x, t)− Ū(x1).

Proposition 3.1. Under the hypotheses of Theorem 1.6, let U0 ∈ Hs and U = (u, v)T

be a solution of (1.2) and (3.1). Suppose that, for 0 ≤ t ≤ T , the W 2,∞
x norm of the

solution U remains bounded by a sufficiently small constant ζ > 0. Then

|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0
e−θ(t−τ)|U(τ)|2L2dτ(3.2)

for all 0 ≤ t ≤ T .

Proof. The proof uses the Goodmann-weighted and Kawashima-type energy estimates
adapted from [MaZ4, Z4] for the shock case. See [NZ2] for details. �

3.2. Proof of nonlinear stability. Defining the perturbation variable U := Ũ − Ū ,
we obtain the nonlinear perturbation equations

(3.3) Ut − LU =
∑

j

Qj(U,Ux)xj ,

where Qj(U,Ux) = O(|U ||Ux|+ |U |2) so long as |U | remains bounded.
Applying the Duhamel formula (see Lemma 3.9, [NZ2]) to (3.3), we obtain

(3.4) U(x, t) =S(t)U0 +

∫ t

0
S(t− s)

∑

j

∂xjQ
j(U,Ux)ds

where U(x, 0) = U0(x).

Proof of Theorem 1.6. Define

(3.5)

ζ(t) := sup
s

(
|U(s)|L2

x
(1 + s)

d−1
4 + |U(s)|L∞x (1 + s)

d
2

+ (|U(s)|+ |Ux(s)|+ |∂2
x̃U(s)|)

L2,∞
x̃,x1

(1 + s)
d+1
4

)
.

We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t) uniformly
bounded by some fixed, sufficiently small constant, there holds

(3.6) ζ(t) ≤ C(|U0|L1∩Hs + E0 + ζ(t)2).

This bound together with continuity of ζ(t) implies that

(3.7) ζ(t) ≤ 2C(|U0|L1∩Hs + E0)

for t ≥ 0, provided that |U0|L1∩Hs +E0 < 1/4C2. This would complete the proof of the
bounds as claimed in the theorem, and thus give the main theorem.

By standard short-time theory/local well-posedness in Hs, and the standard principle
of continuation, there exists a solution U ∈ Hs on the open time-interval for which
|U |Hs remains bounded, and on this interval ζ(t) is well-defined and continuous. Now,
let [0, T ) be the maximal interval on which |U |Hs remains strictly bounded by some

Toan Nguyen and Kevin Zumbrun

VI–12



fixed, sufficiently small constant δ > 0. By Proposition 3.1, and the Sobolev embeding
inequality |U |W 2,∞ ≤ C|U |Hs , we have

(3.8)
|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0
e−θ(t−τ)|U(τ)|2L2dτ

≤ C(|U0|2Hs + ζ(t)2)(1 + t)−(d−1)/2.

and so the solution continues so long as ζ remains small, with bound (3.7), yielding
existence and the claimed bounds.

Thus, it remains to prove the claim (3.6). First by (3.4), we obtain

(3.9)
|U(t)|L2 ≤|S(t)U0|L2 +

∫ t

0
|S1(t− s)∂xjQj(s)|L2ds+

∫ t

0
|S2(t− s)∂xjQj(s)|L2ds

≤I1 + I2 + I3

where

I1 : = |S(t)U0|L2 ≤ C(1 + t)−
d−1
4 |U0|L1∩H3 ,

I2 : =

∫ t

0
|S1(t− s)∂xjQj(s)|L2ds

≤ C
∫ t

0
(1 + t− s)− d−1

4
− 1

2 |Qj(s)|L1 + (1 + s)−
d−1
4 |Qj(s)|

L1,∞
x̃,x1

ds

≤ C
∫ t

0
(1 + t− s)− d−1

4
− 1

2 |U |2H1 + (1 + t− s)− d−1
4

(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

[
(1 + t− s)− d−1

4
− 1

2 (1 + s)−
d−1
2

+ (1 + t− s)− d−1
4 (1 + s)−

d+1
2

]
ds

≤ C(1 + t)−
d−1
4 (|U0|2Hs + ζ(t)2)

and

I3 : =

∫ t

0
|S2(t− s)∂xjQj(s)|L2ds ≤

∫ t

0
e−θ(t−s)|∂xjQj(s)|H3ds

≤ C
∫ t

0
e−θ(t−s)(|U |L∞ + |Ux|L∞)|U |H5ds ≤ C

∫ t

0
e−θ(t−s)|U |2Hsds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0
e−θ(t−s)(1 + s)−

d−1
2 ds

≤ C(1 + t)−
d−1
2 (|U0|2Hs + ζ(t)2).

Combining these above estimates yields

(3.10) |U(t)|L2(1 + t)
d−1
4 ≤ C(|U0|L1∩Hs + ζ(t)2).

Similarly, we can obtain estimates for |U(t)|
L2,∞
x̃,x1

, |Ux(t)|
L2,∞
x̃,x1

, |Ux̃x̃|L2,∞ , and |U(t)|L∞x ,

completing the proof of claim (3.6), and the main theorem. �

References

[BHRZ] B. Barker, J. Humpherys, K. Rudd, and K. Zumbrun. Stability of viscous shocks in isentropic
gas dynamics, to appear, Comm. Math. Phys.

Exp. no VI— Stability of noncharacteristic boundary layers

VI–13



[Bra] Braslow, A.L., A history of suction-type laminar-flow control with emphasis on flight research,
NSA History Division, Monographs in aerospace history, number 13 (1999).

[BDG] T. J. Bridges, G. Derks, and G. Gottwald, Stability and instability of solitary waves of the
fifth- order KdV equation: a numerical framework, Phys. D, 172(1-4):190–216, 2002.

[Br1] L. Q. Brin. Numerical testing of the stability of viscous shock waves, PhD thesis, Indiana
University, Bloomington, 1998.

[Br2] L. Q. Brin. Numerical testing of the stability of viscous shock waves, Math. Comp.,
70(235):1071–1088, 2001.

[BrZ] L. Q. Brin and K. Zumbrun. Analytically varying eigenvectors and the stability of viscous
shock waves, Mat. Contemp., 22:19–32, 2002, Seventh Workshop on Partial Differential Equa-
tions, Part I (Rio de Janeiro, 2001).

[CHNZ] N. Costanzino, J. Humpherys, T. Nguyen, and K. Zumbrun, Spectral stability of nonchar-
acteristic boundary layers of isentropic Navier–Stokes equations, to appear, Arch. Ration.
Mech. Anal.

[GR] Grenier, E. and Rousset, F., Stability of one dimensional boundary layers by using Green’s
functions, Comm. Pure Appl. Math. 54 (2001), 1343-1385.

[GMWZ1] O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Multidimensional viscous shocks I:
degenerate symmetrizers and long time stability, J. Amer. Math. Soc. 18 (2005), no. 1, 61–
120.

[GMWZ5] O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Existence and stability of noncharac-
teristic hyperbolic-parabolic boundary-layers. Preprint, 2008.

[GMWZ6] O. Guès, G. Métivier, M. Williams, and K. Zumbrun. Viscous boundary value problems for
symmetric systems with variable multiplicities J. Differential Equations 244 (2008) 309–387.

[HZ] P. Howard and K. Zumbrun, Stability of undercompressive viscous shock waves, in press, J.
Differential Equations 225 (2006), no. 1, 308–360.

[HLZ] J. Humpherys, O. Lafitte, and K. Zumbrun. Stability of viscous shock profiles in the high
Mach number limit, (Preprint, 2007).

[HLyZ1] Humpherys, J., Lyng, G., and Zumbrun, K., Spectral stability of ideal-gas shock layers,
Preprint (2007).

[HLyZ2] Humpherys, J., Lyng, G., and Zumbrun, K., Multidimensional spectral stability of large-
amplitude Navier-Stokes shocks, in preparation.

[HoZ1] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations
of compressible flow, Indiana Univ. Math. J. 44 (1995), no. 2, 603–676.

[HoZ2] D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes
diffusion waves, Z. Angew. Math. Phys. 48 (1997), no. 4, 597–614.

[HuZ] J. Humpherys and K. Zumbrun. An efficient shooting algorithm for evans function calcula-
tions in large systems, Physica D, 220(2):116–126, 2006.

[KK] Y. Kagei and S. Kawashima Stability of planar stationary solutions to the compressible
Navier-Stokes equations in the half space, Comm. Math. Phys. 266 (2006), 401-430.

[KNZ] S. Kawashima, S. Nishibata, and P. Zhu, Asymptotic stability of the stationary solution to
the compressible Navier-Stokes equations in the half space, Comm. Math. Phys. 240 (2003),
no. 3, 483–500.

[MaZ3] C. Mascia and K. Zumbrun. Pointwise Green function bounds for shock profiles of systems
with real viscosity. Arch. Ration. Mech. Anal., 169(3):177–263, 2003.

[MaZ4] C. Mascia and K. Zumbrun. Stability of large-amplitude viscous shock profiles of hyperbolic-
parabolic systems. Arch. Ration. Mech. Anal., 172(1):93–131, 2004.

[MN] Matsumura, A. and Nishihara, K., Large-time behaviors of solutions to an inflow problem in
the half space for a one-dimensional system of compressible viscous gas, Comm. Math. Phys.,
222 (2001), no. 3, 449–474.

[MZ] Métivier, G. and Zumbrun, K., Viscous Boundary Layers for Noncharacteristic Nonlinear
Hyperbolic Problems, Memoirs AMS, 826 (2005).

[N2] T. Nguyen, On asymptotic stability of noncharacteristic viscous boundary layers, SIAM J.
Math. Analysis, to appear.

[NZ1] T. Nguyen and K. Zumbrun, Long-time stability of large-amplitude noncharacteristic bound-
ary layers for hyperbolic-parabolic systems, J. Maths. Pures et Appliquées, to appear.

[NZ2] T. Nguyen and K. Zumbrun, Long-time stability of multi-dimensional noncharacteristic vis-
cous boundary layers, Preprint, 2008

Toan Nguyen and Kevin Zumbrun

VI–14



[RZ] M. Raoofi and K. Zumbrun, Stability of undercompressive viscous shock profiles of hyperbol-
icparabolic systems Preprint, 2007.

[S] H. Schlichting, Boundary layer theory, Translated by J. Kestin. 4th ed. McGraw-Hill Series
in Mechanical Engineering. McGraw-Hill Book Co., Inc., New York, 1960.

[SZ] Serre, D. and Zumbrun, K., Boundary layer stability in real vanishing-viscosity limit, Comm.
Math. Phys. 221 (2001), no. 2, 267–292.

[YZ] S. Yarahmadian and K. Zumbrun, Pointwise Green function bounds and long-time stability
of large-amplitude noncharacteristic boundary layers, Preprint (2008).

[Z2] K. Zumbrun. Multidimensional stability of planar viscous shock waves. In Advances in the
theory of shock waves, volume 47 of Progr. Nonlinear Differential Equations Appl., pages
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