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SUPERCRITICAL NONLINEAR SCHRÖDINGER

EQUATIONS: QUASI-PERIODIC SOLUTIONS

AND ALMOST GLOBAL EXISTENCE

W.-M. Wang

Abstract. We construct time quasi-periodic solutions and prove almost global exis-
tence for the energy supercritical nonlinear Schrödinger equations on the torus in arbi-

trary dimensions. The main new ingredient is a geometric selection in the Fourier space.

This method is applicable to other nonlinear equations.

1. Introduction and time quasi-periodic solutions

We consider the nonlinear Schrödinger equation on the d-torus Td = [0, 2π)d:

i
∂

∂t
u = −∆u+ |u|2pu+H(x, u, ū) (p ≥ 1, p ∈ N), (1.1)

with periodic boundary conditions: u(t, x) = u(t, x+ 2jπ), x ∈ [0, 2π)d for all j ∈ Zd,
where H(x, u, ū) is analytic in (x, u, ū) and has the expansion:

H(x, u, ū) =

∞∑

m=1

αm(x)|u|2p+2mu,

where αm as a function on Rd is (2π)d periodic and real and analytic in a strip of
width O(1) for all m. The integer p in (1.1) is arbitrary.

Using Fourier series, the solutions to the linear equation:

i
∂

∂t
u = −∆u

are linear combinations of eigenfunction solutions of the form:

e−ij
2teij·x, j ∈ Zd,

where j2 = |j|2 and · is the usual inner product. These solutions are periodic in time.
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It is natural to investigate the persistence of this type of solutions in the presence of
nonlinearity. Therefore we first construct time quasi-periodic solutions to (1.1). Using
a related construction, we then prove almost global existence for a class of smooth
solutions to Cauchy problems.

Specializing to H = 0, it is well known from [B1] that (1.1) is locally well-posed in
Hs for

s > max(0,
1

2
(d− 2

p
)).

This is derived by linearizing about the flow of the Laplacian and proving L2p+2

estimates of its eigenfunction solutions (Strichartz estimates).

For d ≥ 3 and sufficiently large p, the local theory is in Hs for s > 1. For example, in
dimension 4, the quintic nonlinear Schrödinger equation is locally well-posed in H3/2,
where there is no conservation law. These equations are therefore energy supercritical
as there is no a priori global existence from patching up local solutions, not even for
small solutions, as (1.1) is non-dispersive, i. e., ‖u‖∞ cannot tend to 0 as t → ∞ on
the torus Td.

One of the central points of the new theory in [W3, 4] (cf. also [W5]), is that
it does not make use of conservation laws. Instead it analyzes the geometry of the
characteristics. A consequence is that the results hold both in the focusing and the
defocusing cases.

The nonlinear Fourier series

To proceed, let u(0) be a solution of finite number of frequencies, b frequencies, to
the linear equation:

i
∂

∂t
u(0) = −∆u(0), (1.2)

u(0)(t, x) =

b∑

k=1

ake
−ij2kteijk·x.

For the nonlinear construction, it is useful to add a dimension for each frequency in
time and view u(0) as a function on Tb ×Td = Tb+d ⊃ Td. Henceforth u(0) adopts the
form:

u(0)(t, x) =

b∑

k=1

ake
−ij2kteijk·x

: =
b∑

k=1

û(−ek, jk)e−i(ek·ω
(0))teijk·x,

where ek = (0, 0, ...1, .., 0) ∈ Zb is a unit vector, with the only non-zero component in
the kth direction, ω(0) = {j2k}bk=1 (jk 6= 0) and û(−ek, jk) = ak. Therefore u(0) has
Fourier support

supp û(0) = {(−ek, jk), k = 1, ..., b} ⊂ Zb+d, (1.3)
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where jk 6= jk′ if k 6= k′.

For the nonlinear equation (1.1), we seek quasi-periodic solutions with b frequencies
in the form of a nonlinear space-time Fourier series:

u(t, x) =
∑

(n,j)

û(n, j)ein·ωteij·x, (n, j) ∈ Zb+d, (1.4)

with the frequency ω ∈ Rb to be determined. This is the well-known frequency-
amplitude modulation fundamental to nonlinear equations. We note that the corre-
sponding linear solution u(0) has fixed frequency ω = ω(0) = {j2k}bk=1 ∈ Rb, which are
eigenvalues of the Laplacian.

In the Fourier space Zb+d , the support of the solution in the form (1.4) to the linear
equation (1.2) and its complex conjugate are by definition, the bi-characteristics C:

C = {(n, j) ∈ Zb+d| ± n · ω(0) + j2 = 0}. (1.5)

We further define

C+ = {(n, j)|n · ω(0) + j2 = 0, j 6= 0} ∪ {(n, 0)|n · ω(0) = 0, n1 ≤ 0},
C− = {(n, j)| − n · ω(0) + j2 = 0, j 6= 0} ∪ {(n, 0)|n · ω(0) = 0, n1 > 0}.

(1.6)

So we have
C+ ∩ C− = ∅, C+ ∪ C− = C.

C is the support of the solution to the linear equation (1.2) in the form (1.4) and
is the resonant or singular set for the nonlinear equation (1.1). We consider C as
the restriction to Zb+d of the corresponding manifold on Rb+d. So C is a manifold
of singularities and not just isolated points. Moreover since ω(0) is an integer vector,
C not only lacks convexity but also has null directions in n. We introduce the novel
geometric concept of generic linear solutions to overcome these major difficulties.

Assume u(0) is generic, satisfying the genericity conditions (i-iv) near the end of
this section. Here it suffices to mention that the genericity conditions pertain entirely
to the spatial Fourier support of u(0): {jk}bk=1 ∈ (Rd)b and are determined by the
|u|2pu term in (1.1) only. These conditions are explicit and moreover the non-generic
set Ω is of codimension 1 in (Rd)b.

The first result is

Theorem 1. Assume

u(0)(t, x) =

b∑

k=1

ake
−ij2kteijk·x,
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a solution to the linear equation (1.2) is generic and a = {ak} ∈ (0, δ]b = B(0, δ).
Then there exist C, c > 0, such that for all ε ∈ (0, 1), there exists δ0 > 0 and for all
δ ∈ (0, δ0) a Cantor set G with

meas {G ∩ B(0, δ)}/δb ≥ 1− Cεc. (1.7)

For all a ∈ G, there is a quasi-periodic solution of b frequencies to the nonlinear
Schrödinger equation (1.1):

u(t, x) =
∑

ake
−iωkteijk·x +O(δ3), (1.8)

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(δ2p).

The remainder O(δ3) is in an analytic norm about a strip of width O(1) on Tb+d.

Remarks. 1. The Theorem also holds when there is in addition an overall phase,
m 6= 0, corresponding to adding m to the right side of (1.1).

2. When d = p = 1, the non-generic set Ω = ∅. All u(0) are generic and only amplitude
selection is necessary. This is the well understood scenario after writing (1.1) as an
infinite dimensional Hamiltonian equation [KP].

3. For the geometry of the cubic nonlinearity in any dimension and a reinterpretation
of the integrability of the cubic nonlinearity in one dimension, see the Appendix.

This is the first existence results on quasi-periodic solutions to the nonlinear Schrö-
dinger equation (1.1) in arbitrary dimensions and for arbitrary nonlinearity p. The
main obstacle to the construction was the complete violation of the Kolmogorov non-
degeneracy condition or its weaker versions. This is because the perturbation is about
a linear system (the Laplacian) and not an integrable nonlinear system.

Furthermore, as mentioned earlier, the existence of a global flow for these equations
are generally unknown. The concept of generic linear solutions u(0) and the ensuing
geometric excision enable us to overcome these fundamental difficulties.

Previously, quasi-periodic solutions were constructed using partial Birkhoff normal
forms for the cubic nonlinear Schrödinger equation in dimensions one and two [B3,
GXY, KP]. These algebraic normal form constructions use in an essential way the
specifics of the resonance geometry generated by the cubic nonlinearity, see the Ap-
pendix.

Moreover in dimension two the normalizing transform depends on translation in-
variance and is unstable under small perturbations of the form H. So we have kept the
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perturbation H in (1.1) to underline our different approach. We note that the cubic
nonlinear Schrödinger equation has global flow in dimensions one and two.

The spectral gap

To understand the substance of the geometric and amplitude excisions in Theorem
1, it is useful to take H = 0 and note the perpetual existence of periodic solutions:

u = ae−i(j
2+|a|2p)teij·x

to (1.1) for all j ∈ Zd and a ∈ C. This perpetual existence is because of a spectral gap.
The excision in the general, quasi-periodic case is precisely to ensure the persistence
of this spectral gap.

We comment beforehand that this gap is in the space-time L2 sense and is created
by the nonlinearity itself and not by eigenvalue variation of a linear operator, which is
difficult to achieve in two dimensions and above due to the degeneracy of the Laplacian.
The spectral gap here is geometric in origin and is hence robust and stable under
small perturbations. The core of the construction of this spectral gap is a projection
or variable reduction argument. This is general and should be applicable to other
equations.

Once we have the initial spectral gap, we achieve amplitude-frequency modulation
and the scheme of Bourgain [B3, 6] becomes avaliable. In [B3, 6], Bourgain took
care of the geometry in the convex spatial-j direction by using the notion of separated
clusters; here we control the null time-n direction by introducing the concept of generic
linear solutions. Combining the spatial and time directions, we are then able to treat
the original equation (1.1).

The analysis part of this scheme is based on the Lyapunov-Schmidt method and
was first introduced by Craig and Wayne [CW] to construct periodic solutions for
the wave equation in one dimension. It was inspired by the multi-scale analysis of
Fröhlich and Spencer [FS]. The construction was further developed by Bourgain to
embrace the full generality of quasi-periodic solutions and in arbitrary dimensions
[B3, 6]. More recently, Eliasson and Kuksin [EK] developed a KAM theory in the
Schrödinger context.

All the above results, however, pertain to parameter dependent tangentially non-
resonant equations by imposing Diophantine time frequencies. So in particular, there
is no null n-direction.

The preceeding Theorem 1 uses a Newton scheme to construct a type of global
solutions with precise control over the Fourier coefficients. Moreover we have the
following high frequency (semi-classical) analog, which is new to the KAM context:
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Corollary 1. Set H = 0 in (1.1). Let

u(0)(t, x) =
b∑

k=1

ake
−ij2kteijk·x

be a solution to the linear equation (1.2), {jk}bk=1 ∈ [KZd]b, K ∈ N+ and a = {ak} ∈
(0, 1]b = B(0, 1). Assume { jkK }bk=1 ∈ [Zd]b is generic. There exist C, c > 0, such that
for all ε ∈ (0, 1), there exists K0 > 0 and for all K > K0 a Cantor set G with

meas {G ∩ B(0, 1)} ≥ 1− Cεc.

For all a ∈ G, there is a quasi-periodic solution of b frequencies to the nonlinear
Schrödinger equation (1.1):

u(t, x) =
∑

ake
−iωkteijk·x +O(1/K2),

with basic frequencies ω = {ωk} satisfying

ωk = j2k +O(1).

The remainder O(1/K2) is in an analytic norm about a strip of width O(1) in t and
O(1/K) in x on Tb+d.

Remarks. 1. In fact one could have the measure going to 1 as K → ∞ by making
the estimate in the first step K dependent. Using Borel-Cantelli, this then implies
that as K → ∞, on a set of full measure in the unit ball, generically, the nonlinear
torus converges to the corresponding linear torus of size 1. Similar statement holds as
δ → 0, but the convergence is to the origin.

2. These are quantitative, global, L2 size 1 and large kinetic energy solutions, which
could be relevant to the compressible Euler equations.

Before we indicate some ideas of the proof, we mention that there is in addition
a linear component to this theory. It concerns Lp estimates of L2 eigenfunctions of
the Schrödinger operator [W2], cf. also [W1]. The main impetus is to develop fine
analysis of the geometry of the level sets (energy surfaces) in order to have a sharp Lp

theory. This is related to the aim of the nonlinear component here. The right notion
of convexity or separation again plays an essential role.

A sketch of the proof of Theorem 1

We write (1.1) in the Fourier space, it becomes

diag (n · ω + j2)û+ (û ∗ v̂)∗p ∗ û+
∞∑

m=1

α̂m ∗ (û ∗ v̂)∗(p+m) ∗ û = 0, (1.9)
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where (n, j) ∈ Zb+d, v̂ = ˆ̄u, ω ∈ Rb is to be determined and

|α̂m(`)| ≤ C ′e−c′|`| (C ′, c′ > 0)

for all m. From now on we work with (1.9), for simplicity we drop the hat and
write u for û and v for v̂ etc. We seek solutions close to the linear solution u(0) of
b frequencies, supp u(0) = {(−ek, jk), k = 1, ..., b}, with frequencies ω(0) = {j2k}bk=1

(jk 6= 0) and small amplitudes a = {ak}bk=1 satisfying ‖a‖ = O(δ)� 1.

We complete (1.9) by writing the equation for the complex conjugate. So we have

{
diag (n · ω + j2)u+ (u ∗ v)∗p ∗ u+

∑∞
m=1 αm ∗ (u ∗ v)∗(p+m) ∗ u = 0,

diag (−n · ω + j2)v + (u ∗ v)∗p ∗ v +
∑∞
m=1 αm ∗ (u ∗ v)∗(p+m) ∗ v = 0,

(1.10)

By supp, we will always mean the Fourier support, so we write supp u(0) for supp û(0)

etc. Let
S = supp u(0) ∪ supp ū(0). (1.11)

Denote the left side of (1.10) by F (u, v). We make a Lyapunov-Schmidt decompo-
sition into the P -equations:

F (u, v)|Zb+d\S = 0,

and the Q-equations:
F (u, v)|S = 0.

We seek solutions such that u|S = u(0). The P -equations are infinite dimensional and
determine u in the complement of supp u(0); the Q-equations are 2b dimensional and
determine the frequency ω = {ωk}bk=1.

We use a Newton scheme to solve the P -equations, with u(0) as the initial ap-
proximation. The major difference with [CW, B3, 6], cf. also [EK] is that (1.10) is
completely resonant and there are no parameters at this initial stage. The frequency
ω(0) is an integer in Zb. So we need to proceed differently and first extract a parameter
from u(0) and then use the established analysis acheme.

First recall the formal Newton scheme: the first correction

∆

(
u(1)

v(1)

)
=

(
u(1)

v(1)

)
−
(
u(0)

v(0)

)
= [F ′(u(0), v(0)]−1F (u(0), v(0)), (1.12)

where

(
u(1)

v(1)

)
is the next approximation and F ′(u(0), v(0)) is the linearized operator

on `2(Zb+d)× `2(Zb+d)
F ′ = D +A, (1.13)
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where

D =

(
diag (n · ω + j2) 0

0 diag (−n · ω + j2)

)
(1.14)

and

A =

(
(p+ 1)(u ∗ v)∗p p(u ∗ v)∗p−1 ∗ u ∗ u

p(u ∗ v)∗p−1 ∗ v ∗ v (p+ 1)(u ∗ v)∗p

)
+O(δ2p+2) (p ≥ 1),

= A0 +O(δ2p+2).

(1.15)

with ω = ω(0), u = u(0) and v = v(0).

Since we look at small data, ‖A‖ = O(δ2p) � 1 and the diagonal: ±n · ω + j2

are integer valued, using the Schur complement reduction [S1, 2], the spectrum of F ′

around 0 is equivalent to that of a reduced operator on `2(C), where C is defined in
(1.5) and to O(δ2p+2) it is the same as the spectrum of A0 on `2(C).

The genericity conditions

To define generic u(0), we need to analyze the convolution matrix A0. We use the
notation introduced in (1.4). Let

Γ++ = supp [|u(0)|2p] = {(∆n,∆j)} ⊂ Zb+d,

with
supp u(0) = {(−ek, jk)}bk=1, jk 6= jk′ if k 6= k′.

So
∆n = −

∑
pkk′(ek − ek′),

∆j =
∑

pkk′(jk − jk′),

pkk′ ≥ 0,
∑

pkk′ ≤ p,
where all sums are for k, k′ = 1, ..., b;

(1.16)

and
Γ+− = supp [|u(0)|2(p−1)[u(0)]2] = {(∆n,∆j)},

where
∆n = −

∑
pkk′(ek − ek′)− (eκ + eκ′),

∆j =
∑

pkk′(jk − jk′) + (jκ + jκ′),

pkk′ ≥ 0,
∑

pkk′ ≤ p− 1, k, k′, κ, κ′ = 1, ..., b;

(1.17)

and
Γ−+ = supp [|u(0)|2(p−1)[v(0)]2], (1.18)

Wei-Min Wang

XXXII–8



with v(0) = ū(0) as before.

Let

A =
⋃

Γ1 · ... · Γd+2 :=
⋃ d+2∏

i=1

Γi, (1.19)

where Γi is Γ++, Γ+− or Γ−+, and the multiplication · stands for multiplication of
Fourier series and the union is over all choices of Γi with the difference of the number
of factors of Γ+− and Γ−+ in the (d+ 2)- fold product to be at most 1.

Elements of A are of the form:

A 3 (∆n,∆j) =
∑

i≤d+2

(∆n(i),∆j(i)), (1.20)

where (∆n(i),∆j(i)) ∈ Γ++, Γ+− or Γ−+. Since Γ++ 3 (0, 0), any finite product with
at most d+ 2 factors (under the above restrictions) is in A. For σ in A, write |σ| for
its length.

Let σ be a set of d+ 1 elements in A: σ ⊂ A\(0, 0), |σ| = d+ 1 and

σ ⊂
∏

d+1

Γ++. (1.21)

Define
J = |∆j|2 + ∆n · ω(0), (1.22)

for (∆n,∆j) ∈ σ.

Otherwise let σ be a set of d+ 2 elements in A\(0, 0), such that σ does not contain
a d+ 1 element subset

σ′ ⊂
∏

d+1

Γ++. (1.23)

So
σ ∩ (

∏

d

Γ++)Γ+− 6= ∅, (1.24)

or
σ ∩ (

∏

d

Γ++)Γ−+ 6= ∅, (1.25)

where (
∏
d Γ++)Γ+− denotes the (d+ 1)-fold product with one factor of Γ+− with all

possible order and similarly for (
∏
d Γ++)Γ−+. From symmetry it suffices to consider

σ such that (1.24) holds.

Define
A = (

∏

d

Γ++))Γ+−.
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From (1.24)
σ ∩ A 6= ∅. (1.26)

Let
(a, a′) ∈ σ ∩ A. (1.27)

On σ\(a, a′) define

∆̃j = ∆j − a′, (1.28)

∆̃n = ∆n− a, (1.29)

J = |∆̃j|2 + 2a′ · ∆̃j − ∆̃n · ω(0), (1.30)

if the difference in the number of factors in Γ+− and Γ−+ in the sum in (1.20) is 1. If
the difference is 0, then use the definition of J in (1.22).

Definition. u(0) of b frequencies is generic if its Fourier support {(−em, jm)}bm=1 ⊂
Zb+d, where jk 6= jk′ if k 6= k′ satisfies:

(i) For all (∆n,∆j) ∈ A\(0, 0),

Σ± = |∆j|2 ±∆n · ω(0) 6= 0,

where ω(0) = {j2k}bk=1.

(ii) For any σ ⊂ A with |σ| = d + 1 satisfying (1.21) and ∆j 6= 0 identically for any
(∆n,∆j) ∈ σ, assume @jk, k = 1, ..., b, such that

{∆j} ⊆ {jk′ − jk, k′ = 1, ...., b, k 6= k′}.

Then the (d+ 1)× (d+ 1) determinant

D = det[[2∆j, J ]] 6= 0,

where

[[2∆j, J ]] =




2(∆j)
(1)
1 2(∆j)

(2)
1 · · · 2(∆j)

(d)
1 J1

2(∆j)
(1)
2 2(∆j)

(2)
2 · · · 2(∆j)

(d)
2 J2

... · · ·
... · · · · · ·

2(∆j)
(1)
d+1 2(∆j)

(2)
d+1 · · · 2(∆j)

(d)
d+1 Jd+1


 ,

and for each i = 1 to d+ 1, (∆j)i and Ji are as defined in (1.16, 1.22).

(iii) For any σ ⊂ A with |σ| = d + 2 satisfying (1.26) and ∆j 6= 0 identically for any
(∆n,∆j) ∈ σ, assume @jk, jk′ , not necessarily distinct, such that

a′ = −jk − jk′

Wei-Min Wang
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or
{∆j} ⊆ {jk′′ − jk, k′′ = 1, ...., b, k′′ 6= k},

and if {∆̃j} 6= ∅ also

{∆̃j} ⊆ {jk′ − jk′′ , k′′ = 1, ...., b, k′′ 6= k′}.

Then the (d+ 1)× (d+ 1) determinant

D = det[[2∆̄j, J ]] 6= 0,

where ∆̄j stands for ∆j or ∆̃j as defined in (1.28) and J as defined in (1.22, 1.30)
accordingly.

(iv) For all jm, m = 1, ..., b and all (∆n,∆j) ∈ Γ++, the functions

f = ∆n · ω(0) + 2jm ·∆j + |∆j|2 6= 0,

if (∆n,∆j) 6= (−ek′ + em, jk′ − jm), for all k′ = 1, ..., b.

Remarks. (i) prevents pure translations in time. This is a recurrent condition, which
is almost necessary. (iv) is for the analysis in the Newton scheme. It always holds for
the cubic nonlinearity in any dimension, see the Appendix.

Let (jk − jk′), k 6= k′ be a factor present in (∆n,∆j) ∈ A\(0, 0), cf. (1.19, 1.16,
1.17). We note that ∂Σ± and ∂f are not identically zero, where ∂ is the directional
derivative in (jk − jk′). If there is no factor of form (jk − jk′), then ∆j contains a
factor of form (jκ + jκ′) and ∆n, (eκ + eκ′). Taking derivative in the jκ direction, we
reach the same conclusion. Therefore {Σ± = 0} and {f = 0} are sets of codimension
1 in (Rd)b.

If ∃∆̄j /∈ {m(jk′ − jk), k′ = 1, ..., b, k′ 6= k,m = ±1, ....,±p(d + 2)} = I, then when
setting this ∆̄j = 0, the corresponding J 6= 0 identically, where we also used (i). So
the quadratic J is not reducible and D is not identically 0.

If all ∆̄j ∈ I, then it follows from the restrictions on ∆̄j and a′ in (ii, iii) that D is
not identically 0. Therefore {D = 0} gives a set of codimension 1 in (Rd)b.

Combining the above deliberations, we obtain the following important a priori in-
gredient for the construction.

Lemma. The non-generic set

(Rd)b ⊃ Ω := {Σ± = 0} ∪ {D = 0} ∪ {f = 0}

has codimension 1.
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Below we briefly indicate the considerations that led to (i-iv). For more details, see
[W3, 4].

Origins of the genericity conditions

To implement the Newton scheme using (1.12), we need to bound A−10 . From

previous considerations, it suffices to consider A0 restricted to C. For u(0) satisfying
(i-iii), it can be shown that A0|C = ⊕A0, where A0 are Töplitz matrices of sizes at
most (2b+ d)× (2b+ d). This can be seen by considering connected sets on C.

Assume (n, j) ∈ C+ is connected to (n′, j′) ∈ C by the convolution operator A0, then
n′ = n + ∆n and j′ = j + ∆j, where (∆n,∆j) ∈ supp (u(0) ∗ v(0))∗p, if (n′, j′) ∈ C+
and {

(n · ω(0) + j2) = 0,

(n+ ∆n) · ω(0) + (j + ∆j)2 = 0;
(1.31)

and if (n′, j′) ∈ C−, then (∆n,∆j) ∈ supp (u(0) ∗ v(0))∗p−1 ∗ u(0) ∗ u(0) and
{

(n · ω(0) + j2) = 0,

−(n+ ∆n) · ω(0) + (j + ∆j)2 = 0.
(1.32)

(Clearly the situation is similar if (n, j) ∈ C−.)

(1.31, 1.32) define a system of polynomial equations. For u(0) satisfying (i-iii), we
show in sect. 2 that the largest connected set is of size at most max (2b, d+2) ≤ 2b+d.
The connected sets of sizes at most 2b result from translation invariance. The other
connected sets are of sizes at most d + 2. The translation invariant sets correspond
to degeneracy and are in fact the reason for requiring the leading nonlinear O(δ2p+1)
term in (1.1) to be independent of x. The x dependence of the higher order terms do
not matter as they are treated as perturbations.

The invertibility of A0 is then ensured by making an initial excision in a as 0 is

typically not an eigenvalue of a finite matrix. So ‖F ′−1‖ � ‖A−10 ‖ ≤ O(δ−2p). Let

F0(u(0), v(0)) =

(
(u(0) ∗ v(0))∗p ∗ u(0)
(u(0) ∗ v(0))∗p ∗ v(0)

)
. (1.33)

By requiring
supp F0(u(0), v(0)) ∩ {C\S} = ∅,

which amounts to condition (iv), we obtain from (1.12)

‖∆u(1)‖ = ‖∆v(1)‖ ≤ O(δ3)

for small δ. Inserting this into the Q-equations, which determine ω, we achieve
amplitude-frequency modulation:

‖∆ω(1)‖ � O(δ2p)

∣∣det(
∂ω(1)

∂a
)
∣∣ � O(δ2p−1) > 0
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ensuring transversality and moreover Diophantine ω(1) on a set of a of positive measure.
The tangentially non-resonant perturbation theory in [B3, 6] becomes available.

The first iteration is therefore the key step and is the core of the present con-
struction. The main new ingredient is the fine analysis of resonances via systems of
polynomial equations, which provides the geometry to achieve modulated Diophantine
frequency as input for the analysis part of the construction.

2. Almost global existence

We now consider the Cauchy problems for the nonlinear Schrödinger equation (1.1).
Following the custom, we set the higher order terms H to be zero. This is also because
for small data, the construction below carries over verbatim to H 6= 0.

It is convenient to add a parameter and consider initial data of size one. So we have
the following Cauchy problem on Td:

{
i ∂∂tu = −∆u+ δ|u|2pu (p ≥ 1, p ∈ N arbitrary),

u(t = 0) = u0,
(2.1)

with periodic boundary conditions: u(t, x) = u(t, x+ 2jπ), x ∈ [0, 2π)d for all j ∈ Zd
and δ 6= 0 is the parameter.

In Theorem 1, we went one step further and analyzed the resonance geometry
created by the nonlinear term |u|2pu. Relying on the geometric information afforded
by this analysis and linearizing about a suitable approximate quasi-periodic solutions,
we prove the following:

Theorem 2. Let u0 = u1 + u2. Assume u1 is generic satisfying (I. i-iv.) and ‖u2‖ =
O(δ), where ‖·‖ is an analytic norm (about a strip of width O(1)) on Td. Let B(0, 1) =
(0, 1]b, where b is the dimension of the Fourier support of u1. Then for all A > 1,
there exist an open set A ⊂ B(0, 1) of positive measure and δ0 > 0, such that for
all δ ∈ (−δ0, δ0), if {|û1|} ∈ A, then (2.1) has a unique solution u(t) for |t| ≤ δ−A

satisfying u(t = 0) = u0 and ‖u(t)‖ ≤ ‖u0‖ + O(δ). Moreover, if u2 = 0, then meas
A → 1 as δ → 0.

Remarks. 1. It is essential that the set A is open, as we will need to establish an open
mapping theorem to analyze Cauchy problems.

2. The geometric excision is essentially necessary here, in view of the growth of Sobolev
norms exhibited in [CKSTT] for the cubic nonlinear Schrödinger equation in dimension
2 and its likely relation with the non-generic codimension 1 set Ω.

3. The situation here is completely different from seeking global solutions for energy
subcritical equations in Hs for s < 1, as Hs for s < 1 is locally controlled by H1, cf.
[B4].
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For perturbations of the 1d cubic nonlinear Schrödinger equation (d = p = 1),
similar stability results are proven in [Ba, B5]. For parameter dependent equations
see [BG, B2]. The equations treated in [Ba, BG, B2, 5] are either L2 or essentially L2

well-posed. So there is a priori global existence.

The equations treated in Theorem 2 are of a different nature, there is no a priori
global existence from conservation laws. In fact existence is obtained via explicit
construction. This is possible because the known invariant measure for smooth flow
is supported on KAM tori. Linearizing about approximate quasi-periodic solutions to
prove existence and uniqueness for a time arbitrarily longer than local existence time
is the main novelty in Theorem 2.

As for quasi-periodic solutions, we also have the following high frequency (semi-
classical) counterpart, providing quantitative, almost global, L2 size 1 and large kinetic
energy solutions to Cauchy problems. These solutions could be relevant to Cauchy
problems for the compressible Euler equations.

Corollary 2. Set δ = 1 in (2.1). Assume u0 is generic with frequencies {jk}bk=1 ∈
[KZd]b, K ∈ N+. Let B(0, 1) = (0, 1]b. Then for all A > 1, there exist an open set
A ⊂ B(0, 1) of positive measure and K0 > 0, such that for all K > K0, if {|û0|} ∈ A,
then (2.1) has a unique solution u(t) for |t| ≤ KA satisfying u(t = 0) = u0 and
‖u(t)‖ ≤ ‖u0‖ + O(1/K2), where ‖ · ‖ is an analytic norm (about a strip of width
O(1/K)) on Td, moreover meas A → 1 as K →∞.

Remark. The previous related results are only up to time O(K), by solving the asso-
ciated Hamilton-Jacobi equations before the arrival of caustics, cf. [Ca].

Theorem 2 and Corollary 2 provide the first existence and uniqueness results for
Cauchy problems for energy supercritical nonlinear Schrödinger equations beyond the
local one. Combining with the results in Theorem 1 and Corollary 1, the following
rather general picture emerges:

Let u0 be a generic solution to the linear Schrödinger equation with finite number of
frequencies. Then on a set of Fourier coefficients of positive measure, for infinite time,
there is a solution to the nonlinear equation “close” to u0 and for “arbitrary long”
time, there is a unique solution u to the Cauchy problem satisfying u(t = 0) = u0.

A sketch of the proof of Theorem 2

The proof uses the good geometry constructed in Theorem 1 and adapts an analysis
scheme in [B2]. Writing the first equation in (2.1) as F (u) = 0, for u0 satisfying the
conditions in Theorem 2, we first find an approximate solution v such that

{
F (v) = O(δr), (2.3)

v(t = 0)− u0 = O(δr), (2.4)
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where r > A > 1.

This approximate solution v is quasi-periodic with O(| log δ|) number of basic fre-
quencies. Moreover at t = 0, v has the decomposition:

v(t = 0) = u1 + v2

with u1 as in Theorem 2 and ‖v2‖ = O(δ).

The construction of v comprises of two steps. The first step is to construct approxi-
mate quasi-periodic solutions of O(| log δ|) number of basic frequencies with the initial
approximation the solution to the linear equation

u(0) = u1 + u2 (2.5)

for all u(0) such that u1 is generic, using a finitely iterated Newton scheme.

The excision in {|û1|} is essentially the same as in Theorem 1, ensuring the existence
of a spectral gap. The amplitudes {|û2|} are arbitrary as long as δ‖u2‖ = O(δ2) is
smaller than the spectral gap. The constructed solution u satisfies

F (u) = O(δr). (2.6)

Since the above construction is valid on a open set, using the spectral gap to estab-
lish an open mapping theorem, we show that for all

ũ0 = u1 + ũ2

of O(| log δ|) number of frequencies, there is

u(0) = u1 + v2

of the same number of frequencies such that the corresponding quasi-periodic solution
v satisfies {

F (v) = O(δr),

v(t = 0) = ũ0.
(2.7)

We then differentiate (2.6) with respect to the Fourier coefficients of u(0) in (2.5)
and prove that the solutions to the linearized equation is a basis which spans L2(Td),
after a further excision of {|û1|}. Schematically this could be understood as follows.

Assume u is a solution satisfying the equation F (u) = 0 and that it depends on a
parameter a, then ∂u/∂a is a solution to the linearized equation:

F ′(u)(
∂u

∂a
) = 0.

(Here u represents both u and ū.) The main difficulty here is to control the coupling
of u and ū. The fact that {∂u∂a} is a basis is a direct consequence of the separation
property of the resonance geometry entailed by generic u1. This basis in turn allows
us to control the flow linearized about the v in (2.7). Using Duhamel’s formula and
the linearized flow to control the difference of (2.1) and (2.7), we conclude the proof
of Theorem 2.
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3. Appendix: the cubic nonlinearity

For simplicity we write u for u(0) and ω for ω(0), the solutions and frequencies of
the linear equation. The symbols of convolution for the cubic nonlinearity are |u|2,
u2 and ū2. Assume (n, j) ∈ C+ ((n, j) ∈ C− works similarly). In order that (n, j) is
connected to (n′j′) ∈ C, it is necessary that either

(a) [u ∗ v](n, j;n′j′) 6= 0 or

(b) [u ∗ u](n, j;n′j′) 6= 0.

Case (a): Since

n · ω + j2 = 0,

n′ · ω + j′
2

= 0,

subtracting the two equations gives immediately

(jk − j′k) · (j + jk) = 0, (3.1)

where jk, jk′ ∈ Zd (k, k′ = 1, ..., b) and jk 6= jk′ if k 6= k′, are the b Fourier components
of u.

Case (b): Since

n · ω + j2 = 0,

−n′ · ω + j′
2

= 0,

adding the two equations gives immediately

(j + jk) · (j + jk′) = 0, (3.2)

where jk, jk′ ∈ Zd (k, k′ = 1, ..., b) and jk 6= jk′ if k 6= k′, are the b Fourier components
of u.

(3.1, 3.2) are precisely the well known resonant set for the partial Birkhoff normal
form transform in [B3, GXY, KP]. (3.1, 3.2) describe rectangular type of geometry.

supp F0(u, v) ∩ {C\S} = ∅

for the cubic nonlinearity in any d. When d = 1, (3.1, 3.2) reduce to a finite set of 2b
lattice points in Z: {j = ±jk, k = 1, ..., b} and Ω = ∅ in the Theorems and Corollaries.
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