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TWO BLOW-UP REGIMES FOR L2 SUPERCRITICAL
NONLINEAR SCHRÖDINGER EQUATIONS

FRANK MERLE, PIERRE RAPHAËL, AND JÉRÉMIE SZEFTEL

Abstract. We consider the focusing nonlinear Schrödinger equations
i∂tu+ ∆u+u|u|p−1 = 0. We prove the existence of two finite time blow
up dynamics in the supercritical case and provide for each a qualitative
description of the singularity formation near the blow up time.

1. Introduction

1.1. The focusing nonlinear Schrödinger equation. We consider in this
paper the nonlinear Schrödinger equation

(NLS)

{
iut = −∆u− |u|p−1u, (t, x) ∈ [0, T )× RN ,
u(0, x) = u0(x), u0 : RN → C, (1)

in dimension 1 ≤ N ≤ 5 with

1 < p < +∞ for N = 1, 2 and 1 < p <
N + 2

N − 2
for N ≥ 3.

From a result of Ginibre and Velo [4], (1) is locally well-posed in H1 =
H1(RN ) and thus, for u0 ∈ H1, there exists 0 < T ≤ +∞ and a unique
solution u(t) ∈ C([0, T ), H1) to (1) and either T = +∞, we say the solution
is global, or T < +∞ and then limt↑T |∇u(t)|L2 = +∞, we say the solution
blows up in finite time.
Recall that (1) admits the following conservation laws in the energy space
H1:
L2 − norm :

∫
|u(t, x)|2dx =

∫
|u0(x)|2dx,

Energy : E(u(t, x)) = 1
2

∫
|∇u(t, x)|2dx− 1

p+1

∫
|u(t, x)|p+1dx = E(u0),

Momentum : Im(
∫
∇u(t, x)u(t, x)dx) = Im(

∫
∇u0(x)u0(x)dx).

1.2. The scaling symmetry and the virial law. The scaling symmetry
λ

2
p−1u(λ2t, λx) leaves the homogeneous Sobolev space Ḣσc invariant with

σc =
N

2
− 2

p− 1
. (2)

From the conservation of the energy and the L2 norm, the equation is sub-
critical for σc < 0 and all H1 solutions are global and bounded in H1. The
smallest power for which blow up may occur is

pc = 1 +
4

N
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which corresponds to σc = 0 and is referred to as the L2 critical case. The
case 0 < σc < 1 is the L2 super critical and H1 subcritical case.

Let us recall the simple calculation -the so-called virial law- establish-
ing the existence of blow-up solutions in the critical and supercritical cases
(see [19]). For u0 ∈ Σ = H1 ∩ {xu ∈ L2}, we have the following simple
computation:

d2

dt2

∫
|x|2|u(t, x)|2dx = 4N(p− 1)E0 −

16σc
N − 2σc

∫
|∇u|2.

In particular, we obtain for the L2 critical and supercritical cases (σc ≥ 0):

d2

dt2

∫
|x|2|u(t, x)|2dx ≤ 4N(p− 1)E0.

Now, if u0 has negative energy E0 < 0, this implies that the positive quantity∫
|x|2|u(t, x)|2dx lies below an inverted parabola and has thus to become

strictly negative after some time. Hence, the solution cannot exist for all
times.

The strength of this blow up proof is that it applies to an large open region
of the energy space -up to extra integrability condition. However, it does
not provide any explicit description of the singularity formation and of the
different possible regimes. The goal of this paper is to present two recent
descriptions of blow-up regimes for (1) in the super critical case. We first
recall some known results in the critical case.

1.3. The L2 critical case. The critical case corresponds to σc = 0 and
pc = 1 + 4

N , in which case (1) may be rewritten:

(NLS)

{
iut = −∆u− |u| 4N u, (t, x) ∈ [0, T )× RN ,
u(0, x) = u0(x), u0 : RN → C.

(3)

Let Q be the unique positive, radial, nonzero solution to the following
equation:

∆Q−Q+Q1+ 4
N = 0, Q ∈ H1, (4)

see [3], [6]. Recall that for u0 in H1 with |u0|L2 < |Q|L2 , the corresponding
solution u(t) to (3) is global and bounded in H1 (see [18]). This result is
sharp, since there are explicit blow-up solutions with |u0|L2 = |Q|L2 . Indeed,
consider the pseudo-conformal transform: if u(t, x) is a solution to (1), then
so is

v(t, x) =
1

|t|N2
u

(
1

t
,
x

t

)
ei
|x|2
4t .

Applying the pseudo-conformal transform to the solution to (3) given by
u(t, x) = Q(x)eit yields a solution

S(t, x) =
1

|t|N2
Q
(x
t

)
ei
|x|2
4t
− i
t , |S(t)|L2 = |Q|L2 , (5)

blowing up at t = 0 with the blow-up speed:

|∇S(t)|L2 ∼ 1

|t| .
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In the case |u0|L2 > |Q|L2 , two blow-up regimes have been exhibited.
The first one has been constructed by Bourgain and Wang [1] in dimension
N = 1, 2. The authors construct solutions u(t) to (3) which blow up in finite
time and behave locally like the explicit blow-up solution S(t) given by (5).
In particular, these solutions have the same blow-up speed as S(t):

|∇u(t)|L2 ∼ 1

T − t .

Note that these solutions are never observed numerically and are thus be-
lieved to be unstable.

A second type of blow-up regime is the so-called ’log-log’ regime which is
characterized by the following blow-up speed:

|∇u(t)|L2 ∼
(

log|log(T − t)|
T − t

) 1
2

.

It has been exhibited by Perelman [13] in dimension N = 1 and further
extensively studied by Merle and Raphael in the series of papers [7], [8], [14],
[9], [10], [11] where a complete description of this stable blow up dynamics
is given together with sharp classification results in dimension N ≤ 5. In
particular, it leads to a stable blow-up dynamic.

We recall below the existence of the log-log regime obtained in the work
of Merle and Raphaël.

Theorem 1 (Existence of a stable log-log regime, [7], [8], [9], [14], [10], [11]).
Let N ≤ 5. There exists a universal constant α∗ > 0 such that the following
holds true. For any initial data u0 ∈ H1 with small super-critical mass

|Q|L2 < |u0|L2 < |Q|L2 + α∗ (6)

and nonpositive Hamiltonian E(u0) < 0, the corresponding solution to (3)
blows up in finite time 0 < T < +∞ according to the following blowup
dynamics: there exist geometrical parameters (λ(t), x(t), γ(t)) ∈ R∗+×RN×R
and an asymptotic residual profile u∗ ∈ L2 such that:

u(t)− 1

λ
N
2 (t)

Q

(
x− x(t)

λ(t)

)
eiγ(t) → u∗ in L2.

The blowup point converges at blowup time:

x(t)→ x(T ) ∈ RN as t→ T,

the blowup speed is given by the log-log law

λ(t)

√
log|log(T − t)|

T − t →
√

2π as t→ T, (7)

and the residual profile satisfies:

u∗ ∈ L2 but u∗ /∈ Lp, ∀p > 2.

More generally, the set of initial data satisfying (6) and such that the cor-
responding solution to (1) blows up in finite time with the log-log law (7) is
open in H1.

We now turn to the supercritical case.
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2. Two blow-up dynamics in the super critical case

The explicit description of blow up dynamics in the super critical setting
is mostly open. We present below two blow-up regimes that have been exhib-
ited recently. Interestingly, they both rely on the log-log analysis [10] which
allowed Merle and Raphael to derive the sharp log-log law in the critical case.

2.1. Blow up on a sphere for the quintic NLS in dimension N ≥ 2.
We consider the quintic nonlinear Schrödinger equation with radial data:

{
iut = −∂2ru−

N − 1

r
∂ru− |u|4u, (t, r) ∈ [0, T )× R+,

u(0, r) = u0(r), u0 : R+ → C,
(8)

which is super critical for N ≥ 2. The existence and radial stability of self
similar solutions blowing up on an asymptotic blow up sphere -and not a
blow up point- is proved by Raphael [15] for N = 2, and by Raphael, Szeftel
[16] for N ≥ 3:

Theorem 2 (Existence and stability of a solution blowing up on a sphere in
RN ). Let Q be the one dimensional ground state solution to (4), explicitly

Q(x) =

(
3

ch2(x)

) 1
4

.

There exists an open subset O ⊂ HN
rad(RN ) such that the following holds

true. Let u0 ∈ O, then the corresponding solution u(t) to (8) blows up in
finite time 0 < T < +∞ according to the following dynamics. There exist
λ(t) > 0, r(t) > 0 and γ(t) ∈ R such that

u(t, r)− 1

λ(t)
1
2

Q

(
r − r(t)
λ(t)

)
eiγ(t) → u∗(r), in L2 as t→ T. (9)

Here the radius of the singular circle converges

r(t)→ r(T ) > 0 as t→ T (10)

and

λ(t)

(
log|log(T − t)|

T − t

) 1
2

→
√

2π

|Q|L2

as t→ T. (11)

Moreover, N−1
2 derivatives propagate outside the singularity:

∀R > 0, u∗ ∈ H N−1
2 (|r − r(T )| > R) . (12)

Note that Theorem 2 includes the energy critical case N = 3 and energy
super critical problems for N ≥ 4. Let us briefly sketch the strategy of the
proof. One can expect that if the singularity formation happens along the
circle r = 1, then ∣∣∣∣

∂ru

r

∣∣∣∣ ∼ |∂ru| <<
∣∣∂2ru

∣∣

and the leading order blow up dynamics should be given by the one dimen-
sional quintic (NLS) which is critical, and for which a stable log-log dynamics
is known. We then choose initial conditions which are already close to the one
dimensional log-log blow-up. The above heuristic together with the fact that
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the log-log regime is stable keeps things under control near the singularity,
and controls the fact that the singularity stays away from the origin.

Then, the difficulty is to control the critical norm of u(t) near the origin.
More precisely, we need to prove

|u|
H
N−1

2 (r≤ 1
2
)
� 1.

Thus, we face a problem of propagation of regularity outside of the blow-up
sphere. In dimension N = 2 [15], one has to control |u|

H
1
2 (r≤ 1

2
)
which is

achieved by exploiting the properties of the log-log regime together with the
smoothing effect for (NLS). In dimensions N ≥ 3, controlling |u|

H
N−1

2 (r≤ 1
2
)

requires a delicate bootstrap procedure, and we refer to [16] for the details.

2.2. Stable self similar blow up for slightly supercritical NLS. While
the blow-up solutions of Theorem 2 display a stability with respect to radial
perturbations, they are believed to be unstable by non radial perturbations
(see the numerical computations in [2]). In fact, it has long been conjectured
according to numerical simulations, see [17] and references therein, that the
generic blow up dynamics in the super critical setting -at least for p near pc-
should be of self similar type.

Let Qp be the unique positive, radial, nonzero solution to the following
equation:

∆Qp −Qp +Qpp = 0, Qp ∈ H1. (13)

The following result by Merle, Raphaël, Szeftel [12] establishes the existence
of a stable self similar regime in the energy space for slightly super critical
(NLS). We again rely on the log-log analysis [10] to somehow bifurcate from
the critical value p = pc.

Theorem 3 (Existence and stability of a self similar blow up regime). Let
1 ≤ N ≤ 5. There exists p∗ > pc such that for all p ∈ (pc, p

∗), there exists
δ(p) > 0 with δ(p) → 0 as p → pc and an open set O in H1 of initial
data such that the following holds true. Let u0 ∈ O, then the corresponding
solution to (1) blows up in finite time 0 < T < +∞ according to the following
dynamics: there exist geometrical parameters (λ(t), x(t), γ(t)) ∈ R∗+×RN×R
and an excess of mass ε(t) ∈ H1 such that:

∀t ∈ [0, T ), u(t, x) =
1

λ
2
p−1 (t)

[Qp + ε(t)]

(
x− x(t)

λ(t)

)
eiγ(t) (14)

with
|∇ε(t)|L2 ≤ δ(p). (15)

The blowup point converges at blowup time:

x(t)→ x(T ) ∈ RN as t→ T, (16)

and the blow up speed is self similar:

λ(t) ∼
√
T − t as t→ T. (17)

Exp. no II— Two blow-up regimes for L2 supercritical nonlinear Schrödinger equations
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Remark 4. Note that the mechanism of blow-up is stable since the set O of
initial conditions is open in H1. Also, note that we do not prove asymptotic
stability which would correspond to ε converging towards 0 instead of just
being bounded as in (15). In fact, we even do not prove orbital stability since
the bound in (15) depends only on p and not on the size of ε at t = 0.

In the rest of the paper, we sketch the proof of Theorem 3. We refer to
[12] for the details.

3. Approximate self-similar solutions

Our aim in this section is to construct suitable approximate solutions to
(1). Let us make the following general ansatz:

u(t, x) =
1

λ
2
p−1 (t)

v

(
t,
x− x(t)

λ(t)

)
eiγ(t) (18)

and introduce the rescaled time
ds

dt
=

1

λ2(t)
,

then u is a solution to (1) if and only if v solves:

i∂sv + ∆v − v − iλs
λ

Λv + v|v|p−1 = (γs − 1)v + i
xs
λ
· ∇v, (19)

where Λ = 2
p−1 + y · ∇. Let us fix

γs = 1, xs = 0, −λs
λ

= b(s), bs = 0.

Note that this corresponds to a self similar regime since λλt = −b which
together with bs = 0 yields λ(t) = C

√
T − t for some constant C > 0. We

look for solutions of the form:

v(y) = Qb(y)

where the unknown is the mapping b → Qb. The self similar equation be-
comes:

∆Qb −Qb + ibΛQb +Qb|Qb|p−1 = 0. (20)

Let us perform the conformal change of variables

Pb = Qbe
ib|y|2

4 ,

then a simple algebra leads to:

∆Pb − Pb − iσcbPb +
1

4
b2|y|2Pb + Pb|Pb|p−1 = 0. (21)

Since we are in a slightly supercritical case, σc is small, and the idea is to
treat σcbPb in (21) as an error term. Thus, we look for Pb solution to:

∆Pb − Pb +
1

4
b2|y|2Pb + Pb|Pb|p−1 = 0. (22)

Frank Merle, Pierre Raphaël and Jérémie Szeftel
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Note that the linear operator −∆ + 1 − b2|y|2
4 in (22) is the same as in the

critical case. In particular, its structure is well known. It is coercive in the
region |y| < 2

b , whereas in |y| ≥ 2/b, it induces oscillations:

|Pb(y)| ∼ |y|−N2 (23)

so that Pb does not belong to L2. As in the critical case, we truncate the
solution near the turning point |y| = 2

b . Going back to Qb, we obtain an
approximate solution to (20):

∆Qb −Qb + ibΛQb +Qb|Qb|p−1 = O
(
e−

π
2b + bσc

)
(24)

where the first error term comes from the truncation near |y| = 2
b , and the

second one comes from the fact that we treat σcbPb in (21) as an error term.

Remark 5. In reality, we need a slightly more precise approximate solution
of the type Qb + σcTb. To keep the exposition simple, we drop the correction
term σcTb and refer to [12] for the details. Also, the error term generated
by the truncation near |y| = 2

b is not exactly O(e−
π
2b ). Again, we ignore this

fact for the sake of clarity.

4. Modulation theory

Let u(t) solution to (1) with maximum life time interval [0, T ), 0 < T ≤
+∞. Using the regularity u ∈ C([0, T ), H1) and standard modulation theory,
and provided the open set of initial data O has been appropriately chosen,
we can find a small interval [0, T ∗) such that for all t ∈ [0, T ∗), u(t) admits
a unique geometrical decomposition

u(t, x) =
1

λ
2
p−1 (t)

(Qb(t) + ε)

(
t,
x− x(t)

λ(t)

)
eiγ(t) (25)

where uniqueness follows from the freezing of orthogonality conditions: ∀t ∈
[0, T ∗], (

ε1(t), |y|2Σ
)

+
(
ε2(t), |y|2Θ

)
= 0, (26)

(ε1(t), yΣ) + (ε2(t), yΘ) = 0, (27)
(
ε2(t),Λ

2Σ
)
−
(
ε1(t),Λ

2Θ
)

= 0, (28)

(ε2(t),ΛΣ)− (ε1(t),ΛΘ) = 0, (29)
where we have denoted:

ε = ε1 + iε2, Qb = Σ + iΘ,

in terms of real and imaginary parts. This decomposition is essentially a
an application of the implicit function theorem (see [7], [8] for related state-
ments).

Note that the size of T ∗ is a priori not under control. The goal will
be to show that we may choose T = T ∗, and that we have the following
control on [0, T ): 0 < b1 ≤ b ≤ b2 � 1, λ(t) ∼

√
T − t, |∇ε|L2 . e−

π
2b and

x(t) → x(T ). This corresponds to (14)-(17) and will therefore conclude the
proof of Theorem 3.

Exp. no II— Two blow-up regimes for L2 supercritical nonlinear Schrödinger equations
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5. The modulation equations

We start by showing that the control of b and ε immediately yields the
selfsimilar behavior λ ∼

√
T − t and the convergence of the translation pa-

rameter x(t)→ x(T ). To this end, we compute the modulation equations for
the scaling and the translation parameter. First, let us look at the equation
satisfied by ε. In view of the definition of v (18) and the decomposition of u
(25), we have v = Qb + ε. Now, replacing v by Qb + ε in (19) and using the
fact that Qb is an approximate solution (24) yields:

i∂sε+M(ε) +R(ε) + P +O
(
e−

π
2b + bσc

)
, (30)

whereM is a linear operator, R(ε) contains terms that are at least quadratic
in ε, and P contains all the parameters bs, λs

λ + b, xs, γs. The modulation
equations consist in taking the inner product of (30) by the orthogonality
directions (26)-(29) in order to estimate the parameters. The orthogonality
conditions remove the i∂sε term so that the parameters P are controlled by
terms involving ε and the remainder term O

(
e−

π
2b + bσc

)
. In particular, we

obtain for the scaling and the translation parameter:
∣∣∣∣
λs
λ

+ b

∣∣∣∣ .
(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

+ e−
π
2b + bσc, (31)

and
∣∣∣xs
λ

∣∣∣ .
(∫
|∇ε|2 +

∫
|ε|2e−|y|

) 1
2

+ e−
π
2b + bσc. (32)

Assume now that we have proved the following control for b and ε:

0 < b1 ≤ b ≤ b2 � 1 and
∫
|∇ε|2 +

∫
|ε|2e−|y| . e−

π
b . (33)

Then, (31) and (33) imply λλt = λs
λ ∼ −b which after integration yields

the self-similar behavior λ ∼
√
T − t. Also, (32), (33) and the self-similar

behavior of λ imply |xt| =
∣∣xs
λ2

∣∣ � 1
λ ∼ 1√

T−t which after integration yields
the convergence of the scaling parameter x(t)→ x(T ).

Thus, we have reduced the proof of Theorem 3 to the control of b and ε.
This is achieved by a bootstrap method. We assume 0 < b1 ≤ b ≤ b2 � 1 and∫
|∇ε|2 +

∫
|ε|2e−|y| ≤ Ce−

π
b on [0, T ∗) for some possibly small T ∗ > 0 and

we improve on the constants to show that in fact T = T ∗. The proof relies
on two monotonicity formulas. These monotonicity formulas are obtained
using the same procedure as in the critical case and the point is to track the
structure of the new terms.

6. First monotonicity formula

To obtain our first monotonicity formula, we compute the modulation
equation for b. This corresponds to taking the imaginary part of the inner
product of the equation of ε (30) with ΛQb. This computes bs in function of
a remainder term and ε.

Since we look for a monotonicity formula, we would like the terms in ε to
have a sign. This is obviously not the case for the linear term. Fortunately,
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the linear term in ε corresponds to the linearization of the energy around Qb
and can be replaced by the energy of Qb and terms at least quadratic in ε by
injecting the conservation of energy. Since the energy of Qb is degenerate,
this computes bs in function of a remainder term and terms at least quadratic
in ε.

Now, we are done provided the quadratic form in ε has a sign. This is
the case since the negative directions of the quadratic form are controlled
using the orthogonality conditions (26)-(29) (which is the main motivation
for their choice) together with the conservation of energy and momentum.
Finally, we arrive at the following monotonicity formula:

bs ≥ c1
(
σc +

∫
|∇ε|2 +

∫
|ε|2e−|y|

)
− 1

c1
e−

π
b , (34)

for some constant c1 > 0.

Remark 6. The new term with respect to the critical case is c1σc. The
crucial observation is that this term turns out to have the good sign for our
analysis.

Remark 7. The last term in (34) is not exactly e−
π
b . We ignore this fact

for the sake of clarity and refer to [12] for the details.

7. Second monotonicity formula

The monotonicity formula (34) will allow us to bound b from below. We
now need a second monotonicity formula to bound b from above. We again
follow the analysis in the critical case. The first step consists in choosing an
improved approximate solution taking into account the behavior at infinity
of the true self-similar solution. Indeed, remember that we have truncated
Qb near |y| = 2

b and therefore completely neglected the oscillating behavior
of the true self similar solution taking place in the region |y| ≥ 2

b . Thus,
we now consider a new approximate self-similar profile Q̂b where we now
truncate at |y| ∼ A with A� 2

b . We refer to [12] for the precise choice of A
which turns out to be exponentially decreasing in −1

b .
We now rerun the procedure used to obtain the first monotonicity formula

where Qb is replaced by Q̂b and ε by ε̂ = ε + Qb − Q̂b. The non L2 tail of
the true self-similar solution (see (23)) implies a corresponding decay for Q̂b
in the region A ≤ |y| ≤ 2A. In turn, this forces us to control terms of type∫ 2A
A |ε|2.
In fact, we are able to control b

∫ 2A
A |ε|2 via a localization in space of the

L2 conservation law. Thus, we multiply everything by b. Finally, we arrive
at the following monotonicity formula:

−{J }s ≥ c2b
(
e−

π
b +

∫
|∇ε̂|2 +

∫
|ε̂|2e−|y|

)
− b

c2
σc (35)

where c2 > 0 is a constant and J is an expression depending on b and ε with
the following behavior:

J ∼ b2. (36)
Note that the new term in (35) with respect to the critical case is b

c2
σc.
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Remark 8. The first term in the right-hand side of (35) is not exactly e−
π
b .

We ignore this fact for the sake of clarity and refer to [12] for the details.

8. Control of b and ε

We now use the first and the second monotonicity formulas to control b
and ε. For simplicity, we will assume that we may divide (35) by b and
obtain together with (36):

−bs ≥ c3
(
e−

π
b +

∫
|∇ε̂|2 +

∫
|ε̂|2e−|y|

)
− 1

c3
σc, (37)

for some constant c3 > 0. We now use (34) and (37) and the sign of the ε
and ε̂ terms to obtain:

c1σc −
1

c1
e−

π
b ≤ bs ≤ −c3e−

π
b +

1

c3
σc. (38)

(38) immediately yields upper and lower bounds for b of type:

0 < b1 ≤ b ≤ b2 � 1 with σc ∼ e−
π
b . (39)

Furthermore, using again the first monotonicity formula (34), the second
version of the second monotonicity formula (37) and the bound (39) on b,
we obtain: ∫

|∇ε|2 +

∫
|ε|2e−|y| . e−

π
b + σc . e−

π
b . (40)

(39) and (40) are the wanted estimates for b and ε which concludes the proof
of Theorem 3.

Remark 9. We obtain the convergence of the blow-up point (16), the self-
similar speed (17), and the fact that σc ∼ e−

π
b (see (39)). All these properties

are in accordance with the numerical simulations (see [17]).

Remark 10. Exact self-similar solutions (i.e. solutions to (20)) have been
exhibited by Koppel and Landman, [5], for slightly super critical exponent
using geometrical ODE techniques. These self similar solutions belong to
Ḣ1 ∩ Lp+1 but always miss L2 and hence the physically relevant space H1.
Moreover, the construction of the self similar solution is delicate enough that
it is not clear at all how this object should generate a stable self similar
blow up dynamics. The strength of our method is to avoid the use of such
delicate objects. Instead of obtaining a sharp description of the profile in the
decomposition of u (25), we use a rough profile Qb(t). In particular, note
that we do neither prove the convergence of b to a limit as t → T , nor
the convergence of ε to 0. In fact, (39) and (40) do not exclude possible
oscillations of both b(t) and ε(t).
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