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Gradient flows in Wasserstein spaces and

applications to crowd movement

Filippo Santambrogio ∗

Abstract

Starting from a motivation in the modeling of crowd movement, the
paper presents the topics of gradient flows, first in Rn, then in metric
spaces, and finally in the space of probability measures endowed with the
Wasserstein distance (induced by the quadratic transport cost). Differ-
ently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-
Gigli-Savaré, we propose an approach where the optimality conditions for
the minimizers of the optimization problems that one solves at every time
step are obtained by looking at perturbation of the form ρε = (1−ε)ρ+ερ̃
instead of ρε = (id + εξ)#ρ. The ideas to make this approach rigorous
are presented in the case of a Fokker-Planck equation, possibly with an
interaction term, and then the paper is concluded by a section, where this
method is applied to the original problem of crowd motion (referring to a
recent paper in collaboration with B. Maury and A. Roudneff-Chupin for
the details).

1 Introduction

The goal of this paper, as well of the talk I gave at Séminaire X-EDP is to
present some ideas from the theory of Gradient Flows in the space of probability
measures, motivated by applications in crowd movement and, more generally, in
the motion of fluids under a density constraint (imposing that particles cannot
be “too dense”).

In many vehicular traffic models with congestion a discrete network is con-
sidered and the speed of every vehicle is supposed to decrease with the density
of other vehicles nearby, possibly tending to 0 when it approaches a threshold
density. For instance one can take v = (1 − ρ)u, where u is the spontaneous
velocity in the absence of other vehicles, v is the true velocity which will be
actually realized, and ρ ≤ 1 is the density. Pedestrian motion models (see
[4, 6, 7, 9, 10, 11, 20], just to make a short list of some of the recent models)
usually replace the network with a 2D framework, but in many cases the depen-
dence of the velocity on the density stays similar. Both the 1D and 2D cases
are studied either under a continuous approach (i.e. looking at the evolutions
of densities and velocities as functions of (t, x) ∈ [0, T ]×Ω) or under a discrete
one, looking separately at every particle and at its interactions with the others.
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A more drastic viewpoint is the one presented by Maury and Venel in [16,
17], where the idea is that particles can move as they want as far as they
are not too dense, and if a density constraint is saturated, then their velocity
field will change from the spontaneous u to another, less concentrating and
typically slower, v. Maury and Venel are concerned with the discrete case,
so that the density constraint is interpreted as a non-superposition constraint:
particles cannot overlap, but as soon as they are not in touch their motion
is unconstrained. The problem that arises is a strange ODE which is studied
by the authors both from a theoretical and numerical point of view, putting
it in the framework of differential inclusions, maximal monotone operator and
gradient-flow in ΩN (N being the number of particles).

This discrete model will be briefly sketched in the next section, together
with its continuous counterpart, which is the main motivation of this paper.
The reader may refer to the paper [15] in preparation, which will deal with
various aspects of the problem, and in particular with the comparison between
the microscopic and the macroscopic versions. What arises in the continuous
(macroscopic) model is a PDE of the form

∂

∂t
ρt +∇ ·

(
ρtvt

)
= 0

where vt is defined as the projection of a given field ut on the set of admissible
velocities “infinitesimally preserving” the density constraint ρ ≤ 1. This set de-
pends on ρt (more precisely, on the region where ρt = 1) and, as a consequence,
the velocity field v has globally two regularity problems: first, in general, for
fixed ρt and ut, the field vt is not Lipschitz continuous, since it is obtained
through an L2 projection; second, it does not depend in a smooth way on ρ,
and is very sensitive to small perturbations of ρ. This implies that it is very
difficult to insert this PDE into a wide classical theory, and leads to the need
for some other tools.

It happens, as it has been intensively studied in the last years, that the
concept of gradient flow in metric spaces, applied to the case of probability
measures endowed with the Wasserstein distance (i.e. the distance induced by
the quadratic transport cost in Monge-Kantorovitch theory, see [13, 21, 22]), is
very useful for applications to certain nonlinear evolution PDEs. In Section 3,
we will give the step-by-step variational interpretation of gradient flows, with
the way to adapt it to metric spaces (following De Giorgi and Ambrosio, [8, 1]).
After that, we will introduce the tools we need in optimal transport, together
with the way of getting some PDEs. The first ideas of this theory date back
to [12], and the subject has been systematically studied in [2, 3], but here in
this paper there is an important different idea that we will see: actually, when
computing the optimality conditions for the variational problems that one gets
when discretizing in time, we use vertical perturbations

ρε = (1− ε)ρ+ ερ̃ instead of ρε = (id+ εξ)#ρ,

the latter being also called horizontal perturbations or intrinsic, because they
are the most natural when one looks at the Wasserstein space as a sort of
Riemannian manyfold.

For some reasons, it happens that these alternative perturbations have not
been that used up to now, especially in evolutionary problems (they actually
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appear in some papers more related to convex analysis and statical optimization,
and an example can be seen in [5]). Yet, they allow very often to get some
powerful results for variational or gradient flow problems, and it could be the
case that some results are easier to obtain in this way rather than through
the usual theory of [2], even if I do not claim that this alternative viewpoint
necessarily allows for wider or stronger or better results (but I think it deserves
being explored). This is why in Section 4 we will see the procedure giving
existence of the solutions to some evolutionary PDEs via this ideas. For the
sake of clarity, Section 4 will stick to a sloppy presentation, with ideas from
the time-discretized problem, followed by a rigorous proof in the easiest cases.
These case include linear terms, like in the Heat or Focker-Planck equations,
but also non-local terms, corresponding to interaction energies, provided some
compactness properties are satisfied. I’m also currently studying how to extend
these results to other nonlinear cases, where compactness is not straightforward
(it is the case for the porous media equation), but this requires a more refined
analysis, and will hopefully appear in a forthcoming paper. Let me stress the
fact that the only goal of this approach is to prove existence results (under no
geodesic convexity assumptions, which are crucial in the theory of [2]) and when
I say existence I mean “existence of a weak solution of the associated PDE”.

Anyway, to come back to the original motivation, in Section 5 we will see
a functional whose gradient flow is supposed to give our crowd motion PDE,
and then, via vertical perturbations, we show that this is exactly the case. The
reader may refer to [14] for all the estimates, which are non-trivial, and we
only give the main ideas. The choices of the structure of the functional will be
discussed in relation with the modelization goals of this study.

2 Microscopic and Macroscopic models for crowd
motion

This section is devoted to the modelization of a density-constrained motion of a
particle population. Let us suppose that each particle, if alone, would follow its
own velocity u (which could a priori depend on time, position, on the particle
itself. . . ). Yet, these particles are modeled by rigid disks that cannot overlap,
hence, it is not clear whether the actual velocity can be u, in particular if u tends
to concentrate the masses. Hence, we will call v the actual velocity that each
particle will have, and the main assumption of the model is that v = Padm(q)(u),
where q is the particle configuration, adm(q) is the set of velocities that do not
induce overlapping starting from the configuration q, and Padm(q) the projection
on this set.

The simplest example is the one where every particle is a disk with the same
radius R and center located at qi. In this case we define the admissible set of
configurations K through

K := {q = (qi)i ∈ ΩN : |qi − qj | ≥ 2R for all i 6= j}.

In this way the set of admissible velocities is easily seen to be

adm(q) = {v = (vi)i : (vi − vj) · (qi − qj) ≥ 0 ∀(i, j) : |qi − qj | = 2R}.
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The evolution equation which has to be solved for following the motion of q
is then

q′(t) = Padm(q(t))u(t) (1)

(with q(0) given).
The typical case is the one where the spontaneous velocity of the i−th parti-

cle only depends on its position, and in particular we are interested in a gradient
structure: ui(q) = −∇D(qi). In the modelization, the function D is often sup-
posed to be a distance function to a target set, like D(x) = d(x,Γ) and Γ is a
subset of ∂Ω representing the exit door that the particles located in the domain
Ω aim to reach (and if Ω is not convex it is better to consider as d the geodesic
distance).

The equation (1) itself is not easy from a mathematical point of view (proving
existence of a solution, uniqueness, finding an algorithm to approximate it,
possibly by time discretization. . . ). The main problem is the fact that q 7→
Padm(q)u is not regular (Lipschitz). On the other hand, in this specific case
where u = −∇D, it may be written in the following way

−q′(t) ∈ ∂(F + IK)(q(t)),

where ∂ denotes the Fréchet subgradient and F (q) :=
∑
iD(qi). Notice that,

independently of the possible convexity of F , the sum F + IK (IK being the
indicator function of the set K, equal to 0 on K and to +∞ on its complement)
is not convex since the set K itself is not convex. Yet, the set K is not far
from being convex, since it is prox-regular (i.e. it admits a neighborhood where
the projection on K is well-defined and Lipschitz), and hence it allows for some
proofs similar to the convex case. This is the point which has been exploited by
Maury and Venel ([16, 17]) to make a complete theory of this equation.

We are now interested in the simplest continuous counterpart of this mi-
croscopic model. In this framework, which does not pretend to be any kind
of homogenized limit of the discrete particle approaches, but only an easy re-
formulation in a density setting, the main ingredients are the following.

• The particles population will be described by a probability density ρ ∈
P(Ω);

• the constraint of non-overlapping will be replaced by a density constraint
using the set K = {ρ ∈ P(Ω) : ρ ≤ 1} (where ρ denotes, by abuse of
notation at the same time the probability and its density, since anyway
our set K imposes ρ << Ld and that the density is bounded a.e. by 1);

• for every time t, we consider ut : Ω→ Rd a vector field, possibly depending
on time or on ρ;

• the set of admissible velocities will be described by the sign of the diver-
gence on the saturated region {ρ = 1}: adm(ρ) =

{
v : Ω→ Rd : ∇ · v ≥

0 on {ρ = 1}
}

;

• we will consider a projection P , which will be either the projection in
L2(Ld) or in L2(ρ) (this will turn out to be the same, since the only
relevant zone is {ρ = 1});

Filippo Santambrogio
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• we will solve the equation

∂

∂t
ρt +∇ ·

(
ρt
(
Padm(ρt)ut

))
= 0. (2)

Formula (2) is motivated by the fact that the equation satisfied by the evo-
lution of a density ρ when each particle follows the velocity field v is exactly
the continuity equation ∂

∂tρt +∇ ·
(
ρtvt

)
= 0 (with v · n = 0 on ∂Ω, so that the

density does not exit Ω). Here we only insert the fact that v is the projection
of u.

The main difficulty is the fact that the vector field v = Padm(ρt)ut is nor
regular (since it is obtained as an L2 projection, and may only be expected to
be L2 a priori), neither it depends regularly on ρ (it is very sensitive to small
changes in the values of ρ: for instance passing from a density 1 to a density
1 − ε completely changes the saturated zone, and hence the admissible set of
velocities and the projection onto it).

Before entering the ideas which are necessary to overcome these difficulties,
we need to make a little bit more precise the definitions above. Actually, instead
of considering the divergence of vector fields which are only supposed to be L2,
it is more convenient to give a better description of adm(ρ) by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0

}
.

In this way we characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0},

where press(ρ) is the space of functions p used as test functions in the dual
definition of adm(ρ), which play the role of a pressure affecting the movement.
The two cones ∇press(ρ) and adm(ρ) are orthogonal cones and this allows for
an orthogonal decomposition ut = vt + ∇pt. This also gives the alternative
expression of Equation (2), i.e.

∂

∂t
ρt +∇ ·

(
ρt(ut −∇pt)

)
= 0. (3)

3 Gradient flows in Rn, in metric spaces and in
W2

A gradient-flow in Rn is nothing but an evolution equation (an ODE) of the
form x′(t) = −∇F (x(t)) (i.e. the trajectories follow the steepest descent lines
of a function F ). If F ∈ C1,1 this equation falls into the usual theorems for
ODE, and in particular Cauchy-Lipschitz theorem. Yet the advantage of those
ODE having a gradient structure is the fact that they may be analyzed under
much weaker assumptions. For instance, a complete theory of existence and
uniqueness results for λ−convex functions F (i.e. such that F (x) − λ

2 |x|2 is
convex, which means a lower bound on the second derivatives) is available.

Exp. no XXVII— Gradient flows in Wasserstein spaces and applications to crowd movement
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However, in this paper we are mainly concerned with the existence of a solution
(instead of uniqueness or other properties).

To prove such existence, a powerful tool is the time discretization used by
Ambrosio and De Giorgi (see [8, 1]), to define the so-called minimizing move-
ments in general framework. Actually, if one recursively solves

xτk+1 ∈ argmin
x

F (x) +
1

2τ
|x− xτ (k)|2,

where τ > 0 is a fixed time step and x0 is given, he finds a sequence of points
xτ (k) that may be interpreted as the value of a discrete trajectory at time kτ .

If one looks at the optimality conditions on the optimal point xτk+1 he finds

xτk+1 − xτ (k)

τ
+∇F (xτk+1) = 0,

which corresponds to an implicit Euler scheme to solve x′(t) = −∇F (x(t)). A
solution of this ODE will then be found as a limit τ → 0. It is interesting to
notice that, if F is convex but non-smooth, this method provides a solution to
x′(t) ∈ −∂F (x(t)), and is able to provide existence for less regular functions F .

Besides the less-demanding regularity requirements, another advantage of
this formulation is the fact that it may easily be adapted to a general metric
space. Indeed, one can simply replace |x − xτ (k)| with d(x, xτ (k)) and pass
to this more general framework. In particular, it can also be used to study
evolution problems for a density ρ when we use the space P(Ω) endowed with
a suitable distance.

The distance that we consider is the so-called Wasserstein distance, induced
by the Monge-Kantorovitch optimal transport problem. If two probabilities
µ, ν ∈ P(Ω) are given on a domain Ω ⊂ Rd (that we take compact for simplicity),
such a problem reads

min

{∫

Ω×Ω

|x− y|2 dγ : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) is the set of the so-called transport plans, i.e.

Π(µ, ν) = {γ ∈ P(Ω× Ω) : (px)#γ = µ, (py)#γ = ν, },

px and py being the two projections of Ω× Ω onto Ω. It is an extension of the
Monge problem, which is

inf

{∫
|x− T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}

(in the sense that to any transport map T we can associate a transport plan
γT by taking γT = (id × T )#µ, that the cost of T in the Monge problem is
the same as that of γT in Kantorovitch’s one, and that, under some additional
assumption on µ, the minimum over the transport plans is realized by a plan of
the form γT ).

However, independently of the fact that the minimum is realized by a trans-
port map or not, we define the distance W2(µ, ν) between two measures µ and ν
as the square root of the minimal value. It can be proven that this is a distance

Filippo Santambrogio
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on P(Ω). The index 2 refers to the quadratic cost, and other distances Wp are
possible as well with other exponents 1 ≤ p ≤ ∞.

The main fact that we need to know for the sequel about optimal transport
is the following. For any pair (µ, ν) there exists a function φ : Ω → R, called
Kantorovitch potential, which is Lipschitz continuous (and semi-concave), with
the following properties :

• if φ is differentiable µ−a.e. (which is the case, for instance, if µ << Ld),
then there is a unique optimal transport plan, which is of the form γT ,
and the optimal map T is given by T (x) = x−∇φ(x);

• the function φ also plays the role of the derivative of 1
2W

2
2 (·, ν) : we have

d

dε

1

2
W 2

2 (µ+ εχ, ν)|ε=0 =

∫
φdχ.

Pay attention to the notation for these functional derivatives: given a func-
tional G : P(Ω) → R we call δG

δρ (ρ), if it exists, the only function such that
d
dεG(ρ + εχ)|ε=0 =

∫
δG
δρ (ρ)dχ for every perturbation χ such that, at least for

ε ∈ [0, ε0], the measure ρ + εχ belongs to P(Ω). Hence, in the case of the

Kantorovitch potential, we are saying
δ
(

1
2W

2
2 (·,ν)

)
δρ = φ

With this distance in mind, we consider now a functional F over P(Ω) en-
dowed with the W2 distance. We consider the time-discretized problem, i.e. we
look for

ρτk+1 ∈ argmin
ρ

F (ρ) +
W 2

2 (ρ, ρτ (k))

2τ
.

Which are the discrete optimality conditions? roughly speaking we should
have

δF

δρ
(ρτk+1) +

φ

τ
= const

(where the reasons for having a constant instead of 0 is the fact that, in the space
of probability measures, only zero-mean densities are considered as admissible
perturbations).

More precise statements and proofs of this optimality conditions will be
presented in the next section. Here we look at the consequences we can get.
Actually, if we combine the fact that the above sum is constant, and that we
have T (x) = x−∇φ(x) for the optimal T , we get

T (x)− x
τ

= −∇φ(x)

τ
= ∇

(δF
δρ

(ρ)
)
(x). (4)

We will denote by −v the ratio T (x)−x
τ . Why? because, as a ratio between a

displacement and a time step, it has the meaning of a velocity, but since it is the
displacement associated to the transport from ρτk+1 to ρτk, it is better to view it
rather as a backward velocity (which justifies the minus sign).

Since here we have v = −∇
(
δF
δρ (ρ)), this suggests (and we will analyze it in

the next section) that at the limit τ → 0 we will find a solution of

∂ρ

∂t
−∇ ·

(
ρ∇
(δF
δρ

(ρ)
))

= 0.

Exp. no XXVII— Gradient flows in Wasserstein spaces and applications to crowd movement
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Before entering some proof details, we want to present some examples of
this kind of equations. The three main classes of examples are the functionals
considered by McCann in [18], where he proves some convexity properties of
such functionals. Consider

F (ρ) =

∫
f(ρ(x))dx, G(ρ) =

∫
V (x)dρ, H(ρ) =

∫ ∫
W (x− y)ρ(dx)ρ(dy),

where f : R → R is a convex superlinear function (and the functional F is
set to +∞ if ρ is not absolutely continuous w.r.t. the Lebesgue measure) and
V : Ω → R and W : Rd → R are regular enough (and W is taken symmetric,
i.e. W (z) = W (−z), for simplicity). In this case it is quite easy to realize that
we have

δF

δρ
(ρ) = f ′(ρ),

δG

δρ
(ρ) = V,

δH

δρ
(ρ) = 2W ∗ρ.

An interesting example is the case f(t) = t ln t. In such a case we have
f ′(t) = ln t+ 1 and ∇(f ′(ρ)) = ∇ρ

ρ : this means that the gradient flow equation

associated to the functional F would be the Heat Equation ∂ρ
∂t−∆ρ = 0, and that

for F +G we would have the Fokker-Planck Equation ∂ρ
∂t −∆ρ−∇· (ρ∇V ) = 0.

The case of the interaction functional H gives on the contrary a non-local
(and nonlinear) equation ∂ρ

∂t − ∇ · (ρ(∇W ∗ ρ)) = 0 (where the non-local term
may also be combined with the others).

It is a general fact that this formulation/interpretation in terms of gradient
flows, through its time-discretization, has several advantages: it allows for easy
existence results, and for some uniqueness proofs (more difficult, under some
convexity assumptions on the functionals) in a very general framework. More-
over, it also directly provides a time-discretization algorithm. In this short paper
we will see how to approach the easiest equations to justify : the Fokker-Planck
one (which is linear), with possibly a non-local term (because of compactness
properties of the convolution operator). We will only deal with existence issues,
independently of convexity assumptions. Wider generalizations to more deli-
cate cases, including possibly the Porous-Media equation (i.e. the case of the
functional F with f(t) = tm, see for instance [19]) will be left to a forthcoming
study.

4 Getting gradient flows PDEs via vertical per-
turbations

This section presents some proofs or references to make what presented in Sec-
tion 3 rigorous.

There are three main points to analyze: the optimality conditions in the
time-discretized problems; the interpolation of the discrete trajectories ρτ (k)
and how to get a limit curve ρ that solves the continuity equation together with
its velocity v; the fact that v has still the form − δFδρ (ρ), even at the limit τ → 0.

Our proof will be complete only for the case

F (ρ) =

∫

Ω

ρ ln ρ+

∫

Ω

V dρ+

∫

Ω

∫

Ω

W (x− y)dρ(x)dρ(y),

where V and W are Lipschitz functions on the compact domain Ω, and a starting
measure ρ0 ∈ P(Ω) such that F (ρ0) < +∞ is fixed.

Filippo Santambrogio
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Optimality conditions at each time step. We consider the minimization of
F (ρ) +W 2

2 (ρ, ρτ (k))/2τ among probability measures ρ ∈ P(Ω). Let us suppose
that this minimization problem admits a solution, which is the case for the
choice of the functional F above. Actually, the three parts of the functional are
weakly-l.s.c., and this is the case for W2 as well. Hence, Ω being compact, this
is sufficient for the existence (notice anyway that more refined considerations
could handle the case of unbounded domains as well).

Now, take an optimal measure ρ̄ and compute variations with respect to
perturbations of the form ρε := (1− ε)ρ̄+ ερ̃, where ρ̃ is any other probability
measure. This means choosing a perturbation χ = ρ̃− ρ̄, which guarantees that,
for ε > 0, the measure ρε is actually a probability over Ω.

We now compute the first variation and, due to optimality, we have

0 ≤ d

dε

(
F (ρ̄+ εχ) +

1

τ

W 2
2 (ρ̄+ εχ, ρτ (k))

2

)

|ε=0

=

∫ (
δF

δρ
(ρ) +

φ

τ

)
dχ.

If we set for a while ψ = δF
δρ (ρ) + φ

τ we would have
∫
ψ dχ ≥ 0 i.e.

∫
ψ dρ̃ ≥

∫
ψ dρ̄ for all ρ̃ ∈ P(Ω).

This means that ρ̄ also minimizes ρ 7→
∫
ψ dρ, and it is clear that the minimizers

of such a quantity must be concentrated on argminψ. In particular this implies
that ψ has a constant value ρ−a.e.

For the case we are considering, where the optimal ρ̄ must be absolutely
continuous because of the entropy part, one gets, for the density ρ̄(x)

ln(ρ̄(x)) + V (x) + 2(W ∗ ρ̄)(x) +
φ(x)

τ
= C a.e. on {ρ̄ > 0}

ln(ρ̄(x)) + V (x) + 2(W ∗ ρ̄)(x) +
φ(x)

τ
≥ C everywhere.

This in particular implies that ρ̄ is actually positive a.e. and that it holds

ρ̄(x) = exp

(
C − V (x)− 2(W ∗ ρ̄)(x))− φ(x)

τ

)
,

which provides Lipschitz regularity for ρ̄. Then, one differentiates and gets the
equality (4).

Interpolation between time steps. With this time-discretized method, we
have obtained, for each τ > 0, a sequence (ρτ (k))k. We can use it to build at
least two interesting curves in the space of measures:

• first we can define some piecewise constant curves, i.e. ρτt := ρτ (k + 1)
for t ∈]kτ, (k + 1)τ ]; associated to this curve we also define the velocities
vτt = vτ (k + 1) for t ∈]kτ, (k + 1)τ ], where vτ (k) is obtained from (4),
defining vτ (k) = (id− T )/τ , taking as T the optimal transport from ρτk+1

to ρτ (k); we also define the momentum variable Eτ = ρτvτ ;

• then, we can also consider the densities ρ̃τt that interpolate the discrete
values (ρτ (k))k along geodesics:

ρ̃τt =

(
kτ − t
τ

vτ (k) + id

)

#

ρτ (k), for t ∈](k − 1)τ, kτ [; (5)

Exp. no XXVII— Gradient flows in Wasserstein spaces and applications to crowd movement

XXVII–9



the velocities ṽτt are defined so that (ρ̃τ , ṽτ ) satisfy the continuity equation,
taking

ṽτt = vτt ◦
(
kτ − t
τ

vτ (k) + id

)−1

;

as before, we define: Ẽτ = ρ̃τ ṽτ .

After these definitions we consider some a priori bounds on the curves and
the velocities that we defined. We start from some estimates which are standard
in the framework of Minimizing Movements. The sequence (ρτ (k))k satisfies an
estimate on its variation which gives a Hölder and H1 behavior. From the
minimality of ρτ (k), compared to ρτ (k − 1), one gets

W 2
2 (ρτ (k), ρτ (k − 1)) ≤ 2τ

(
F (ρτ (k))− F (ρτ (k − 1))

)
.

This also says that F (ρτ (k)) is monotone decreasing, which implies a uniform
bound on F (ρτt ) for every t and τ . Moreover, we also get W 2

2 (ρτ (k), ρτ (k−1)) ≤
Cτ (discrete Hölder behavior), as well as, if we sum up over k and use F (ρ0) <
+∞,

∑

k

τ

(
W2(ρτ (k), ρτ (k − 1))

τ

)2

≤ C, (6)

which is the discrete version of an H1 estimate. As for ρ̃τt , it is an absolutely
continuous curve in the Wasserstein space and its velocity on the time interval
[(k − 1)τ, kτ ] is given by the ratio W2(ρτ (k − 1), ρτ (k))/τ . Hence, the L2 norm
of its velocity on [0, T ] is given by

∫ T

0

|ρ̃′τ |2W2
(t)dt =

∑

k

W 2
2 (ρτ (k), ρτ (k − 1))

τ
, (7)

and, thanks to (6), it admits a uniform bound independent of τ . Here we
use the notation |σ′|(t) for the metric derivative of a curve σ and |σ′|W2

(t)
means that this metric derivative is computed according to the distance W2.
In our case, thanks to well-known results on the continuity equation and the
Wasserstein metric, this metric derivative is also equal to ||ṽτt ||L2(ρ̃τt ). This gives
compactness of the curves ρ̃τ , as well as an Hölder estimate on their variations
(since H1 ⊂ C0,1/2). The characterization of the velocities vτ and ṽτ allow to
deduce bounds on these vector fields from the bounds on W2(ρτ (k−1), ρτ (k))/τ .

Considering all these facts, one can collect the following results.

• The norm of vτ in L2((0, T ), L2
ρτ (Ω)) is τ -uniformly bounded.

• In particular, the bound is valid in L1 as well, which implies that Eτ is
bounded in the space of measures over [0, T ]× Ω.

• The very same estimates are true for ṽτ and Ẽτ .

• The curves ρ̃τ are bounded in H1([0, T ],W2(Ω)) and hence compact in
C0([0, T ],W2(Ω)).

• Up to a subsequence, one has ρ̃τ → ρ, as τ → 0, uniformly according to
the W2 distance.
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• From the estimate W2(ρτt , ρ̃
τ
t ) ≤ Cτ1/2 one gets that ρτ converges to the

same limit ρ in the same sense.

• If we denote by E a weak limit of Ẽτ , since (ρ̃τ , Ẽτ ) solves the continuity
equation, by linearity, passing to the weak limit, also (ρ,E) solves the
same equation.

• It is possible to prove (see [14], Section 3.2, Step 1) that the weak limits
of Ẽτ and Eτ are the same.

• From the bounds in L2 one gets that also at the limit the measure E is
absolutely continuous w.r.t. ρ and has an L2 density, so that we have for
a.e. time t a measure Et of the form ρtvt.

• It is only left to prove that one has vt = − δFδρ (ρt) for a.e. t. This is done

(in the following step), by noticing that we have, for every t and τ , the
equality Eτt = −ρτt δFδρ (ρτt ), and letting it pass to the limit as τ → 0. It is

crucial in this step to consider the limit of (ρτ , Eτ ) instead of (ρ̃τ , Ẽτ ).

Passing to the limit the relation between ρ and v. The fact that (ρτ , Eτ )
weakly converges to (ρ,E) let easily any linear condition pass to the limit. For
non-linear terms, this is more difficult and requires some compactness.

The example that we decided to consider is anyway quite easy, since one can
decompose Eτ into two parts: Eτ = Lτ + Iτ , where

Lτ := ρτ∇ (ln ρτ + V ) = ∇ρτ+ρτ∇V ; Iτ := ρτ∇(2W∗ρτ ) = 2ρτ [(∇W ) ∗ ρτ ] ,

i.e. we have splitted the momentum into a linear part and an interaction part,
which has more compactness properties. Since we had supposed W to be Lip-
schitz, the function (∇W ) ∗ ρτ is uniformly bounded, which gives a uniform
bound on Iτ in the space of measures. This implies that both parts separately
are compact as measures, and hence they converge to L and I, respectively, and
E = L+ I.

L and Lτ being linear w.r.t. ρ, it is clear that we must have, as a consequence
of the weak convergence of ρτt to ρt, Lt = ∇ρt+ρt∇V . Actually, ∇ρτt converges
to ∇ρt, at least in the sense of distributions. For the term with ∇V , one
can notice that the uniform bound on F (ρτt ) implies a bound on the entropy∫
ρτt ln ρτt (since both V and W are supposed bounded from below), and this

bound turns the weak convergence ρτt ⇀ ρt as measures into a weak convergence
in L1 as a consequence of Dunford-Pettis theorem (the densities ρτt are equi-
integrable). Once we have weak convergence in L1, multiplying times a fixed
L∞ function, i.e. ∇V , preserves the same convergence.

The interaction part I is far from being linear, but the convolution implies
more compactness. Actually, ∇W being L∞, we get a uniform bound in L∞ on
(∇W )∗ρτt . Moreover, it is clear that ρτt ⇀ ρt implies the pointwise convergence
of (∇W ) ∗ ρτt to (∇W ) ∗ ρt, since

[
(∇W )∗ρτt

]
(x) =

∫
∇W (x−y)ρτt (y)dy →

∫
∇W (x−y)ρt(y)dy =

[
(∇W )∗ρt

]
(x),

the convergence of the integrals being justified by the fact that ∇W is L∞ and
ρτt ⇀ ρt in L1.
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We claim now that the product of an equi-integrable sequence of functions
weakly converging in L1 (here it is ρτt ⇀ ρt) times a sequence uniformly bounded
in L∞ which is pointwisely converging (here it is (∇W ) ∗ ρτt → (∇W ) ∗ ρt) does
converge to the product of the limits (in the weak sense of L1).

This fact is easy to see: take fj → f in L1, gj → g pointwisely and suppose
that (fj)j is equi-integrable and |gj |(x) ≤ C; take a test function ψ ∈ L∞ and
prove

∫
fjgjψ →

∫
fgψ. To do that, use the fact that the equi-integrability

of (fj)j means that for every ε > 0 there exists a δ > 0 such that
∫
A
|fj | < ε

provided the measure of A is smaller than δ; moreover, every pointwise con-
vergence is uniform, up to a set of arbitrarily small measure. This means that
there exists a set A of measure smaller than δ such that gj → g uniformly on
A. Then one can see that fjIA ⇀ fIA, still weakly in L1, and get
∣∣∣∣
∫

Ω

fjgjψ −
∫

A

fjgjψ

∣∣∣∣ ,
∣∣∣∣
∫

Ω

fgψ −
∫

A

fgψ

∣∣∣∣ < ||ψ||L∞Cε,

∫

A

fjgjψ →
∫

A

fgψ,

where the last convergence is due to the weak convergence of fjIA and the
uniform convergence of gjψ to gψ. The number ε being arbitrary, this gives the
desired convergence

∫
Ω
fjgjψ →

∫
Ω
fgψ.

This allows to let the interaction term pass to the limit in the equation and
conclude.

5 Back to crowd motion

In this section we come back to the case we were interested in for crowd motion
modelling. Differently from the easier cases of Section 4, here the PDE is neither
linear nor based on a convolution (and regularizing) kernel. If the PDE is written
in the form given in (3), we have

∂

∂t
ρt +∇ ·

(
ρt(ut −∇pt)

)
= 0,

where pt is a pressure, i.e. pt ≥ 0 and pt(1 − ρt) = 0. Thanks to this last
relation, the product ρt∇pt may also be written simply as ∇pt, since pt (and
its gradient) vanish where ρt is not equal to 1. This reduces the nonlinearity,
since there is no more a bilinear term in the continuity equation, but, still, the
relation between p and ρ is nonlinear. We will see what is the key point to let it
pass to the limit, but first we want to recover the optimality conditions at each
step, after properly defining the functional F we will use in the gradient flow
procedure.

The functional we choose and some hints on the proof. We consider
the case u = −∇D and K = {ρ ∈ P(Ω) : ρ ≤ 1}. We first define the functional
F we will consider:

F (ρ) =

{∫
D(x)dρ if ρ ∈ K,

+∞ if ρ /∈ K.

The discrete iterative method is, as usual,

ρτk+1 ∈ argmin
ρ

F (ρ) +
W 2

2 (ρ, ρτ (k))

2τ
= argmin

ρ∈K

∫
D(x)dρ+

W 2
2 (ρ, ρτ (k))

2τ
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If we come back to the optimality conditions in terms of δF
δρ , and we forget

for a while the constraint ρ ∈ K, we would get that the optimal ρ̄ is concentrated
on argminψ = D+ φ

τ . This was a consequence of the fact that ρ̄ also optimized
the linear functional ρ 7→

∫
ψdρ.

Since we need to take into account the constraint ρ ∈ K, and K is a convex
set (notice that it is also a geodesically convex set, but we do not need this
notion here), we can perform variations ρε = (1 − ε)ρ̄ + ερ̃, for ρ̃ ∈ K. In this
case we only get

∫
ψdρ̃ ≥

∫
ψdρ ∀ρ̃ ∈ K.

Once a function ψ is given, which are the measures that optimize
∫
ψdρ in

K? the answer is easy: it is sufficient to concentrate ρ on a level set of ψ, and
to put the maximal possible density (i.e .1) on it. This means that there is a
constant t such that

ρ̄ =





1 on ψ < t,

0 on ψ > t,

∈ [0, 1] on ψ = t

It is useful to define the function p := (t−ψ)+. This function satisfies p ≥ 0 and
p(1− ρ̄) = 0. This means that it is an admissible pressure! Afterwards, it is easy
to pass to the gradients ρ̄−a.e. and get ∇p = −∇ψ = −∇D− ∇φτ = u− v a.e..
This gives v = u −∇p, which is the desired velocity field. Hence, this discrete
scheme is consistent with the equation that we want to consider, even if the fact
that, at the limit, this brings a solution of the PDE is still to be established.

The details are contained in [14]: here we only give an idea of the proof.
Most of the ingredients are the same as in the previous section. By using the
fact that ρτ∇pτ = ∇pτ and taking a weak limit p of pτ it is easy to see that
the PDE is satisfied by ρ, p and u at the limit. We are only left to prove that
pt(1− ρt) = 0 for a.e. (t, x).

This is not trivial since a priori we have a product of two weak convergences.
Yet, the key point is the fact that we have an L2 bound on vτ (coming from∫ T

0

∫
|vτ |2ρτ =

∫ T
0

∫
|ṽτ |2ρ̃τ =

∫ T
0
|(ρ̃τ )′|2W2

dt ≤ C) and that vτ = uτ − ∇pτ .
Since uτ is supposed to be bounded (take D Lipschitz continuous), this implies
an L2 bound on ∇pτ , and gives

∫ T

0

∫
|∇pτ |2 =

∫
|∇pτ |2ρτ ≤ C.

Hence, pτ satisfies an H1 bound, and its weak convergence turns into a strong
L2 convergence! Moreover, the convergence ρτ ⇀ ρ is weak as measures but
also weak-* in L∞, since they are all bounded by the same constant, and this
should allow to conclude the proof.

The only delicate point is the fact that we do not have an H1 bound in
[0, T ]× Ω, but only an H1 bound in space, integrated in time. This makes the
possibility of exploiting this compactness property more tricky, but in the end
it works for almost any time t. The details are, again, in [14].

Modify the functional for modelization purposes If we consider the
model above as the description of a crowd leaving a panic area, we choose
D(x) = d(x,Γ), where Γ ⊂ ∂Ω represents the door.
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The density evolves by minimizing this mean distance to the door. . . but
never leaves Ω. For t → ∞ it is likely to fill a neighborhood of the door with
density ρ = 1, which is the configuration that minimizes F . In particular, if the
particles stand for people trying to reach the door so as to escape from a fire,
they will all die! this requires a modification of the model, in order to allow the
particles to leave Ω.

A first possibility could be to consider a larger domain, such as Rd \(∂Ω\Γ),
i.e. the whole space without the part of the boundary of Ω which stands for the
hard walls (the door Γ being included in the domain). This has some problems,
since in particular a domain like that will not be convex, and most of the analysis
is easier in convex domains. Some new developments are in progress concerning
non-convex domains, but anyway they could not concern this kind of domain
whose complement is too “thin” (more precisely, the results of the previous
paragraph may be extended to closed non-convex domains, but the closure of
the previous domain is the whole Rd, which is not what we want to consider).

Hence, both for mathematical and modeling reasons, we decided to consider
a different situation, where we give a new definition of the admissible set K:

K := {ρ ∈ P(Ω) : ρ = ρΓ + ρΩ, ρΩ ≤ 1 , supp(ρΓ) ⊂ Γ}
The reason for this choice is the following: we consider that as soon as a

particle reaches Γ, it is safe (D = 0), and then, instead of following its movement
after Γ, we leave it on Γ. This is done for simplicity, but it only means that we
are no longer concerned with what happens to the particles that have reached
Γ, not that they are really blocked on the door. Obviously, we need to withdraw
the density constraint on Γ, so as to let particles stay on it (think that usually
|Γ| = 0, so that the density constraint would prevent ρ to give mass to Γ), and
also to represent the fact that Γ stands actually for everything that happens at
the door and beyond.

The mathematical problem with this modified Γ is much trickier. One of the
difficulties, that prevent the usual theory to be applied, is the fact that the set
K loses some of the properties that it had previously (in particular it is no more
geodesically convex: the geodesic - for the W2 distance - between two points of
K could go out of K).

To appreciate this approach one needs to think that the general theory
mainly deals with geodesically convex functionals even if, for existence pur-
poses, something more can be said when the slope of the functional is l.s.c.
(see [2] for these concepts). However, this seems difficult to check here since it
is not evident what the slope of the constrained functional F is. This is why
the vertical perturbation method turns out to be useful in this setting, and it
provides a proof for the existence of a solution for Ω convex, with or without
the exit door Γ, thanks to the limit τ → 0.
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