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1. Introduction

This short report is a review on recent results of S. Caprino, C. Mar-
chioro, E. Miot and the author on the initial value problem associated to
the evolution of a continuous distribution of charges (plasma) in presence
of a finite number of point charges. More precisely we are interested in the
following modification of the usual Vlasov-Poisson equation

∂tf + v · ∇xf + (E + F ) · ∇vf = 0 (1.1)

where f = f(x, v; t) is the probability distribution of the plasma particle,
(x, v) ∈ R2d denotes its position and velocity, d is the dimension of the
physical space, E is the electric field generated by the plasma:

E(x, t) =

∫
dyρ(y, t)K(x− y) (1.2)

and

ρ(x, t) =

∫
dvf(x, v, t) (1.3)

is the spatial density.
Moreover

F (x, t) = σ
N∑

α=1

K(x− ξα(t)) (1.4)

is the electric field generated by the point charges whose positions and veloci-
ties are denoted by ξα(t), ηα(t), α = 1 . . . N . Eq.n (1. 2,3,4) is complemented
by the ordinary differential equations governing the motion of the charges:

ξ̇α = ηα, η̇α =

N∑

β=1;β 6=α
K(ξα − ξβ) + σE(ξα(t), t) (1.5)
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Here the point particles are assumed to have unitary charges of the same
sign, σ = ±1 according whether the interaction between the plasma and the
point particle is repulsive or attractive and

K(x) = −∇g(x) (1.6)

where

g(x) = − log |x|, g(x) =
1

|x| (1.7)

for d = 2 and d = 3 respectively.
There are an increasing difficulty in solving the above initial value problem

passing from d=2 to d=3 and from σ = 1 to σ = −1. The attractive
case is particularly interesting from a physical point of view describing, for
instance, a continuum of negative charges (electrons) with a finite number of
positive point charges (nuclei or ions). Also the completely attractive case
(gravitational interaction) which we do not discuss here, can be considered
as well.

The easiest case (d = 2, σ = 1) was solved in [1]. Here we mostly focus our
analysis in the three dimensional repulsive case with a single point charge,
following [6]. The case in which we have a finite number of point charges
requires a nontrivial, but essentially technical generalization. See [6] for
details.

We conclude this introduction by formulating precisely the problem. We
find convenient to do this in terms of ordinary differential problem.

Problem 1. Find a flow in R6, (x, v)→ (X(t, x, v), V (t, x, v)) such that




Ẋ(t, x, v) = V (t, x, v)

V̇ (t, x, v) = (X(t,x,v)−ξ(t))
|X(t,x,v)−ξ(t)|3 + E(X(t, x, v), t)

(X,V )(0, x, v) = (x, v) ∈ R3 × R3,

(1.8)

where the charge (ξ(t), η(t)) evolves according to the second-order ODE
{
ξ̇(t) = η(t), η̇(t) = E(t, ξ(t))

(ξ, η)(0) = (ξ0, η0).
(1.9)

Here the electric field E is related to the density f , which satisfies

f(X(t, x, v), V (t, x, v), t) = f0(x, v),

via the identity

E(x, t) =

∫

R3

(x− y)

|x− y|3 ρ(y, t) dy, ρ(x, t) =

∫

R3

f(x, v, t) dv.

2. The classical Vlasov-Poisson problem

The Vlasov-Poisson equation in dimension two, has been solved since
many years (see for instance [7], [3] and references quoted therein) We sketch
the idea.

We start by considering an initial probability distibution f0 compactly
supported in velocity. Let V0 be the maximal velocity at time 0, namely

f0(x, v) = 0
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if |v| > V0. Then, denoting by V̄ (t) the radius of the minimal sphere con-
taining the support in velocity of f(t), we have

d

dt
V̄ (t) ≤ ‖E(t)‖L∞ .

On the other hand

‖E(t)‖L∞ ≤ C
∫

ρ(y)

|x− y|d−1 .

Splitting the integral into the two regions |x− y| < M and its complement,
we readly arrive, after having optimized on M , to the estimate

‖E(t)‖L∞ ≤ C‖ρ(t)‖1−
1
d

L∞ .

Finally, using that

‖ρ(t)‖L∞ ≤ CV̄ (t)d

(remind that ‖f(t)‖L∞ = ‖f(0)‖L∞) we arrive to

d

dt
V̄ (t) ≤ CV̄ (t)d−1. (2.1)

Eq.n (2.1) yields a global in time control of the spatial density in dimen-
sion two only. The control of the density is enough to get an existence
and uniqueness of the solution to the Vlasov-Poisson problem in terms of
characteristics.

In dimension three Eq.n (2.1) can be improved by using the energy con-
servation. Indeed the quantity

H(f(t)) =
1

2

∫
dxdvv2f(x, v, t) +

1

2

∫
dxdy

ρ(x, t)ρ(y, t)

|x− y| = H0 (2.2)

is constant in time. It implies ‖ρ‖L5/3 ≤ K1. In fact

ρ ≤
∫

|v|<M
f +

1

M2

∫

|v|≥M
dvv2f(t). ≤M3‖f‖L∞ +

∫
dvv2f

M2

Optimizing in M we get the bound.
Moreover

‖E(t)‖L∞ ≤
∫
dy

ρ(y, t)

|x− y|2 ≤
∫

|x−y|≤M
dy

ρ(y, t)

|x− y|2 +

∫

|x−y|>M
dy

ρ(y, t)

|x− y|2 .

Using Hölder inequality and the 5/3 bound, optimizing on M , we conclude
that

‖E(t)‖L∞ ≤ C‖ρ‖4/9L∞ ≤ K2V̄
4/3.

In conclusion:
d

dt
V̄ (t) ≤ CV̄ (t)4/3 (2.3)

which is better than Eq.n (2.1) but still not enough to conclude.
In the nineties the three-dimensional Vlasov-Poisson problem was solved

by Pfaffelmoser [8] (see also [9] [10] and [3]) by controlling the characteristics
(Lagrangian point of view) and by Lions and Perthame [5], by using the
equation to control the moments of f (Eulerian point of view).

Here we find convenient to work with the trajectories so that we recall
the basic ideas in [8] to see how to generalize that approach to the present
context.
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The basic idea in [8] is that the time average of the electric field is better
than its maximum. Then, fixed an arbitrary time T , we split the time
interval according to the following partition

(0, T ] = ∪n−1i=1 (ti−1, ti],

where

|ti − ti−1| = ∆T = P−1.

Here

P = P (T ) = sup
t∈(0,T ]

V (t) + C,

for some large constant C. By Liouville theorem
∫ ti

ti−1

dt|E(X(t)| ≤
∫ ti

ti−1

dt

∫
dy

ρ(y, t)

|X(t)− y|2

=

∫ ti

ti−1

dt

∫
dy

∫
dw

f(y, w; ti−1)
|X(t)− Y (t)|2 .

Then, setting R = P 3/4, we observe that, if |w| ≤ 2R or |v − w| ≤ 2R, the
integration yields a good bound. Indeed using the same argument yielding
the V (t)4/3 bound (eq.n (2.3)), we conclude that
∫ ti

ti−1

∫
dy

∫
dw(χ(|w| ≤ 2R) + χ(|v − w| ≤ 2R)

f(y, w; ti−1)
|X(t)− Y (t)|2 ≤ CP

Here χ(A) denotes the indicator of the event A.
Otherwise, if |w| > 2R and |v−w| > 2R we invoke the following stability

property

|V (t)−W (t)| ≥ |v − w| − 2P 4/3∆T ≥ 2R−R = R (2.4)

In this situation we estimate almost explicitly ([10], [9], [6] for instance)
∫ ti

ti−1

dt

|X(t)− Y (t)|2 ≤
1

`R
(2.5)

being ` is the minimal distance between X(t) and Y (t) in this time interval.
We assume that ` > P−2. Note that if ` ≤ P−2, the integration dxdv gives
us a linear bound on P and this is straightforward. Finally

∫ ti

ti−1

|E(X(t)| ≤ 1

`R

∫
dy

∫

|w|>R
dwf(y, w; ti−1) (2.6)

≤ P 2

R3∆T
∆T = P 3/4∆T.

The physical meaning of this step is transparent. If two trajectories have
large relative velocity they stay close each other (when the interaction is
strong) for a very short time and the scattering angle is very small.

The control of P allows us to state

Theorem 1 ([8], [9], [10], [3]). Given a probability distribution f0 ∈ L∞,
compactly supported in x, v, there exists a unique probability distribution
f(x, v; t) such that ρ ∈ L∞ and

f(X(t), V (t), t) = f0(x, v), (2.7)
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where

Ẋ = V, V̇ = E(X, t). (2.8)

Remark. We are working in a minimal regularity setting. The unique weak
solution we obtain in this way is such that ρ ∈ L∞([0, T ];L∞(R3)) for which
the characteristic system (2.8) can be uniquely solved. Assuming further
regularity on the initial datum f0 we can obtain easily classical solutions as
well.

3. The plasma-charge problem

Caprino and Marchioro solved the two-dimensional version of Problem 1
in case of repulsive interaction between the charge and the plasma [1]. The
key idea was the introduction of the energy of a single plasma trajectory
(see definition (3.2) below) which controls the motion of a plasma particle
and prevents its approach to the point charge. Combining this with static
estimates on the electric field, one can prove that there exists a unique
solution to our problem.

The three-dimensional problem is in fact much more involved because
static (a priori) estimates are not enough, as we have seen from the above
analysis of the usual Vlasov-Poisson equation. When a charge is present,
the situation described in section 2 changes drastically. Indeed because of
the presence of a strong external field, that produced by the point charge,
the stability property (2.4) is lost and new ideas are needed.

Before discussing the strategy of the proof, we first formulate the result.
We assume f0 ∈ L∞ compactly supported in (x, v) and such that

inf |x− ξ0| ≥ δ > 0.

Theorem 2 ([6]). Under the above hypotheses, there exists a unique solution
to Problem 1.

The main ideas of the proof are the following. As for the usual Vlasov-
Poisson problem we need to control both large velocity and the distance
between the plasma trajectories and the point charge (from below) which is
initially strictly positive. This can be done by proving that the function h
(defined in (3.2)) stays bounded. At this point the existence and uniqueness
proof is rather straightforward and we omit the details.

First we note that the energy:

H =
1

2

∫
dxdv|v|2f +

1

2
|η|2 +

1

2

∫
dxdy

ρ(x)ρ(y)

|x− y| +

∫
dx

ρ(x)

|x− ξ| (3.1)

is formally constant. Therefore |η| bounded.
Following [1] we define:

h(x, v; t) =
1

2
|v − η(t)|2 +

1

|x− ξ(t)| + C (3.2)

C > 0 some large constant.
Differentiating along the trajectory we find:

d

dt
h(X(t), V (t); t) = (V (t)− η(t)) · (E(X(t))− E(ξ(t))) (3.3)
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Note that the singular field does not appear. As a consequence h is stable
(for small times we expect a little change) while V is not. As a consequence
we find convenient to work with h. By (3.3) we get

| d
dt

√
h(X,V ; t)| ≤ |E(X)|+ |E(ξ)| (3.4)

Next we define

Q = sup{
√
h(X(t), V (t); t)|(x, v) ∈ suppf(t0), t ∈ [0, T ]}. (3.5)

Splitting
(0, T ] = ∪n−1i=1 (ti−1, ti],

where
|ti − ti−1| = ∆T = CQ−1,

we define

Qi = sup{
√
h(X,V ; t)|(x, v) ∈ suppf(ti−1), t ∈ (ti−1, ti)} (3.6)

Our goal is to prove that

Qi ≤ Qi−1 + CQ∆T (3.7)

where C is a constant depending on the conserved quantities only. Indeed
by Eq.n (3.7) we obtain

Q ≤ Q0 + CQT. (3.8)

Thus we control Q for T small. But we can iterate because the smallness of
T depends on conserved quantities only.

Furthermore, to prove (3.7) by

| d
dt

√
h(X,V ; t)| ≤ |E(X)|+ |E(ξ)| (3.9)

we have to control∫ ti

ti−1

|E(X(t)| ≤ CQ∆T ;

∫ ti

ti−1

|E(ξ(t)| ≤ CQ∆T (3.10)

Setting Ri = Q
3/4
i the second integral in (3.10) is bounded by

∫ ti

ti−1

∫
√
h(y,w,ti−1)≤Ri

dydwf(y, w, ti−1)
1

|Y (t)− ξ(t)|2 (3.11)

+

∫ ti

ti−1

∫
√
h(y,w,ti−1)>Ri

dydwf(y, w, ti−1)
1

|Y (t)− ξ(t)|2
The first integral in Eq.n (3.11) is correctly bounded by the usual V 4/3

argument.
For the second we can show that∫ ti

ti−1

1

|Y (t)− ξ(t)|2 ≤ CQi (3.12)

By (3.12) the second integral is bounded by

C
Qi
R2
i

∫
dy

∫
dwf(y, w, ti−1)h(y, w, ti−1) ≤ CQ∆T. (3.13)

Finally to show (3.12) we define

` = |Y − ξ|
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and compute (Ẏ = W )

˙̀ = (W − η) · (Y − ξ)
|Y − ξ|

῭≥ 1

`2
− CQ4/3

i

∫ ti

ti−1

1

`2
≤ ˙̀(ti)− ˙̀(ti−1) + CQ

4/3
i ∆T ≤ CQi.

It remains to control the first integral in (3.10):
∫ ti

ti−1

|E(X(t)| ≤
∫ ti

ti−1

∫
dydwf(y, w, ti−1)

1

|X(t)− Y (t)|2
We have different situations:
1- X is close to ξ: scattering plasma-charge i.e. inf |X(t)− ξ(t)| ≤ δi
2- Both X and Y are far from ξ: scattering plasma-plasma i.e. inf |X(t)−

ξ(t)| > δi and inf |Y (t)− ξ(t)| > δi.
3- X is far from ξ but Y is close to ξ: scattering plasma-charge i.e

inf |X(t)− ξ(t)| > δi and inf |Y (t)− ξ(t)| ≤ δi.
Here we choose δi = Q

− 7
8

i .
For point 1. we can show that the set

J = {t ∈ (ti−1, ti)||X − ξ| ≤ δi} (3.14)

is connected and its measure |J | can be bounded by

|J | ≤ Q−15/8i . (3.15)

The idea of the proof is the following. If X is a very energetic trajectory
i.e.
√
h(X) ≈ Qi. Then X spends a very short time close to ξ and then

goes away. To show this we can use Virial Theorem, namely we compute
the second derivative of I = 1

2 |X − ξ|2.
By using (3.14) and (3.15) we get

∫

J
|E(X(t)|dt ≤ CQ4/3

i Q
−15/8
i ≤ CQ∆T

For point 2: we see that the field generated by ξ outside a sphere of radius
δi times ∆T is bounded by

1

δ2i
∆T = CQ

7/4
i Q−1i = CQ

3/4
i .

This is good for the stability condition (2.4) . Therefore we can proceed as
explained above ([8], [9], [10], [3]).

For point 3, X and Y are relatively far each other.

|X − Y | ≥ |X − ξ| − |Y − ξ| ≥ δi
2

= CQ
− 7

8
i .

We can assume that Y is moderately energetic i.e.
√
h(Y ) ≥ Q

3/4
i . Oth-

erwise the contribution can be controlled by a straightforward phase-space
integration.

Then, by the same argument as in (3.14) and (3.15)

|J | ≤ Q−13/8i . (3.16)
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Therefore:∫

J
|E(X(t)|dt ≤ CQ7/4

i

∫

J

∫
√
h(y,w)>Q

3/4
i

dydwf(y, w, ti−1) (3.17)

≤ CQ7/4
i Q

−13/8
i Q

−3/2
i ≤ CQ−11/8i ≤ CQ∆T.

This concludes our quick description of the result.

4. the 2-D attractive case

The problem can be formulated in the following way.

Problem 2. Find a flow in R4, (x, v)→ (X(t, x, v), V (t, x, v)) such that




Ẋ(t, x, v) = V (t, x, v)

V̇ (t, x, v) = − (X(t,x,v)−ξ(t))
|X(t,x,v)−ξ(t)|2 + E(t,X(t, x, v))

(X,V )(0, x, v) = (x, v) ∈ R3 × R3,

(4.1)

where the charge (ξ(t), η(t)) evolves according to the second-order ODE
{
ξ̇(t) = η(t), η̇(t) = −E(t, ξ(t))

(ξ, η)(0) = (ξ0, η0).
(4.2)

Here the electric field E is related to the density f , which satisfies

f(X(t, x, v), V (t, x, v), t) = f0(x, v),

via the identity

E(t, x) =

∫

R2

(x− y)

|x− y|2 ρ(t, y) dy, ρ(t, x) =

∫

R2

f(t, x, v) dv.

Assuming f0 ∈ L∞ compactly supported in x, v and such that

inf |x− ξ0| ≥ δ > 0,

then

Theorem 3 ([2]). Under the above hypotheses, there exists a (possibly not
unique) solution to Problem 2.

We give a very rough idea of the proof. Once more we introduce the
function:

h(x, v, t) =
1

2
|v − η(t)|2 + ln |x− ξ(t)|. (4.3)

and
H(t) = sup

s∈[0,t]
sup

(x,v)∈S0

|h(X(t;x, v), V (t;x, v), t)|+ C

where C > 1 is a suitable large constant and

H := H(T ).

Assume that:

supp(f0) := S0 ⊂
{

(x, v) ∈ R2 × R2 : α0 ≤ |x− ξ| ≤ α1, |v| ≤ ν0
}
. (4.4)

for some positive constants α0, α1, ν0.
We prove Theorem 2 along the following steps. First we prove the static

estimates
‖E(t)‖L∞ ≤ C

√
H(t). (4.5)
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and
|E(x, t)− E(y, t)| ≤ Cϕ(|x− y|)

(
H(t) + ln− |x− y|

)
, (4.6)

where
ϕ(r) = r(ln− r + 1), ln− r = − ln rχ(r < 1).

By using (4.5) (4.6) and other considerations, differentiating h along the
trajectories, one can prove that

H(t) ≤ C. (4.7)

Note that, being h not positive, we do not get a uniform bound neither
on the maximal velocity nor on the minimal distance to the point charge
of the generic plasma trajectory, Nevertheless the bound (4.7) is enough
to show that almost all trajectory do not reach the point charge and that
the maximal velocity and the inverse of the minimal distance to the point
charge can grow at most logarithmically with this distance. This is enough
to show the existence of a (possibly not unique) weak solution and, by
virtue of (4.5) and (4.6), also the existence and uniqueness for the ordinary
differential system (4.1) (4.2).

References

[1] S. Caprino and C. Marchioro, On the plasma-charge model, Kinetic and Related
Models 3 (2010), no. 2, 241-254 (2010).

[2] S. Caprino and C. Marchioro, , E. Miot and M. Pulvirenti, In preparation
[3] T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, 1996.
[4] E. Horst, On the asymptotic growth of the solutions of the Vlasov-Poisson system,

Math. Methods Appl. Sci. 16 (1993), no. 2, 75-86.
[5] P.-L. Lions and B. Perthame, Propagation of moments and regularity for the 3-

dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2, 415-430.
[6] C. Marchioro, E. Miot and M. Pulvirenti, The Cauchy problem for the 3-D Vlasov-

Poisson system with point charges, preprint (2010)
[7] S. Okabe and T. Ukai, On classical solutions in the large in time of the two-

dimensional Vlasov equation, Osaka J. Math. 15 (1978), 245-261.
[8] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three di-

mensions for general initial data, Jour. Diff. Eq. 95 (1992), 281-303.
[9] J. Schaeffer, Global existence of smooth solutions to the Vlasov-Poisson system in three

dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1313-1335.
[10] S. Wollman, Global in time solution to the three-dimensional Vlasov-Poisson system,

Jour. Math. Anal. Appl. 176 (1) (1996), 76-81.

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La
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