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DERIVATION AND MATHEMATICAL ANALYSIS OF
A NONLOCAL MODEL FOR LARGE AMPLITUDE

INTERNAL WAVES

by

David Lannes

Abstract. — This note is devoted to the study of a bi-fluid generalization of the

nonlinear shallow-water equations. It describes the evolution of the interface between
two fluids of different densities. In the case of a two-dimensional interface, this

systems contains unexpected nonlocal terms (that are of course not present in the
usual one-fluid shallow water equations). We show here how to derive this systems

from the two-fluid Euler equations and then show that it is locally well-posed.

1. Introduction

This note is devoted to the study of the equations describing the interface between
two layers of immiscible fluids of different densities. The focus is here in a particu-
lar regime called shallow-water/shallow water (more briefly SW/SW) because both
fluids layers are in a shallow-water regime (i.e. their height is small compared to the
wavelength of the interfacial waves under consideration). In this particular regime,
we show how to derive an asymptotic model from the two-fluids Euler equation, and
then analyze this model.

The idealized system that will be the focus of the discussion here, when it is at
rest, consists of a homogeneous fluid of depth d1 and density ρ1 lying over another
homogeneous fluid of depth d2 and density ρ2 > ρ1. The bottom on which both fluids
rest is presumed to be horizontal and featureless while the top of fluid 1 is restricted
by the rigid lid assumption, which is to say, the top is viewed as an impenetrable,
bounding surface. We also assume that the deviation of the interface is a graph over
the flat bottom (see Figure 1 for a definition sketch).

In [3], a rigorous and systematic derivation of a plethora of asymptotic models for
this system has been presented. The fact that many different asymptotic models can
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be derived comes from the large number of physical parameters playing a role on the
dynamics: heights of both fluids, wavelength, amplitude...

In Section 2, we describe the strategy of [3] in the particular case of the SW/SW
regime (see (14)) and proceed to the derivation of the so-called SW/SW model, which
is a generalization of the 2D nonlinear shallow water equations to the two fluids
system. The originality of this generalization is that it contains some quite unexpected
nonlocal terms.

In Section 3 we then show that this model is locally well-posed in Sobolev spaces.

2. Derivation if the SW-SW model

2.1. The two layers Euler equations. — As in Figure 1, the origin of the vertical
coordinate z is taken at the rigid top of the two-fluid system. Assuming each fluid is
incompressible and each flow irrotational, there exists velocity potentials Φi (i = 1, 2)
associated to both the upper and lower fluid layers which satisfy

(1) ∆X,zΦi = 0 in Ωi
t

for all time t, where Ωi
t denotes the region occupied by fluid i at time t, i = 1, 2. As

above, fluid 1 refers to the upper fluid layer whilst fluid 2 is the lower layer (see again
Figure 1). Assuming that the densities ρi, i = 1, 2, of both fluids are constant, we
also have two Bernoulli equations, namely,

(2) ∂tΦi +
1
2
|∇X,zΦi|2 = −P

ρi
− gz in Ωi

t,

where g denotes the acceleration of gravity and P the pressure inside the fluid. These
equations are complemented by two boundary conditions stating that the velocity
must be horizontal at the two rigid surfaces Γ1 := {z = 0} and Γ2 := {z = −d1−d2},
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which is to say

(3) ∂zΦi = 0 on Γi, (i = 1, 2).

Finally, as mentioned earlier, it is presumed that the interface is given as the graph of
a function ζ(t,X) which expresses the deviation of the interface from its rest position
(X,−d1) at the spatial coordinate X at time t. The interface Γt := {z = −d1 +
ζ(t,X)} between the fluids is taken to be a bounding surface, or equivalently it is
assumed that no fluid particle crosses the interface. This condition, written for fluid
i, is classically expressed by the relation ∂tζ =

√
1 + |∇ζ|2vi

n, where vi
n denotes the

upwards normal derivative of the velocity of fluid i at the surface. Since this equation
must of course be independent of which fluid is being contemplated, it follows that the
normal component of the velocity is continuous at the interface. The two equations

(4) ∂tζ =
√

1 + |∇ζ|2∂nΦ1 on Γt,

and

(5) ∂nΦ1 = ∂nΦ2 on Γt,

with

∂n := n · ∇X,z and n :=
1√

1 + |∇ζ|2
(−∇ζ, 1)T

follow as a consequence. A final condition is needed on the pressure to close this set
of equations, namely,

(6) P is continuous at the interface,

if we neglect surface tension effects (see Remark 8 for a comment on this point).

2.2. Transformation of the Equations. — In this subsection, a new set of equa-
tions is deduced from the internal-wave equations (1)-(6). Introduce the trace of the
potentials Φ1 and Φ2 at the interface,

ψi(t,X) := Φi(t,X,−d1 + ζ(t,X)), (i = 1, 2).

One can evaluate Eq. (2) at the interface and use (4) and (5) to obtain a set of
equations coupling ζ to ψi (i = 1, 2), namely

∂tζ −
√

1 + |∇ζ|2∂nΦi = 0,(7)

ρi

(
∂tψi + gζ +

1
2
|∇ψi|2 −

(
√

1 + |∇ζ|2(∂nΦi) +∇ζ · ∇ψi)2

2(1 + |∇ζ|2)

)
= −P,(8)

where in (7) and (8), (∂nΦi) and P are both evaluated at the interface z = −d1 +
ζ(t,X). Notice that ∂nΦ1 is fully determined by ψ1 since Φ1 is uniquely given as the
solution of Laplace’s equation (1) in the upper fluid domain, the Neumann condition
(3) on Γ1 and the Dirichlet condition Φ1 = ψ1 at the interface. Following the formal-
ism introduced for the study of surface water waves in [5, 6, 15], we can therefore
define the Dirichlet-Neumann operator G[ζ]· by

(9) G[ζ]ψ1 =
√

1 + |∇ζ|2(∂nΦ1)|z=−d1+ζ
.
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Similarly, one remarks that ψ2 is determined up to a constant by ψ1 since Φ2 is given
(up to a constant) by the resolution of the Laplace equation (1) in the lower fluid
domain, with Neumann boundary conditions (3) on Γ2 and ∂nΦ2 = ∂nΦ1 at the
interface (this latter being provided by (5)). It follows that ψ1 fully determines ∇ψ2

and we may thus define the operator H[ζ]· by

(10) H[ζ]ψ1 = ∇ψ2.

Using the continuity of the pressure at the interface expressed in (6), we may equate
the left-hand sides of (8)1 and (8)2 using the operators G[ζ] and H[ζ] just defined.
This yields the equation

∂t(ψ2 − γψ1) + g(1− γ)ζ +
1
2
(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+N (ζ, ψ1) = 0

where γ = ρ1/ρ2 and

N (ζ, ψ1) :=
γ
(
G[ζ]ψ1 +∇ζ · ∇ψ1

)2 − (G[ζ]ψ1 +∇ζ ·H[ζ]ψ1

)2
2(1 + |∇ζ|2)

.

Taking the gradient of this equation and using (7) then gives the system of equations

(11)


∂tζ −G[ζ]ψ1 = 0,
∂t(H[ζ]ψ1 − γ∇ψ1) + g(1− γ)∇ζ

+ 1
2∇
(
|H[ζ]ψ1|2 − γ|∇ψ1|2

)
+∇N (ζ, ψ1) = 0,

for ζ and ψ1. This is the system of equations that will be used in the next sections
to derive asymptotic models.

Remark 1. — Setting ρ1 = 0, and thus γ = 0, in the above equations, one recovers
the usual surface water-wave equations written in terms of ζ and ψ as in [5, 6, 15].

2.3. Non-Dimensionalization of the Equations. — The asymptotic behavior of
(11) is more transparent when these equations are written in dimensionless variables.
Denoting by a a typical amplitude of the deformation of the interface in question,
and by λ a typical wavelength, the following dimensionless independent variables

X̃ :=
X

λ
, z̃ :=

z

d1
, t̃ :=

t

λ/
√
gd1,

,

are introduced. Likewise, we define the dimensionless unknowns

ζ̃ :=
ζ

a
, ψ̃1 :=

ψ1

aλ
√
g/d1

,

as well as the dimensionless parameters

γ :=
ρ1

ρ2
, δ :=

d1

d2
, ε :=

a

d1
, µ :=

d2
1

λ2
.

Though they are redundant, it is also notationally convenient to introduce two other
parameter‘s ε2 and µ2 defined as

ε2 =
a

d2
= εδ, µ2 =

d2
2

λ2
=

µ

δ2
.
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The equations (11) can then be written in dimensionless variables as

(12)


∂etζ̃ − 1

µ
Gµ[εζ̃]ψ̃1 = 0,

∂et(Hµ,δ[εζ̃]ψ̃1 − γ∇ψ̃1

)
+ (1− γ)∇ζ̃

+
ε

2
∇
(
|Hµ,δ[εζ̃]ψ̃1|2 − γ|∇ψ̃1|2

)
+ ε∇N µ,δ(εζ̃, ψ̃1) = 0,

where N µ,δ is defined for all pairs (ζ, ψ) smooth enough by the formula

N µ,δ(ζ, ψ) := µ
γ
(

1
µG

µ[ζ]ψ +∇ζ · ∇ψ
)2 − ( 1

µG
µ[ζ]ψ +∇ζ ·Hµ,δ[ζ]ψ

)2
2(1 + µ|∇ζ|2)

,

and where the operators Gµ and Hµ,δ are the nondimensionalized versions of the
Dirichlet-Neumann and interface operators defined in (9) and (10) (see §2.5 and §2.6
for precise definitions).

Notation 1. — The tildes which indicate the non-dimensional quantities will be
systematically dropped henceforth.

Remark 2. — Linearizing the equations (12) around the rest state, one finds the
linearized dispersion relation

(13) ω2 = (1− γ)
|k|
√
µ

tanh(
√
µ|k|) tanh(

√
µ

δ |k|)
tanh(

√
µ|k|) + γ tanh(

√
µ

δ |k|)
;

corresponding to plane-wave solutions eik·X−iωt. In particular, the expected instabil-
ity is found when γ > 1, corresponding to the case wherein the heavier fluid lies over
the lighter one.

2.4. The Shallow-Water/Shallow-Water (SW/SW) regime. — In [3], many
asymptotics of the non-dimensionalized equations (12) are studied, in various physical
regimes corresponding to different relationships among the dimensionless parameters
ε, µ and δ. Here, we mainly focus on the Shallow-Water/Shallow-Water regime
characterized by

(14) Shallow Water/Shallow Water (SW/SW) regime: µ ∼ µ2 � 1.

Since no assumption is made on the amplitude of the interfacial waves, this regime
allows large interfacial amplitudes (ε ∼ ε2 = O(1)).

2.5. Asymptotic expansion of the Dirichlet-Neumann operator. — Let us
first define the nondimensionalized Dirichlet-Neumann operator Gµ[εζ]· that appears
in (12). Denoting the non-dimensionalized upper fluid domain by

Ω1 = {(X, z) ∈ Rd+1,−1 + εζ(X) < z < 0}

and assuming that the height of this domain never vanishes,

(15) ∃H1 > 0, 1− εζ ≥ H1 on Rd,

we can state the following definition:

Exp. no VII— Large amplitude internal waves
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Definition 1. — Let ζ ∈ W 2,∞(Rd) be such that (15) is satisfied and let ψ1 ∈
H3/2(Rd). If Φ1 is the unique solution in H2(Ω1) of the boundary-value problem

(16)
{
µ∆Φ1 + ∂2

zΦ1 = 0 in Ω1,
∂zΦ1 |z=0 = 0, Φ1 |z=−1+εζ(X)

= ψ1,

then Gµ[εζ]ψ1 ∈ H1/2(Rd) is defined by

Gµ[εζ]ψ1 = −µε∇ζ · ∇Φ1 |z=−1+εζ
+ ∂zΦ1 |z=−1+εζ

.

Remark 3. — Another way to approach Gµ is to define

Gµ[εζ]ψ1 =
√

1 + ε2|∇ζ|2∂nΦ1 |z=−1+εζ

where ∂nΦ1 |z=−1+εζ
stands for the upper conormal derivative associated to the elliptic

operator µ∆Φ1 + ∂2
zΦ1.

The following lemma connects ζ with the vertically integrated horizontal velocity
via the Dirichlet-Neumann operator Gµ[εζ]· (the proof is a consequence of Green’s
identity).

Lemma 1. — Let ζ ∈W 2,∞(Rd) be such that (15) is satisfied and let ψ ∈ H3/2(Rd)
and Φ1 be the solution of (16) with ψ1 = ψ. If V µ is defined by

V µ[εζ]ψ :=
∫ 0

−1+εζ

(
√
µ∇Φ1)dz,

then one has
Gµ[εζ]ψ =

√
µ∇ · (V µ[εζ]ψ).

If µ � 1 (shallow water regime for the upper fluid), it is possible to obtain an
expansion of V µ[εζ]ψ with respect to µ which is uniform with respect to ε ∈ [0, 1] (for
the asymptotic regimes where µ is not small, other techniques must be used [3]).

Proposition 1. — Let s > d/2 and ζ ∈ Hs+3/2(Rd). Then for all µ ∈ (0, 1) and ψ
such that ∇ψ ∈ Hs+5/2(Rd), one has∣∣√µV µ[εζ]ψ − µ(1− εζ)∇ψ

∣∣
Hs ≤ µ2C(|ζ|Hs+3/2 , |∇ψ|Hs+5/2),

uniformly with respect to ε ∈ [0, 1]), where V µ[εζ]ψ is as defined in Lemma 1 (so that
Gµ[εζ]ψ =

√
µ∇ · V µ[εζ]ψ).

Proof. — This follows from well known results on the Dirichlet-Neumann operator in
the case of one single fluid layer (e.g. Proposition 3.8 of [1]).

2.6. Asymptotic expansion of the interface operator. — We first define
here the dimensionless operator Hµ,δ[εζ]· that appears in (12). Denoting the
non-dimensionalized lower fluid domain by

Ω2 = {(X, z) ∈ Rd+1,−1− 1/δ < z < −1 + εζ(X)},
and assuming that the height of this domain never vanishes,

(17) ∃H2 > 0, 1 + εδζ ≥ H2 on Rd,

we can state the following definition:

David Lannes
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Definition 2. — Let ζ ∈ W 2,∞(Rd) be such that (15) and (17) are satisfied, and
suppose that ψ1 ∈ H3/2(Rd) is given. If the function Φ2 is the unique solution (up to
a constant) of the boundary-value problem

(18)
{
µ∆Φ2 + ∂2

zΦ2 = 0 in Ω2,
∂zΦ2 |z=−1−1/δ

= 0, ∂nΦ2 |z=−1+εζ(X)
= 1

(1+ε2|∇ζ|2)1/2G
µ[εζ]ψ1,

then the operator Hµ,δ[εζ]· is defined on ψ1 by

Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=−1+εζ
) ∈ H1/2(Rd).

Remark 4. — In the statement above, ∂nΦ2 |z=−1+εζ
stands here for the upwards

conormal derivative associated to the elliptic operator µ∆Φ2 + ∂2
zΦ2,√

1 + ε2|∇ζ|2∂nΦ2 |z=−1+εζ
= −µε∇ζ · ∇Φ2 |z=−1+εζ

+ ∂zΦ2 |z=−1+εζ
.

The Neumann boundary condition of (18) at the interface can also be stated as
∂nΦ2 |z=−1+εζ

= ∂nΦ1 |z=−1+εζ
.

Remark 5. — Of course, the solvability of (18) requires the condition
∫
Γ
∂nΦ2dΓ = 0

(where dΓ =
√

1 + ε2|∇ζ|2dX is the Lebesgue measure on the surface Γ = {z =
−1+εζ}). This is automatically satisfied thanks to the definition of Gµ[εζ]ψ1. Indeed,
applying Green’s identity to (16), one obtains∫

Γ

∂nΦ2dΓ =
∫

Γ

∂nΦ1dΓ = −
∫

Ω1

(µ∆Φ1 + ∂2
zΦ1) = 0.

The boundary-value problem (18) plays a key role in the analysis of the operator
Hµ,δ[εζ]·. The analysis of this problem is easier if we first transform it into a variable-
coefficient, boundary-value problem on the flat strip S := Rd × (−1, 0) using the
diffeomorphism

σ :
S → Ω2

(X, z) 7→ σ(X, z) := (X, (1 + εδ) z
δ + (−1 + εζ)).

As shown in Proposition 2.7 of [11] (see also §2.2 of [1]), Φ2 solves (18) if and only if
Φ2 := Φ2 ◦ σ solves

(19)

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2
X,zΦ2 = 0 in S,

∂nΦ2 |z=0 = 1
δG

µ[εζ]ψ1, ∂nΦ2 |z=−1 = 0,

with

Qµ2 [ε2ζ] =

(
(1 + ε2ζ)Id×d −√µ2ε2(z + 1)∇ζ

−√µ2ε2(z + 1)∇ζT 1+µ2ε2
2(z+1)2|∇ζ|2
1+ε2ζ

)
,

and where, as before, ε2 = εδ, µ2 = µ
δ2 , and ∇µ2

X,z = (
√
µ2∇, ∂z)T .

Remark 6. — As always in the present exposition, ∂nΦ2 stands for the upward
conormal derivative associated to the elliptic operator involved in the boundary-value
problem,

∂nΦ2 |z=0 or z=−1
= ez ·Qµ2 [ε2ζ]∇µ2

X,zΦ2 |z=0 or z=−1
,

where ez is the upward-pointing unit vector along the vertical axis.
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An asymptotic expansion of

(20) Hµ,δ[εζ]ψ1 = ∇(Φ2 |z=0),

is obtained by finding an approximation Φapp to the solution of (19) and then using
the formal relationship Hµ,δ[εζ]ψ1 ∼ ∇(Φapp |z=0). This procedure is justified in the
following proposition. To state the result, it is useful to have in place the spaces

Hs,k(S) = {f ∈ D′(S) : ‖f‖Hs,k <∞}

for s ∈ R and k ∈ N, where ‖f‖Hs,k =
∑k

j=0 ‖Λs−j∂j
zf‖.

Proposition 2. — Let s0 > d/2, s ≥ s0 + 1/2, and ζ ∈ Hs+3/2(Rd) be such that
(15) and (17) are satisfied (the interface does not touch the horizontal boundaries). If
h ∈ Hs+1/2,1(S)d+1 and V ∈ Hs+1(Rd)d are given, then the boundary-value problem

(21)

{
∇µ2

X,z ·Qµ2 [ε2ζ]∇µ2
X,zu = ∇µ2

X,z · h in S,
∂nu|z=0 =

√
µ2∇ · V + ez · h|z=0 , ∂nu|z=−1 = ez · h|z=−1

admits (up to a constant) a unique solution u. Moreover, the solution u obeys the
inequality∣∣∇u|z=0

∣∣
Hs ≤

1
√
µ2
C(

1
H2

, εmax
2 , µmax

2 , |ζ|Hs+3/2)
(
‖h‖Hs+1/2,1 + |V |Hs+1

)
,

uniformly with respect to ε2 ∈ [0, εmax
2 ] and µ2 ∈ (0, µmax

2 ).

Remark 7. — Suppose we take h = 0 and V = V µ[εζ]ψ in Proposition 3. By
Lemma 1, one has∇u|z=0 = Hµ,δ[εζ]ψ. and the Proposition thus provides an estimate
of the operator norm of Hµ,δ[εζ].

Proof. — The main lines of the proof are:
1. Check the coercivity of Qµ2 [ε2ζ]
2. Derive estimates on ∇µ2

X,zu in Hr,1 (r ≥ 0) by elliptic estimates
3. Use the trace theorem to control |∇u|z=0 |Hs . ‖u‖Hs+1/2,1 . 1

µ2
‖∇µ2

X,zu‖Hs+1/2,1

and use Step 2

The remaining task is therefore to find an approximation Φapp to the solution of
(19). As for the expansion of the Dirichlet-Neumann operator, various techniques
must be used depending on the regime under consideration (see [3]). We focus here
in the SW/SW regime (14).

In this regime, large amplitude waves are allowed for the upper fluid (ε = O(1))
and for the lower fluid (ε2 = O(1)). Assuming that µ � 1 and µ2 � 1 raises the
prospect of making asymptotic expansions of shallow-water type, in terms of µ and
µ2. As before, the plan is to formally construct an approximate solution Φapp to (19)
having the form

Φapp = Φ(0) + µ2Φ(1).

David Lannes
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(such a form exploits the assumption that µ2 is small). From the expression for
Qµ2 [ε2ζ], we may write

∇µ2
X,z ·Q

µ2 [ε2ζ]∇µ2
X,z =

1
h2
∂2

z + µ2∇X,z ·Q1∇X,z,

with h2 = 1 + ε2ζ and where an explicit formula can be derived for Q1. At leading
order, the elliptic operator of (19) thus reduces to 1

h2
∂2

z , which amounts to discard
the horizontal derivatives of the original Laplace operator. Consequently, the nonlocal
effects of the Laplace operators disappear in this regime (but new, unexpected enough,
nonlocal effects appear, as shown below).
Using Proposition 1 (and thus the assumption that µ is small) to approximate the
Neumann condition at the interface of (19), one readily checks that Φ(0) and Φ(1)

must solve {
∂2

zΦ(0) = 0,
∂zΦ(0)

|z=0 = 0, ∂zΦ(0)
|z=−1 = 0,

which is obviously solved by any Φ(0)(X, z) = Φ(0)(X) independent of z, and{
∂2

zΦ(1) = −h2
2∆Φ(0),

∂zΦ(1)
|z=0 = h2

(
ε2∇ζ · ∇Φ(0) + δ∇ · (h1∇ψ1)

)
, ∂zΦ(1)

|z=−1 = 0,

where we have used the fact that Φ(0) does not depend on z. Solving this second
order ordinary differential equation in the variable z with the boundary condition at
z = 0 yields (up to a function independent of z which we take equal to 0 for the sake
of simplicity),

Φ(1) = −z
2

2
h2

2∆Φ(0) + z(∂zΦ1 |z=0).

Matching the boundary condition at z = −1 leads to the restriction

∇ · (h2∇Φ(0)) = −δ∇ · (h1∇ψ1),

and we thus deduce the following asymptotic expansion of the interface operator:

(22) Hµ,δ[εζ]ψ1 ∼ ∇(Φ(0)
|z=0

) ∼ −δ(I + Π(ε2ζΠ·))−1Π(h1∇ψ1),

where Π = −∇∇T

|D|2 is the orthogonal projector onto the gradient vector fields of
L2(Rd)d defined earlier (and h1 = 1− εζ, h2 = 1 + εδζ).

2.7. The SW-SW model. — We derive here the SW/SW model and establish
that the internal-wave equations (12) are consistent with this model in the following
precise sense.

Definition 3. — The internal wave equations (12) are consistent with a system S
of d + 1 equations for ζ and v if for all sufficiently smooth solutions (ζ, ψ1) of (12)
such that (15) and (17) are satisfied, the pair (ζ,v), with

(23) v = Hµ,δ[εζ]ψ1 − γ∇ψ1),

solves S up to a small residual called the precision of the asymptotic model.
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Remark 8. — It is worth emphasis that above definition does not require the well-
posedness of the internal wave equations (12). In fact, the two-layer water-wave
system is known to be well-posed in Sobolev spaces in the presence of surface tension
but ill-posed without surface tension due to Kelvin-Helmholtz instabilities (see for
instance [10]). In consequence, one could simply add a small amount of surface
tension at the interface between the two homogeneous layers to put oneself in a well-
posed situation. The resulting analysis would be exactly the same and would, in
fact, lead to the same asymptotic models. (Such an approach is used in [14] for
the Benjamin-Ono equation). As the resulting model systems do not change, such a
regularization has been eschewed here. We refer to [13] for a detailed analysis of the
role of surface tension for the control of Kelvin-Helmholtz instabilities.

The following theorem shows that the internal wave equations are consistent in the
SW/SW regime (14) with the Shallow water/Shallow water system,

(24)

{
∂tζ +∇ ·

(
h1R[εζ]v

)
= 0,

∂tv + (1− γ)∇ζ +
ε

2
∇
(∣∣v − γR[εζ]v

∣∣2 − γ
∣∣R[εζ]v

∣∣2) = 0,

where h1 = 1 − εζ, h2 = 1 + εδζ, and the operator R is defined by (recalling that
Π = −∇∇T

|D|2 )

R[εζ]v =
1

γ + δ

(
1−Π(

1− γ

γ + δ
εδζΠ·)

)−1Π(h2v).

Theorem 1. — Let 0 < δmin < δmax ≤ (1 − δ(1 − H1))−1. The internal waves
equations (12) are consistent with the SW/SW equations (24) in the sense of Defini-
tion 3, with a precision O(µ), and uniformly with respect to ε ∈ [0, 1], µ ∈ (0, 1) and
δ ∈ [δmin, δmax].

Remark 9. — Taking γ = 0 and δ = 1 in the SW/SW equations (24) yields the
usual shallow water equations for surface water waves.

Remark 10. — In the one-dimensional case d = 1, one has

R[εζ]v =
h2

δh1 + γh2
v

and the equations (24) take the simpler form

(25)

{
∂tζ + ∂x

(
h1h2

δh1+γh2
v
)

= 0,

∂tv + (1− γ)∂xζ + ε
2∂x

( (δh1)
2−γh2

2
(δh1+γh2)2

|v|2
)

= 0,

which coincides of course with the system (5.26) of [4]. The presence of the nonlocal
operator R, which does not seem to have been noticed before, appears to be a purely
two dimensional effect. V. Duchene showed in a recent paper [7] that these nonlocal
effects are due to the rigid lid assumption (they disappear if the top bottom is replaced
by a free surface).
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Proof. — First remark that with the range of parameters considered in the theorem,
one has µ ∼ µ2 as µ→ 0 while ε ∼ ε2 = O(1).
By the definition (23) of v and using Proposition 1 and (22), one deduces from (12)
that

(26)
{
∂tζ −∇ · ((1− εζ)∇ψ1) = O(µ),
∂tv + (1− γ)∇ζ + ε

2∇(|Hµ,δ[εζ]ψ1|2 − γ|∇ψ1|2) = O(µ).

Recall now that Hµ,δ[εζ]ψ1 = v + γ∇ψ1; using this relation together with (22), one
can get

∇ψ1 = −R[εζ]v +O(µ)

and consequently,

Hµ,δ[εζ]ψ1 = v + γ∇ψ1

= v − γR[εζ]v +O(µ).

Replacing ∇ψ1 and Hµ,δ[εζ]ψ1 by these two expressions in (26) yields the result.

3. Mathematical analysis of the SW/SW system (24)

This section is devoted to the mathematical analysis of the SW/SW system (24).
In 1D, this system reduces to (25) which is of quasilinear type. A detailed analysis
of this system (with precise blow-up conditions) is given in [9]. We focus here on the
2D case because the presence of the nonlocal effects induces the main difficulties.

For the sake of notational simplicity, we take ε = 1 throughout this section.

3.1. Preliminary results on the operator R[ζ]. — We choose to state here
some properties of the operator R[ζ] that will be used in the analysis of the two-
dimensional SW/SW equations (24). The first property deals with the operator norm
of the nonlocal operator.

Proposition 3. — Let γ ∈ [0, 1), δ > 0 and t0 > 1. Assume also that ζ ∈ L∞(R2)
and satisfies

(1− |ζ|∞) > 0 and (1− δ|ζ|∞) > 0.

1. The operator R[ζ] : L2(R2)2 → L2(R2)2 is well defined (see Definition 1) and
(with h2 = 1 + δζ)

∀v ∈ L2(R2)2, |R[ζ]v|2 ≤
1

γ + δ − δ(1− γ)|ζ|∞
|h2v|2.

2. If moreover ζ ∈ Hs ∩Ht0+1(R2) (s ≥ 0) then for all v ∈ Hs(R2)2,

|R[ζ]v|Hs ≤ C
( 1
γ + δ − δ(1− γ)|ζ|∞

, δ(1− γ)|ζ|Ht0+1

)
×
(
|h2v|Hs + δ(1− γ)|ζ|Hs |Π(h2v)|Ht0

)
.
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Proof. — Since ‖Π(γ−1
γ+δ δζΠ·)‖L2→L2 ≤ 1−γ

γ+δ δ|ζ|∞, the bilinear form a(u,v) defined
as

a(u,v) =
(
(1−Π(

1− γ

γ + δ
δζΠ·))u,v

)
is coercive and continuous on L2(Rd)2, with coercivity and continuity constants re-
spectively given by

k(ζ) = 1− 1− γ

γ + δ
δ|ζ|∞ and M(ζ) = 1 +

1− γ

γ + δ
δ|ζ|∞.

It follows therefore from Lax-Milgram’s theorem that for all f ∈ L2(Rd)2, there exists
a unique solution to the equation

(1−Π(
1− γ

γ + δ
δζΠ·))u = f,

and that |u|2 ≤ k(ζ)−1|f |2. The result is thus proved for the particular case s = 0.
The general case requires the control of commutator terms [9].

In the following proposition, we show how the divergence and partial differentiation
operators act on the operator R[ζ]. Let us introduce first the following notation:

(27) S[ζ]v = v + (1− γ)R[ζ]v

(so that S[ζ]v degenerates into S[ζ]v =
1 + δ

δh1 + γh2
v when d = 1).

Proposition 4. — Let γ ∈ [0, 1), δ > 0 and t0 > 1. Assume also that ζ ∈ Hs(R2),
with s ≥ t0 + 1, and satisfies

inf
R

(1− |ζ|∞) > 0 and inf
R

(1− δ|ζ|∞) > 0.

Then, for all v ∈ L2(R2)2, one has

∇ ·R[ζ]v = δ
S[ζ]v

δh1 + γh2
· ∇ζ +

h2

δh1 + γh2
∇ · v

and, for j = 1, 2,

∂j

(
R[ζ]v

)
= δR[ζ]

(S[ζ]v
h2

∂jζ
)

+ R[ζ]∂jv.

Proof. — For the first identity, remark first that from Lemma 3 of [3] one has

∇ ·
(
(δh1 + γh2)R[ζ]v

)
= ∇ · (h2v);

since the assumptions on ζ imply δh1 + γh2 > 0, it follows that

∇ ·R[ζ]v =
1

δh1 + γh2
∇ · (h2v) + δ(1− γ)

∇ζ
δh1 + γh2

·R[ζ]v,

from which the result follows easily.
For the second identity, remark that by definition of R[ζ]v, one has

(γ + δ)
(
1 + Π(

γ − 1
γ + δ

δζΠ·)
)
R[ζ]v = Π

(
h2v

)
;
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differentiating this identity, one gets

(γ + δ)
(
1 + Π(

γ − 1
γ + δ

δζΠ·)
)
∂j(R[ζ]v) = ∂jΠ(h2v) + (1− γ)Π(δ∂jζR[ζ]v),

and thus

∂j(R[ζ]v) = R[ζ]
(∂j(h2v)

h2

)
+ δ(1− γ)R[ζ]

(∂jζR[ζ]v
h2

),

from which the result follows.

One has R[ζ]( v
h2

) = 1
δh1+γh2

v in the one-dimensional case d = 1; when d = 2,
this identity is of course false but the following proposition establishes that when v
is a gradient vector field (i.e. when Πv = v) then this identity is true up to a more
regular term.

Proposition 5. — Let γ ∈ [0, 1), δ > 0 and t0 > 1. Let also ζ ∈ Ht0+1(R2) be such
that

inf
R

(1− |ζ|∞) > 0 and inf
R

(1− δ|ζ|∞) > 0.

Then, for all v ∈ L2(R2)2,

|R[ζ](
v
h2

)− 1
δh1 + γh2

Πv|2 ≤ C
( 1
γ + δ − δ(1− γ)|ζ|∞

, δ(1− γ)|ζ|Ht0+1

)
|Πv|H−1 .

Proof. — Remark first that one can write

R[ζ](
v
h2

)− 1
δh1 + γh2

Πv = (1−Π(
1− γ

γ + δ
δζΠ·))−1w,

with
w =

1
γ + δ

Πv − (1−Π(
1− γ

γ + δ
δζΠ·))

( 1
δh1 + γh2

Πv
)
.

With the same notation as in the proof of Proposition 3, we thus have

|R[ζ](
v
h2

)− 1
δh1 + γh2

Πv|2 .
1

k(ζ)
|w|2,

and we are thus led to control |w|2. In order to do so, let f1 and f2 be defined as

f1 =
1− γ

γ + δ
δζ, f2 =

1
δh1 + γh2

.

Simple computations show that

w = f1[Π, f2]Πv + [Π, f1]Π(f2Πv).

Using the commutator estimate (which can be deduced from the general commutator
estimates for pseudo-differential operators given in Theorem 6 of [12])

(28) ∀r,−t0 < r ≤ t0 + 1, |[Π, g]h|Hr . |g|Ht0+1 |h|Hr−1

with r = 0 and the product estimate (valid for t0 > 1 = d/2, see for instance [8]),

(29) |fg|H−1 . |f |Ht0 |g|H−1

we deduce that
|w|2 . |f1|Ht0+1 |f2|Ht0+1 |Πv|H−1 ,

and the result follows easily.
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3.2. An “almost” quasilinear formulation of the equations. — In the one
dimensional case d = 1, the SW/SW systems (25) is quasilinear; in the two dimen-
sional case (d = 2), it is more tricky to put (24) in a quasilinear form because of the
presence of the nonlocal term R[ζ]v. The main result of this section is to prove that
one can write (24) in the equivalent form

(30) ∂tU +Aj [U ]∂jU = 0, U = (ζ,v)>,

where

Aj [U ] =
(
aj(U) bj(U)>

cj [U ] Dj [U ]

)
, (j = 1, 2),

and

aj(U) = (v − γR[ζ]v)j − γ(S[ζ]v)j
h2

δh1 + γh2
,(31)

bj(U) =
h1h2

δh1 + γh2
ej ,(32)

cj [U ]• = ej − γ
[
ej + δ(S[ζ]v)jR[ζ]

(S[ζ]v
h2

•
)]
,(33)

Dj [U ]• = (v − γR[ζ]v)jId2×2 − γ(S[ζ]v)jR[ζ]•,(34)

the operator S[ζ] being as defined in (27).

Proposition 6 (The case d = 2). — Let T > 0, t0 > 1 and s ≥ t0 + 1. Let also
U = (ζ,v)> ∈ C([0, T ];Hs(R2)3) be such that for all t ∈ [0, T ],

(1− |ζ(t, ·)|∞) > 0 and (1− δ|ζ(t, ·)|∞) > 0 and curl v(t, ·) = 0.

Then U solves (24) if and only U solves (30).

Remark 11. — The system (30) is not stricto sensu a quasilinear system since cj [U ]
(resp. Dj [U ]) is not an R2-vector-valued (resp. 2 × 2-matrix-valued) function but a
linear operator defined over the space of R2-vector-valued (resp. 2×2-matrix-valued)
functions. However, these operators are of order zero and, as shown below, (30) can
be handled roughly as a quasilinear system.

Proof. — One can use Proposition 4 to express the quantities involved in (24) in the
following form:

Lemma 2. — Let t0 > 1 and U = (ζ,v)> ∈ Ht0+1(R2)3 be such that

inf
R2

(1− |ζ|∞) > 0 and inf
R2

(1− δ|ζ|∞) > 0.

Then one has
∇ · (h1R[ζ]v) =

(
aj(U)∂jζ + bj(U) · ∂jv

)
,

where aj(U) and bj(U) are given by (31) and (32).
If moreover curl v = 0 then

(1− γ)∇ζ +
1
2
∇
(∣∣v − γR[ζ]v

∣∣2 − γ
∣∣R[ζ]v

∣∣2) = cj [U ]∂jζ +Dj [U ]∂jv,

where the operators cj [U ] and Dj [U ] are given by (33) and (34).
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Proof. — We refer to [9] for a proof. The curl-free assumption is needed to simplify
the right-hand-side in the following identity, used in the computations: for all u ∈
H1(R2)2, one has

1
2
∇|u|2 = (u · ∇)u + (curl u)u⊥

with u⊥ = (u2,−u1)> and we recall that curl u = ∂1u2 − ∂2u1.

The proposition is then a direct consequence of Lemma 2.

The next proposition is crucial in order to prove that a solution of (30) which is
initially curl free remains curl free and thus yields a solution of (24); its proof relies
essentially on a Gronwall-type argument (see [9]).

Proposition 7. — Let T > 0, t0 > 1 and s ≥ t0 + 1. Let also U = (ζ,v)> ∈
C([0, T ];Hs(R2)3) be a solution of (30) such that curl v(0, .) = 0. Then curl v(t, .) =
0 for all t ∈ [0, T ].

3.3. Local well-posedness of (24). — We show here that the two-dimensional
Shallow Water/Shallow Water equations (24) are locally well-posed under the follow-
ing conditions that generalize the hyperbolicity conditions of the one-dimensional case
(see [9]),

(35)


1− |ζ|∞ > 0,

1− δ|ζ|∞ > 0,

1− γ − γδ
|S[ζ]v|2∞

γ + δ − δ(1− γ)|ζ|∞
> 0,

with S[ζ]v as in (27).

Theorem 2. — Let δ > 0 and γ ∈ [0, 1). Let also t0 > 1, s ≥ t0 + 1 and U0 =
(ζ0,v0)> ∈ Hs(R2)3 be such that (35) is satisfied and curl v0 = 0. Then there exists
Tmax > 0 and a unique maximal solution U = (ζ,v)> ∈ C([0, Tmax);Hs(R2)3) to (24)
with initial condition U0. Moreover, if Tmax < ∞ then at least one of the following
conditions holds:

(i) lim
t→Tmax

|U(t)|Ht0+1 = ∞.

(ii) One of the three conditions of (35) is enforced as t→ Tmax.

Proof. — Throughout this proof, we denote by c(U) any constant of the form

c(U) = C
( 1
1− |ζ|Ht0

,
1

1− δ|ζ|Ht0

,
1

1− γ − γδ
|S[ζ]v|2∞

δ+γ−δ(1−γ)|ζ|∞

, |U |Ht0+1

)
.

Step 1. Regularized equations. We construct a regularized system of equations.
Denote χι = χ(ι|D|), with χ a smooth, compactly supported function equal to 1 in a
neighborhood of the origin. The regularization of (30) is then

(36) ∂tU
ι + χι(Aj [U ι]χι(∂jU

ι)) = 0;

existence/uniqueness of a maximal solution U ι = (ζι,vι)> ∈ C([0, T ι);Hs) (s ≥
t0, T ι > 0) with initial condition U0 to (36) satisfying (35) is thus obtained by
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classical theorems on ODEs. Moreover, proceeding as for Proposition 7, one has
(since curl v0 = 0)

(37) ∀t ∈ [0, T ι), curl vι = 0.

Step 2. Choice of a symmetrizer. Let us look for S[U ] in the form

(38) S[U ] =
(
s1(U) 0

0 S2[U ]

)
,

with s1(·) : Hs(R2)3 7→ Hs(R2) and S2[U ] a linear operator mapping L2(R2)2 into
itself. Defining C[U ] as

∀ṽ = (ṽ1, ṽ2)> ∈ L2(R2)2, C[U ]ṽ = c1[U ]ṽ1 + c2[U ]ṽ2,

a straightforward generalization of the one-dimensional case consists in taking s1(U) =
b(U)−1 and S2[U ] = C[U ]−1; unfortunately, such a choice is not correct because the
operator C[U ] is not self-adjoint. It turns out however that C[U ] is self-adjoint (up
to a smoothing term) on the restriction of L2(R2)2 to gradient vector fields, as shown
in the following lemma. We first need to define the operator C1[U ] as

(39) C1[U ] = (1− γ)Id +
1
2
δγ

(
c1[U ] + c1[U ]∗ 0

0 c1[U ] + c1[U ]∗

)
,

with c1[U ] : L2(R2) → L2(R2) given by

(40) c1[U ] =
1

δh1 + γh2
(2S1S2Π(e2·)1 + S2

1Π(e1·)1 + S2
2Π(e2·)2),

and where Sj = (S[ζ]v)j .

Lemma 3. — Let t0 > 1 and U = (ζ,v)> ∈ Ht0+1(R2)3 be such that (35) is satisfied.
Define also C1[U ] as in (39) and let C2[U ] = C[U ]− C1[U ]. For all ζ̃ ∈ L2(R2), one
has

|C2[U ]∇ζ̃|2 ≤ c(U)|ζ̃|2.

Proof. — The proof is quite technical (see [9]) and relies on heavily on Proposition
5.

In view of this lemma, we now choose the coefficients s1[U ] and S2[U ] of the
symmetrizer S[U ] given by (38) as follows

s1(U) = b(U)−1,(41)
S2[U ] = C1[U ]−1;(42)

the invertibility of C1[U ] is ensured by the following lemma (see [9] for a proof)

Lemma 4. — Let t0 > 1 and U = (ζ,v)> ∈ Ht0(R2)3 be such that (35) is satisfied.
1. The operator C1[U ] is invertible in L(L2(R2)2;L2(R2)) and

‖C1[U ]−1‖L2→L2 ≤ c(U).

2. The following coercivity property holds, for all ṽ ∈ L2(R2)2,

|ṽ|22 ≤ c(U)(C1[U ]−1ṽ, ṽ).
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It follows directly from this lemma that S[U ] satisfies: for all V ∈ L2(R2)1+2,

(43) |V |22 ≤ c(U) (S[U ]V, V ) and (S[U ]V, V ) ≤ c(U)|V |22.
The operator S[U ] would therefore be a symmetrizer if S[U ]Aj [U ] (j = 1, 2) were
symmetric, which is unfortunately not the case. However, ΠS[U ]Aj [U ]Π, where Π
denotes as before the projection onto gradient vector fields is symmetric at leading
order. This crucial property will be exploited in Step 3 below and is a consequence
of Lemma 3 and of the following lemma:

Lemma 5. — Let t0 > 1 and U = (ζ,v)> ∈ Ht0+1(R2)3 satisfying (35). One can
decompose the operators Dj [U ] (j = 1, 2) given by (34) into

Dj [U ] = dj
1(U)Id +Dj

2[U ]

with
dj
1(U) =

(
v − γR[ζ]v − γ

h2

δh1 + γh2
S[ζ]v

)
j
.

Then, for all ṽ ∈ L2(R2)2 such that Πṽ = ṽ, one has

|Dj
2[U ]∂jṽ|2 ≤ c(U)|ṽ|2.

Step 3. Energy estimate. One can check that Ũ = ΛsU ι solves

(44) ∂tŨ + χι

(
Aj [U ι]χι(∂jŨ)

)
= χι

(
[Aj [U ι],Λs]χι(∂jU

ι)
)
,

and one obtains
1
2
∂t(S[U ι]Ũ , Ũ) + (S[U ι]Aj [U ι]∂jχιŨ , χιŨ) =

1
2
([∂t, S[U ι]]Ũ , Ũ)

+ (χι

(
[Aj [U ι],Λs]χι(∂jU

ι)
)
, S[U ι]Ũ) + ([χι, S[U ι]]Aj [U ι]χι(∂jŨ), Ũ).(45)

We now intend to control all the components of (45).
- Control of (S[U ι]Aj [U ι]∂jχιŨ , χιŨ). Using the explicit expression of Aj [U ι], we get

(S[U ι]Aj [U ι]∂jχιŨ , χιŨ) = (s1(U ι)aj(U ι)∂jχιζ̃, χιζ̃)

+ (s1(U ι)b(U ι)∇ · χιṽ, χιζ̃) + (S2[U ι]C[U ι]∇χιζ̃, χιṽ)

+ (S2[U ι]Dj [U ι]∂jχιṽ, χιṽ),(46)

and we thus have to bound from above the different components of the right-hand
side of (46).

– Estimate on (s1(U ι)aj(U ι)∂jχιζ̃, χιζ̃). With a simple integration by parts, and
using the explicit formulas of s1(U ι) and aj(U ι) provided by (41) and (31), one
obtains

(47) |(s1(U ι)aj(U ι)∂jχιζ̃, χιζ̃)| ≤ c(U ι)|ζ̃|22.

– Estimate on I := (s1(U ι)b(U ι)∇·χιṽ, χιζ̃)+(S2[U ι]C[U ι]∇χιζ̃, χιṽ). Replacing
s1(U ι) and S2[U ι] by their expressions given by (41) and (42), we get immedi-
ately

I = −(∇χιζ̃, χιṽ) + (C1[U ι]−1C[U ι]∇χιζ̃, χιṽ)

= (C1[U ι]−1C2[U ι]∇χιζ̃, χιṽ),
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where we used the decomposition C[U ι] = C1[U ι] + C2[U ι] of Lemma 3. Using
the bounds on ‖C1[U ι]−1‖L2→L2 and |C2[U ι]∇χιζ̃| provided by Lemmas 4 and
3 respectively, we deduce that

(48) |I| ≤ c(U ι)|ζ̃|2|ṽ|2.

– Estimate on J := (S2[U ι]Dj [U ι]∂jχιṽ, χιṽ). With dj
1[U

ι] and Dj
2[U

ι] as in
Lemma 5, we can write

J = (S2[U ι]dj
1(U

ι)∂jχιṽ, χιṽ) + (S2[U ι]Dj
2[U

ι]∂jχιṽ, χιṽ)
:= J1 + J2.

Let us decompose J1 into

2J1 = −(S2[U ι]∂j(d
j
1(U

ι))χιṽ, χιṽ)− ([∂j , S2[U ι]]dj
1(U

ι)χιṽ, χιṽ)

+ ([S2[U ι], dj
1(U

ι)]∂jχιṽ, χιṽ).

Recalling that S2[U ι] = C1[U ι]−1, the first term on the right-hand side is easily
controlled thanks to Lemma 4 and the explicit expression of dj

1(U
ι). After

controlling some commutator terms, we can thus deduce that

|J1| ≤ c(U ι)|ṽ|22.

In order to control J2, first remark that Π(χιṽ) = χιṽ (this follows from the
identity curl vι = 0 stated in (37)). It is thus a direct consequence of Lemmas
5 and 4 that |J2| has the same upper bound as |J1|, so that

(49) |J | ≤ c(U ι)|ṽ|22.

It is now easy to deduce from (46), (47), (48) and (49) that

(50) |(S[U ι]Aj [U ι]∂jχιŨ , χιŨ)| ≤ c(U ι)|Ũ |22.

- Control of the r.h.s. of (45). Quite classically, one gets that

(51) the right-hand-side of (45) is controlled by c(U ι)|Ũ |22.

Thanks to (50)-(51), we can conclude by a Gronwall type argument that there
exists T > 0 independent of ι such that T ι > T and

|U ι|L∞([0,T ];Hs) ≤M,

for some M > 0 independent of ι.
Step 4. Convergence of U ι to a solution U of (24) as ι → 0. Very classically, one
can check that there exists T > 0 such that U ι converges to U ∈ C([0, T ];Hs(R2))3

(s ≥ t0 + 1) which solves (30) and that such a solution is unique. The fact that
this solution is also the unique solution to (24) requires v to remain curl-free. This
property is ensured by Proposition 7 since we assumed that curl v0 = 0.
Step 5. Blow-up condition. The blow-up condition is provided by a completely
standard continuation argument.
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