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Einstein-Euler equations for matter spacetimes
with Gowdy symmetry

Philippe G. LeFloch∗

Abstract

We investigate the initial value problem for the Einstein-Euler
equations of general relativity under the assumption of Gowdy sym-
metry on T3. Given an arbitrary initial data set, we establish the exis-
tence of a globally hyperbolic future development and we provide a
global foliation of this spacetime in terms of a geometrically defined
time-function coinciding with the area of the orbits of the symmetry
group. This allows us to construct matter spacetimes with weak reg-
ularity which admit, both, impulsive gravitational waves and shock
waves. The cosmic censorhip conjecture is established in the polarized
case.

1 Introduction

Spacetimes with Gowdy symmetry on T3, by definition, admit a two-
parameter group of isometries generated by two orthogonally transitive,
commuting Killing fields. Under this symmetry assumption, the initial
value problem for the Einstein equations has received a lot of attention
in recent years, both in the vacuum case and in the matter case when the
matter is governed by the Vlasov equation of the kinetic theory of gases.

In the present work, we are interested in self-gravitating perfect fluids
and, in the context of Gowdy symmetry, we study the initial value problem
and we construct a global foliation for a future development of a given
initial data set. The foliation under consideration here is based on a global
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time function that coincides with the area of the orbits of symmetry. Only an
outline of the theory will be provided in this short review and, for further
details on Sections 3 and 4 below, the reader is referred to LeFloch and
Rendall [19] and LeFloch and Stewart [20, 21], respectively.

2 Background on the Einstein equations

We begin with some terminology from Lorentzian geometry and general
relativity. Let (M, g) be a time-oriented (3 + 1)-Lorentzian manifold with
signature (−,+,+,+). A vector X ∈ TpM is called time-like, null, or space-
like if its norm is negative, zero, or positive. A vector is said to be causal
if it is time-like or null, and to be achronal if it is spacelike or null. A
time-orientation corresponds to a continuous selection of one particular
component of the null cone. Time-like curves correspond to trajectories
of physical observers, and null curves (or, rather, null geodesics) to the
trajectories of light. Spacelike hypersurfaces on which the induced metric
is Riemannian play an important role in general relativity.

By definition, a trip from p ∈ M to q ∈ M is a future-oriented, time-
like, Lipschitz continuous curve connecting p to q. The future domain of
dependence of a subset S ⊂M is defined as

D+(S) :=
{
p ∈M / every past-endless trip containing p meets S

}
.

A spacelike hypersurface S satisfying D+(S) = M is called a future Cauchy
hypersurface in M.

We are interested in matter spacetimes, (M, g), satisfying Einstein’s field
equations

Gαβ = κTαβ, (2.1)

where the Einstein tensor

Gαβ := Rαβ − (R/2) gαβ

is determined from the Ricci tensor Rαβ and the scalar curvature R := Rαα of
the manifold. In the right-hand side of (2.1), the energy-momentum tensor
Tαβ describes the matter content of the spacetime. Perfect fluids under
consideration in the present work correspond to

Tαβ := (µ + p) uα uβ + p gαβ. (2.2)
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The main two unknowns describing the matter are the time-like unit veloc-
ity uα and the energy density µ ≥ 0. Importantly, the (second contracted)
Bianchi identities imply the Euler equations

∇
βTαβ = 0. (2.3)

Finally, the Einstein-Euler equations (2.1)–(2.3) must be supplemented
by an equation of state for the pressure p = p(µ), typically restricted by the
dominant energy condition: for every future-oriented time-like vector X,
the energy density T(X,X) is non-negative and, moreover, for every future-
oriented causal (i.e. time-like or null) vector X, the energy flux T(X, ·) is
future-oriented and causal.

The initial value problem for the Einstein equations is formulated as
follows. An initial data set consists of a Riemannian 3-manifold (M, g)
(with covariant derivative denoted by ∇), a symmetric 2-covariant tensor
field k, matter fields (energy density and current) ρ, J, satisfying Einstein’s
constraint equations

R + (tr k)2
− |k|2 = 16πρ, ∇ jk

j
i − ∇i(tr k) = 8πJi, (2.4)

where tr k := k
j
j. Then, one searches for a future globally hyperbolic devel-

opment of this initial data set, consisting of a Lorentzian manifold (M, g)
satisfying the Einstein equations, together with matter fields ρ, J. The de-
velopment is foliated by spacelike hypersurfaces with normal vector field
nα

M =
⋃
t≥0

Ht = D+(H0),

and there exists an embedding ψ : M→ H0 ⊂M such that g is the induced
metric and k the second fundamental form, with moreover

ρ = Tαβnαnβ, Jα = (gαβ + nαnβ)Tβγnγ,

ρ, J being their restrictions to H0 (and J being tangent).
A large literature is available on the above problem, and we will not try

to review it here. Let us only mention that, concerning the Einstein equa-
tions with arbitrarily large data and for large classes of matter models, the
existence of a unique maximal, globally hyperbolic development of given
initial data set was established by Choquet-Bruhat [6], Choquet-Bruhat and
Geroch [8], and followers: for an account of the historical background as
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well as recent references, see [7] and the references therein. In the vac-
uum case, the maximal development is known to be future geodesically
complete when the initial data set is asymptotically flat and sufficiently
close to a spacelike hypersurface of the Minkowski spacetime [9]. On the
other hand, models with symmetries can be handled under much weaker
assumptions and large data can be treated.

3 Global causal structure of Gowdy-symmetric matter
spacetimes

Under the assumption of T3 Gowdy symmetry, the Einstein field equa-
tions take the form of a coupled system of nonlinear wave equations
with differential constraints. Since the pioneering work by Gowdy [14],
(vacuum) Gowdy symmetric spacetimes have been extensively studied
[5, 4, 10, 11, 13, 16, 17, 22] and the strong cosmic censorship conjecture
[15, 23] was established in [26, 27]. For a generalization of these spacetimes
to matter governed by the Vlasov equation, see [1, 2, 12, 24, 25, 28].

On the other hand, the mathematical investigation of Gowdy-type
spacetimes with compressible matter was initiated by LeFloch and Stewart
([20] and also [3]), who introduced a converging approximation scheme for
the initial value problem, and derived several a priori bounds in suitably
chosen local coordinates. Therein, it was found necessary to cope with weak
solutions to the Einstein equations, understood in the distributional sense
and containing propagating discontinuities (shock waves). These authors
established a local-in-time existence result, while in the present paper we
aim at constructing a global foliation.

Gowdy symmetry is well-adapted to describe inhomogeneous cosmolo-
gies with a “big bang” or “big crunch” and also allows for the propagation
of gravitational waves —contrary to radial symmetry which excludes all dy-
namical modes of gravitation. The existence of global foliations of Gowdy
symmetric spacetimes can be established and the long-time behavior of so-
lutions to the Einstein equations be addressed. The novelty of the present
work lies in the low regularity assumed on the spacetimes, which may con-
tain, both, impulsive gravitational waves propagating at the speed of light
and shock waves propagating at (about) the sound speed.

We assume here that the matter is a perfect fluid governed by the isother-
mal pressure equation

p = k2 µ,
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where µ denotes the energy density and k ∈ (0, 1) is the sound speed (the
light speed being normalized to be unit).

Gowdy symmetry on T3 for a (3 + 1)-dimensional Lorentzian manifold
(M, g) is defined as follows. The spacetime admits the Lie group T2 as
an isometry group acting on the torus T3 and generated by two (linearly
independent) spacelike vector fields X,Y, satisfying by definition the Killing
property LXg = LYg = 0 and the commutation property [X,Y] = 0. We
also impose that the action is orthogonally transitive, in the sense that the

distribution of 2-planes
{
X,Y

}⊥
is Frobenius integrable. In the vacuum,

these conditions define precisely the class of Gowdy spacetimes [14].
To make the latter condition more precise, we introduce two vectors

Z,T orthogonal to X,Y, and we observe that (in dimension 2 and after
normalization)

εαβγδXγYδ = ZαTβ − TαZβ,

where ε denotes the Lorentzian volume form. Then, the distribution of
covectors g(X, ·), g(Y, ·) is Frobenius integrable if and only if Z,T, [Z,T] are
linearly dependent, i.e.

εαβγδZαTβ[Z,T]γ = 0.

After some calculations, the condition is found to be equivalent to saying
that the “twist constants” vanish:

εαβγδXαYβ∇γXδ = εαβγδXαYβ∇γYδ = 0. (3.1)

More generally, in the special vacuum case, the Einstein field equations im-
ply that the above (twist) quantities are constants and, without the require-
ment (3.1) one refers to the above class as T2 symmetric vacuum spacetimes.

We define the class of weakly regular Gowdy symmetric T3-spacetimes
by the following conditions: the metric coefficients (in the areal gauge,
see below) belong to H1(Σ) on every space-like slice Σ; the fluid variables
ρ ≥ 0 (scalar field) and J (vector field) belong to L1(Σ) (Prescribing ρ and J
is equivalent to prescribing µ,u.) Furthermore, these functions satisfy the
Einstein equations in the distributional sense and the entropy inequalities
associated with the Euler equations hold. A precise statement of these
equations is provided at the end of the present section. The notion of
Gowdy symmetric initial data set on T3 is defined in a similar way. Observe
that the Einstein equation do make sense since, under our assumptions,
the curvature is well-defined as a distribution in H−1(Σ); see LeFloch and
Mardare [18]. Actually, an even weaker regularity (see below) will be
assumed.
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Our main result is as follows.

Theorem 3.1 (Global structure of Gowdy-symmetric matter spacetimes).
Given any weakly regular, Gowdy-symmetric T3-initial data set (g, k, ρ, J): there
exists a weakly regular, Gowdy-symmetric T3-spacetime (M, g, ρ, J) that is a max-
imal, globally hyperbolic, future development of (g, k, ρ, J). This spacetime is
globally covered by a single chart in areal coordinates and admits a foliation by
space-like hypersurfaces; the corresponding time variable t coincides with (plus or
minus) the area of the (two-dimensional space-like) orbits of the T2 isometry group.
Furthermore, one can distinguish two cases, whether R is increasing or decreasing
toward the future: for future expanding spacetime one has t = R ∈ [h(θ),+∞)
where h(θ) > 0 denotes a parameterization of the initial hypersurface; for fu-
ture contracting spacetimes, for some R0 ≤ 0 one has t = −R ∈ [h(θ),R0] with
h(θ) < R0 ≤ 0.

The above theorem is established in [19] and provides the maximal
development of the given initial data set. In contrast, the earlier work [20]
provided a “small time” existence result, only, but in a somewhat more
regular function space: the fluid variables in [20] have bounded variation
(BV) and the proof is based in Glimm’s random choice scheme. Theorem 3.1
above is established via the technique of compensated compactness, and
the regularity of the spacetime is weaker than BV, while the conclusion is
more precise.

It should be noted that the time-function is tight to the geometry (areal
coordinates) but is based on the Gowdy symmetry assumption. It would
be interesting to search for a global CMC foliation for these spacetimes.

The main difficulty in the above theorem lies in the low regularity which
we must assume on the metric coefficients, due to the coupling with the
Euler equations. We allow here for impulsive gravitational waves, i.e. cur-
vature singularities propagating at light speed. Fluid variables have solely
finite total mass-energy and arbitrary large amplitude, and may contain
shock waves which in turn create curvature discontinuities propagating at
about the sound speed.

The main open question concerns the structure of the boundary of the
Cauchy development. First of all, it need not hold that R0 = 0 and explicit
counter-examples can be constructed for the Einstein-Euler equations. Es-
tablishing the strong cosmic censorship (in-extendibility of the future de-
velopment) for generic initial data at least, is the main challenge for this
class of spacetimes. In the expanding case, this property can be established
thanks to an argument originally due to Rendall for the Vlasov model. In
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the contracting case, the question is open in general and was settled in the
vacuum case only [26, 27].

In the rest of this section, we explain how to reformulate in areal co-
ordinates the problem under consideration in the quotient manifold M/T2.
Since (X,Y) =: (X1,X2) are linearly independent and space-like, we have

R2 := det
(
λab

)
> 0, λab := g(Xa,Xb).

Since they are Killing fields, the area R > 0 is a constant on each orbit. The
formula

hµν := gµν − λabXaµXbν

defines a Lorentzian metric on M/T2, and hνµ := gνµ −λabXaµXν
b is the natural

projection operator. With these notation, the Einstein equations can be
expressed on the quotient manifold. Coordinates (t, θ, x, y) are chosen such
that (x, y) spans the orbits of symmetry, and the metric coefficients depend
on (t, θ) and are periodic in θ, and the Einstein equations take the form of a
system of partial differential equations in the variables (t, θ).

An important feature of Gowdy-symmetric spacetimes is the timelike
property of the gradient ∇R, which allows one to choose t = R as a time
coordinate. In this setting, the metric reads

g = e2(ν−U) (−dt2 + α−1dθ2) + e2U(dx + A dy)2 + e−2U t2 dy2,

in which the metric coefficients U,A, ν, αdepend on t, θ and, by construction,
t coincides with the area of the orbits of the T2 symmetry group. The
field equations consist of second-order nonlinear wave equations (for the
functions U,A, ν), a constraint equation (a nonlinear differential equation
for α), and the Euler equations. The latter consist of a system of two
nonlinear hyperbolic equations for the matter variables ρ, J1, with J2 = J3 =
0. Equivalently, a (normalized) component V ∈ (−1, 1) of the velocity and
the (normalized) energy density

M :=
µ

1 − V2 .

are used. Indeed, it is necessary to allow V to be arbitrarily close to the light
speed and rescale the density accordingly.

The Einstein equations imply the following conditions.

• The evolution equations for U,A read

(tα−1/2Ut)t − (tα1/2 Uθ)θ =
e4U

2tα1/2
(A2

t − αA2
θ) + tα1/2Π1,

(t−1 α−1/2At)t − (t−1 α1/2 Aθ)θ = −
4

tα1/2
(UtAt − αUθAθ) + α1/2Π2,

Exp. no XXIII— Einstein-Euler equations for matter spacetimes with Gowdy symmetry
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where Π1,Π2 are certain nonlinear expressions depending on the ge-
ometric and fluid variables. The equation for ν is analogous.

• The constraint equation for α reads

α(t, θ) = α (θ) exp
(
− 2(1 − k2)

∫ t

1
t′ e2(ν−U)M (1 − V2)(t′, θ) dt′

)
,

where α > 0 is some prescribed initial data. (We assume here for
simplicity that the area of symmetry is the constant t = 1 on the initial
hypersurface.) Note that the function α is globally bounded in the
future, that is, 0 < α ≤ α for all t ≥ 1.

• The Euler equations for µ (or equivalently M) and V read(
a1

(
µ + (µ + p(µ))

V2

1 − V2

))
t

+

(
a2 (µ + p(µ))

V
1 − V2

)
θ

= Σ1,(
a3 (µ + p(µ))

V
1 − V2

)
t

+

(
a4

(
(µ + p(µ))

V2

1 − V2 + p(µ)
))
θ

= Σ2,

where a1, . . . , a4 are nonlinear expressions depending on the geomet-
ric variables and Σ1,Σ2 depend on both the geometric and the fluid
variables.

We are now in a position to state the regularity of the metric and matter
coefficients in areal coordinates. For definiteness, we consider the case of
expanding spacetimes, described by t ∈ [1,+∞). By definition, a weakly
regular solution to the Einstein-Euler equations (in areal coordinates) con-
sists of measurable functions U,A, ν, α,M,V defined on I×S1 := [1,+∞)×S1

and satisfying the following conditions:

• The geometry and matter coefficients have the following regularity:
Ut,At,Uθ,Aθ ∈ L∞loc(I,L2(S1)), νt, νθ ∈ L∞loc(I,L1(S1)), α > 0, α, α−1

∈

L∞loc(I,L∞(S1)), M ∈ L∞loc(I,L1(S1)), with M ≥ 0 and |V| ≤ 1.

• The evolution and constraint equation hold in the distributional sense.

• The entropy inequalities

∇αF
α(M,V) ≤ G(M,V)

hold for all convex weak entropy flux Fα and associated source G

defining a formal conservation law to the relativistic Euler equations.
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Finally, we point out that weak regularity of the metric can be stated in a
purely geometric way that does not require local coordinates but involves
the Killing fields, only.

4 Censorship conjecture for polarized Gowdy sym-
metric matter spacetimes

The spacetimes of interest now are “polarized” Gowdy-symmetric space-
times (with weak regularity), filled with an irrotational fluid whose sound
speed coincides with the light speed. We formulate a characteristic value
problem with data prescribed on two null hypersurfaces intersecting along
a 2-plane. This describes colliding spacetimes (or interacting gravitational
plane waves), following an explicit example discovered by Khan and Pen-
rose in the vacuum case. Importantly, in the proposed setting we are able
to establish the strong censorship conjecture.

Taking into account that each Killing field is hypersurface orthogonal
(“plane symmetry”), we find the following expression of the metric:

g = e2a (−dt2 + dx2) + e2b (e2c dy2 + e−2c dz2)

= −e2a dudv + e2b (e2c dy2 + e−2c dz2),
(4.1)

in which the coefficients a, b, c depend upon the characteristic variables

u = t − x, v = t + x.

In these coordinates, the relevant components of the Einstein tensor read

G00 = 2
(
−2 aubu + buu + b2

u + c2
u

)
,

G01 = 2
(
−buv − 2 bubv

)
,

G11 = 2
(
−2 avbv + bvv + b2

v + c2
v

)
,

G22 = 4e−2a+2b+2c
(
auv + buv + bubv − bucv − bvcu − cuv + cucv

)
,

G33 = 4e−2a+2b−2c
(
auv + buv + bubv + bucv + bvcu + cuv + cucv

)
,

which are at most quadratic expressions involving up to second-order
derivatives.

The Einstein equation driving the coefficient b,

buv + 2 bubv = 0

Exp. no XXIII— Einstein-Euler equations for matter spacetimes with Gowdy symmetry
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is equivalent to the wave equation (e2b)uv = 0, and allows us to write

e2b = f (u) + g(v) > 0

for some arbitrary functions f , g. Assuming that f and g are invertible and
observing that the transformations u 7→ f−1(u/2) and v 7→ g−1(v/2) do not
change the form of the metric, we impose

f (u) =
1
2

u, g(v) =
1
2

v.

So, our choice of coordinates leads to

e2b =
1
2

(u + v). (4.2)

The region of interest is the past,
{
u + v < 0

}
, of the spacelike hypersurface

H0 :=
{
u + v = 0

}
,

the latter corresponding to a genuine singularity of the spacetime (as we
will show it for generic initial data in Theorem 4.2, below).

The matter model under consideration is a perfect fluid (2.2) with pres-
sure p equal to its mass-energy density µ,

p = µ. (4.3)

The energy-momentum tensor (2.2) involves the fluid velocity vector u sat-
isfying uαuα = −1 and, with the equation of state (4.3), the fluid sound
speed coincides with the light speed, normalized to 1. The (second) con-
tracted Bianchi identities (implied by the geometry) yield the Euler equa-
tions ∇αTαβ = 0, which read

(uα ∇αµ) uβ + µ (∇αuα) uβ + µuα ∇αuβ −
1
2
∇
βµ = 0. (4.4)

Multiplying the above equations by uβ, we obtain the scalar equation

2∇αµuα − 2µ∇αuα + 2µuα uβ ∇αuβ − ∇αµuα = 0,

which, in view of uβ ∇αuβ = 0, simplifies into

uα ∇αµ + 2µ∇αuα = 0.
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Assuming that the density is bounded away from zero and setting

Σ =
1
2

logµ,

we obtain the scalar equation

uα ∇αΣ + ∇αuα = 0. (4.5)

On the other hand, multiplying the Euler equations (4.4) by the projec-
tion operator Hβγ = gβγ − uβuγ, we obtain the vector equation

Hαγ
∇αµ − 2µuα ∇αuγ = 0,

or equivalently
Hαγ
∇αΣ − uα ∇αuγ = 0. (4.6)

We assume that the fluid is irrotational, in the sense that there exists a
(scalar) potential ψ with timelike gradient such that

∇βψ∇
βψ < 0, uα =

∇αψ√
−∇βψ∇βψ

(4.7)

and we note that the anti-symmetric part of uα∇βuγ vanishes.
From now on, subscripts u and v denote partial derivatives with respect

to the characteristic coordinates. After normalization (by replacing ψ with
F(ψ), if necessary), the Euler equations imply the so-called Bernouilli’s
equation

µ = −∇βψ∇
βψ = −4e−2a ψuψv, (4.8)

which expresses the energy density in terms of the potential. Finally, we
end up having to solve a single matter equation for the scalar field ψwhich,
in characteristic coordinates, takes the form

ψuv + bv ψu + buψv = 0.

In turn, we have arrived at the following essential field equations:

• The evolution equations for the metric component c and the fluid
variable ψ are singular wave equations of the Euler-Poisson-Darboux
type:

cuv +
1

2(u + v)

(
cu + cv

)
= 0, (4.9)

ψuv +
1

2(u + v)

(
ψu + ψv

)
= 0. (4.10)

Exp. no XXIII— Einstein-Euler equations for matter spacetimes with Gowdy symmetry
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• The constraint equations for the metric coefficient a reads

au =
(
c2

u +
1
2
ψ2

u

)
(u + v) −

1
4 (u + v)

,

av =
(
c2

v +
1
2
ψ2

v

)
(u + v) −

1
4 (u + v)

.
(4.11)

We will seek for solutions in the Sobolev space H1 on each spacelike hyper-
surface, and we observe that the curvature and therefore each term in the
field equations (2.1) are well-defined in the distributional sense [18].

We formulate the characteristic initial value problem, as follows. Fixing
some (u0, v0) with u0+v0 < 0, we consider the 2-plane P0 identified with this
point and the spacetime region T(u0, v0) limited by the null hypersurfaces

Nv0 :=
{
v = v0

}
, Nu0 :=

{
u = u0

}
,

and the spacelike hypersurface H0. We then prescribe initial data for the
geometry and the matter on Nv0∪Nu0 , which may have a jump discontinuity
on the 2-plane P0. That is, let ψ|v0 , c|v0 and ψ|u0 , c|u0 be data on the null
hypersurfaces Nv0 and Nu0 , respectively. The region of interest is covered
by the double-null foliation:

Nv :=
{
(u′, v′) / v′ = v

}
, Nu :=

{
(u′, v′) /u′ = u

}
.

Definition 4.1. A weak solution to the Einstein equations of self-gravitating
irrotational fluids is determined by measurable metric coefficients a, c entering in
the expression (4.1) of the metric, and a fluid potentialψ, defined in a characteristic
region T(u0, v0) for some (u0, v0) and such that —after excluding an arbitrary
small neighborhood of the singularity hypersurface H0— the expression

sup
v

∫
Nv

(
ψ2

u + c2
u

)
du + sup

u

∫
Nu

(
ψ2

v + c2
v

)
dv + sup

(u,v)
|a(u, v)|

is finite and, moreover, the evolution equations (4.9)-(4.10) for the coefficients c, ψ
and the constraint equations (4.11) for the coefficient a hold in the distributional
sense.

Without loss of generality, we impose the normalization

a(u0, v0) = 1

of the metric coefficient a on the 2-plane. Our main result for polarized
spacetimes is as follows.
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Theorem 4.2 (Global causal structure of plane symmetric matter space-
times). Given (u0, v0) satisfying u0 + v0 < 0, consider the characteristic region
T(u0, v0) limited by the null hypersurfaces Nv0 =

{
v = v0

}
, Nu0 =

{
u = u0

}
, and

the (spacelike, coordinate singularity) hypersurface H0 :=
{
u + v = 0

}
. Denote

by ψ|v0 , c|v0 and ψ|u0 , c|u0 some initial data prescribed on the null hypersurfaces
Nv0 and Nu0 , respectively. Then, the corresponding characteristic value problem
admits a unique weak solution to the Einstein equations for self-gravitating irrota-
tional fluids. Furthermore, for “generic” initial data the curvature of the spacetime
blows-up on the hypersurface H0 along future-oriented timelike geodesics, and the
spacetime can not be continued beyond H0.

We refer to [21] for a proof of this theorem. The main equations to
be solved are singular wave equations, whose solutions are expressed in
terms of an associated Riemann function. Only weak regularity is imposed
on the geometric and matter variables, and so our theorem allows for the
propagation of curvature singularities: the Ricci part of the curvature is
solely integrable and may contain jump discontinuities propagating along
null hypersurfaces, while the Weyl part is even more singular and may
contain Dirac masses propagating along null hypersurfaces.
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