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Viscous profiles of vortex patches

Franck Sueur*

Many systems of partial differential equations which propagate singularities are actually some
singular limits of more realistic systems with an extra regularizing term of higher order. We refer
here to ferromagnetism, to shell theory or to fluid mechanics, from which we borrow the terminology
of inviscid /viscous systems.

Let us briefly remind, to motivate our analysis, some basic results on the propagation of the
singularities, referring to the survey [13] by Garding for a more detailed overview of the topic.
For linear equations a fundamental result has been given by Héormander: the wave front set of the
solution at time t of a system of real principal type is the image of the wave front set of the Cauchy
data by the canonical transformation generated by the Hamiltonian of the system, that is by the
determinant of the principal symbol of the system.

For nonlinear systems, this is in general not true anymore: phenomena due to self spreading
or crossing may occur [3]. However propagation can be obtain when one restrain the study to
singularities more robust with respect to the nonlinearity. One may turn to conormal singulari-
ties. Loosely speaking, given a filtration (Es)secr of microlocalizable spaces (here we shall make
use of the Besov spaces) and a closed set X, the distributions of index s conormal to X are the
one in Ey which remain in the same space under (possibly repeated) action of the vector fields
tangent to . Such distributions have been introduced by Hormander as a particular case of the
Lagrangian distributions in his Fourier operator theory (see Hérmander [15] for a comprehensive
expository), and the works of Bony [4], Alinhac [1], Chemin [6] have basically shown that when
a conormal singularity is weak enough with respect to nonlinear effects it propagates nicely along
the bicharacteristics, even if the evolution of the singular support itself is an unknown.

Our goal is precisely to explain in such a case how to construct some viscous profiles, that is to
obtain some expansions for the solutions of the viscous perturbations of the inviscid system which
describe as well as possible their behaviour with respect not only to the space-time variables but
also to the viscosity coefficient, in the vanishing limit. Our main motivation here is the construction
of viscous profiles of vortex patches. A full treatment is done in [20]. We also refer to the proceeding
[21]. We take here this new opportunity to present our work starting with a digression about the
conormal self-similarity of the viscous smoothing.

1 Conormal self-similarity of the viscous smoothing

There are many way to make appear viscous smoothing; the goal of this section is to show how
viscosity creates self-similar fast scales in the singular directions. Here we shall simply consider the
heat equation

o’ = vAzu”, fort >0 and x € R", (1)
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FRANCK SUEUR

where n is in the set N* of all natural numbers except zero, and v is a nonnegative real. This has
two obvious advantages: the equation is linear and for the inviscid system (i.e. when v = 0) the
singularities are stationary.

We will also get rid of the difficulties linked to geometry by considering as initial data some dis-
tributions conormal to linear spaces. This allows to use some representation in straight coordinates
through partial Fourier transform. More precisely we prescribe at t = 0 the oscillatory integral

w(@) = [ an(e, e, @)

where d is an integer such that 1 < d < n, where y = (21, ..., 24), 2 = (441, -.., Tp) is a splitting of
the variable x = (y, z) in R™; where £ = ({,n) is the corresponding splitting of the dual variable,
and where ag is in the space S]io(R”_d x R%) of the (uniform) symbols of order p € R and of type
1,0, which means that for all a, 3 € N" there exists C, 3 > 0 such that for all (2,() € R" % x R,
|08 8% al < Cop(1 4+ [¢)P7lel 1 Such distributions ug have their wave front set included in N*F,
where F' is the subspace of R" given by the equation y = 0 and N*F is its conormal bundle, without
the section zero, given by the equation y = 0,7 = 0, # 0; and when the symbol ag vanishes for
z outside of a compact set, ug is characterized by the conditions z® 9° uy € Bi g; 4/2 (R™), for any
a, 8 € N such that |o/| > |3'|. Here o/, 3’ are the first groups of variables in the splitting of «, 3
corresponding to the one of z; and B, ,(R") denotes the (non-homogeneous) Besov space with s as
regularity exponent, with p as integral-exponent and with ¢ as sum-exponent. Note that the vector
fields z® 97 with |a/| > || are tangential to the subspace I and generate all such (smooth) vector
fields.

Some examples of conormal distributions are given by multiple distribution layers: let o denote
a multi-index o := (a1, ...,q) € N¢, with |a| = p and let u(z) be in the Schwartz space S(R"~9)
of rapidly decreasing functions on R*~¢. Then

ap(z,C) = p(2)(@Q) = p(z)(i¢1)** ...(i¢)*

isin Sf}O(R”_d xR%). The corresponding distributions ug := p®5(® act on test functions ¢ € D(R")
according to the formula:

< :U’®6(a)790 >p/ D= (_1)‘04 M(Z)@;@(O,Z)dz
Rn—d
Notice that any distribution whose support is included in a compact subset of F' and whose wave
front set is in the conormal bundle N*F can be written as a linear combination of multiple layers.
For such an initial data Fourier transform yields for the solution u” of (1) the following repre-
sentation formula

wit) = [ a0 3)
R4
where ,
A - . —AA,
@ (z,¢) = e () e ()
'To avoid any confusion let us precise that we use the following notations: when a letter v denotes a multi-index

v :=(7,..,7) € N', then |y| denotes the length v1 + ... + v, and when a variable y = (y1, ..., y-) runs into R", 07
denotes the multi-derivative 9 := 9]*...0}".
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Exp. n° XIII— Viscous profiles of vortex patches

isin ST = Upe]RSf’O for A > 0. Expanding the second exponential in the definition of a* by the
Taylor formula we get that the solution u” may be expanded (at least formally) in powers of vt as
follows:

u”(t,x) ~ Z(uﬂ%% u‘J((yt)_%!% 2), @
q=0
where
Wivz) = [ A QG with A0z Q) = (i) - S AT(2), o)
R4 i
= Oypo(Y)- ql!Agu(z) with ¢o(Y) := (47T1)d/2 Y2/

Let us draw some conclusions on these examples: the solutions develop self-similar fast scales
in the singular directions, with an amplitude which increases with the strength of the singularity.
Moreover the solution may be described by a complete asymptotic expansion which involves internal
layer profiles localized around the singular support of the initial data.

There are also conormal distributions with intermediate orders, for which it is still possible
to construct some viscous profiles but they are less localized. To show this let us consider the
homogeneous function ag(z,¢) := p(z)|¢|P with p € R, £ ¢ N. Such a symbol is not in C* so
that the corresponding distribution wug in (2) is not strictly in the previous setting. However for
p > —d, the function ag(z,() is in L}, so that (2) makes sense. The solution u” of (1) with such
distribution wug as initial data also admits an expansion of the form (4)-(5) but with

A2, ¢) = eI ;Azm.

The corresponding profiles U are therefore in C*° but they are not sufficiently decreasing to be in

S, only enough to be in Lt for any € > 0.

We arrive at the case p < —d. We shall consider the case d = 1 so that F' is the hypersurface
given by the equation x1 = 0. We shall denote p — C'°° the space of the piecewise smooth functions
with respect to F'. Locally, their restriction to each open half-space defined by F' extends in a
C® function defined on the whole space. It is part of the mathematical folklore that the space
p— C™ is the set of the distributions ug smooth out of F' and which can be written as in (2) with a
symbol ag locally? in S~!, satisfying® ag(z, () ~ > ge1 Aq(2)¢™ 7. In this case aq(2) = M%[@g_luo]
where [ designates the discontinuity jumps across the hypersurface F. These symbols satisfy
the transmission property cf. for instance [14], what suggests to construct their viscous profiles
by a transmission strategy. To explain this strategy let us get rid of the transversal directions
by considering the heat equation (1) in the one dimensional case n = 1, with as initial data the
Heaviside Step Function H. The solution may read

r
Vvt

Zwhich means that for all o, € N, for all compact K C R™™ there exists Cy,5,x > 0 such that for all
(2,¢) € K xR, |08 02 a| < Cap.xc (14|77

3in the sense that for any N € N*, ao(z,¢) — Zév:_ll aq(2)x(€)¢™7 is of order —N, where x(¢) is a smooth function
vanishing for |¢| < 1 and equal to 1 for || > 1.

1 [T
u’(t,z) = H(x) + Ux( )when £+ 2 >0, where Uy (X) := \/7T/x e ¥’ dywhen + X > 0.
-3
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One then see the ”viscous” solutions u” as the sum of the ”inviscid” solution u° plus a ”double
initial-(internal) boundary layer” U1 which satisfies an elliptic transmission problem. In effect they
solve

X
a@&+§ﬁﬂgzo when + X >0,
match the continuity conditions of 4” and 0,u” at the internal boundary x = X = 0:
L+ Us|x—0+ =U-|x=0- and OxUi|x—o+ = OxU-|x=0-

and vanish (i.e. U+ (X) — 0) when X — +00. More generally for an initial data ug with [0 ug] =
0 for 1 < ¢ < p and [0)ug] # 0 the corresponding solution u” develops an internal layer of amplitude
(I/t)g. In addition one has to add to the expansion some regular terms since even for an analytic
data ug the solution u” expands into

> 1
“(t,x) = )1 —o% .
u’(t, x) q:ZO(V ) o ug()

2 Viscous profiles of vortex patches
Let us now consider the equations of incompressible fluid mechanics which read

o” +0v" - Vo' +Vp”  =vAvY (6)
div ¥ =0, (7)

where v¥ and p" respectively denote the velocity and the pressure of the fluid. When v = 0
the equations (6)-(7) are the Euler equations whereas v > 0 corresponds to the Navier-Stokes
equations. We will consider the academic case where the spatial derivative z is in R? for d = 2 or
3. A key quantity is the vorticity

w” := curl v” (8)

which satisfies the equation
ow” +v” - Vw” =w” - Vo' + vAw"”. (9)

We shall consider as initial data some vortex patches which are basically fluid configurations
with the vorticity discontinuous across a hypersurface. The problem was initially considered for
the Euler equations (when v = 0) in two dimensions. The vorticity is then scalar and a natural
example of discontinuous vorticity is the characteristic function of a bounded domain. For such
an initial data the existence and uniqueness of a solution was given by Yudovich in [22]. Actually
Yudovich’s theorem even deals with the more general case of an initial vorticity which is a bounded
function with compact support. The corresponding velocity field is log-lipschitzian and admits a
bicontinuous flow X°. In the two-dimensional case the stretching term (the first one in the r.h.s.
of (9)) vanishes and the vorticity is simply transported by the flow, this implies that in the case
of a vortex patch as initial data the vorticity w” at time ¢ remains a vortex patch relative to a
domain which is homeomorphic to the initial domain. However Yudovich’s approach does not
allow to study precisely the evolution of the smoothness of the boundary of the patch. Numerical
experiments of Zabusky in [23] suggested that singularities of the boundary of the patches would
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Exp. n° XIII— Viscous profiles of vortex patches

develop, presumably in finite time whereas the ones of Buttke [5] suggested a loss of smoothness. In
[18] Majda announced local-in-time existence and conjectured that there are smooth initial curves
such that the curve becomes nonrectifiable in finite time. However Chemin has shown that things
go the other way by proving the persistence of the smoothness of the boundary in [8] (see also
his recent survey [9]). Its proof uses the vorticity smoothness with respect to the vector fields
tangential to the boundary of the patch. These vector fields move with the fluid and their own
smoothness is therefore linked to the smoothness of the fluid velocity. There were numerous works
after Chemin’s result?. In particular it was extended to the three dimensional case by Gamblin and
Saint-Raymond [12], and then by Zhang and Qiu [24]. Because of the stretching term it is only a
short time result.

In three dimensions a vortex patch is defined as follows. Let be given a compact connected
hypersurface I'g in the Holder class C**17" where s is in N and 0 < » < 1. This means that there
exists a function® g € C*17(R3, R) such that an equation of I'g is given by T'g = {¢o = 0}, with
Vo # 0 in a neighborhood of I'g. According to Jordan’s theorem R?\ Ty has two distinct connected
components. One of them is bounded (the ”interior”), we shall denote it Op +, and the other one
(the ”exterior”) is unbounded, we shall denote it Op . We assume that Op+ = {£po > 0}. We
consider a divergence free initial velocity vg in L?(R?®) whose vorticity wp := curl v is in the Holder
space C¢"(Op 4 ), that is a compactly supported vorticity which is C*" on each side of T'g.

As already said the persistence of the patch smoothness is only linked to the iterated action of
the vector fields tangential to the boundary. The persistence of the initial piecewise smoothness
needs a little bit more of work (but this is needed for our construction of viscous profiles). The two-
dimensional case was proved by Depauw in the case s = 0 in [10] and by Huang [16] in the general
case s in N. In three dimensions Huang in [17] proved the case s = 0 in [17] (see also Dutrifoy’s
paper [11] section 3.1). The proof of the persistence of higher order piecewise smoothness is given
in [20].

Theorem 2.1. There exists T > 0 and a unique solution
v? € L™®(0,T; Lip(R3)) N Lip(0, T; L*(R?))
to the Euler equations:

o + 00 Vol +Vp° =0, (10)
div® =0, (11)

with vy as initial velocity. To say more let us denote

(i). D the material derivative
D = 8,5 + UO : V,

(ii). " the solution of

Dg° =0, with ¢°|=0 = po, (12)

“We refer to [20] for a detailed survey.
SFor an open subset O of R?, the Hélder space C*"(0O) is the set of the functions of class C*(O) such that

|0%u(x) — 0%u(y)|
|z —y|"

[ullos.r o) = supjaj<s (10%ull Lo (0) + 5UP, £yeo ) < Fo0.
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(iii). X° the flow map defined by O, X0(t,x) = vO(t, XO(t,x)) with initial data X°(0,z) = z,

(iv). T(t) the compact connected hypersurface T'(t) := XO(t,Tg) = {¢°(t,.) = 0} which separates
O4(t) == XO(t, Op 1) = {x°(¢,.) > 0}.

Then for each t € (0,T) the boundary T'(t) is C5T17 the vorticity
WO(t) := curl vO(t) (13)
is 2" (O«(t)), and
¢ € L0, T; CH(RY) N L®(0,T; C*+17 (04(1))).

Moreover there exists n > 0 such that for 0 <t < T, and x such that |¢°(t,x)| < n the vector
n(t,z) := V' (t,z) satisfies n(t,z) # 0. For each t € (0,T) the function (W°.n)(t,.) is CO"
on {|¢°(t,.)] < n}. Finally the internal boundary T'(t) is analytic with respect to time and the
restrictions on each side of the boundary of the flow X° are also analytic with respect to time with
values in CSTLT,

The final statement in Theorem 2.1 about the smoothness of the boundary with respect to
time originates in Chemin’s pioneering work [7] (note that the vector field D is also tangential to
the boundary) and was extended into analyticity with respect to time by Serfati [19] (see also its
doctoral thesis). This shall be useful for proving smoothness properties of the viscous profiles that
we shall now construct.

Here we want to show that the solutions of the Navier-Stokes equations benefit from a conormal
smoothing of the initial vorticity discontinuity into a layer of width /vt around the hypersurface
{p"(¢,.) = 0} where the discontinuity has been transported at the time ¢ by the flow of the Euler
equations. Therefore we expect that the solutions w” of the Navier-Stokes equations with vortex
patches as initial data can be described by an expansion of the form

W (t,x) ~ OOt ) + D (t, x) (14)

where @” denotes a perturbation mainly local and conormally self-similar, that is depending on the

extra inner scale 0 (t) so that
Vvt

QY (t, ) == Qt, z,

) (15)
with

lim Q(t,2,X) = 0. 16
Pe LU (16)
The velocity v” may be recovered by applying a pseudo-local operator of order —1 (with Fourier
symbol —L/\) to the vorticity w” so that we expect that the velocity v” given by the Navier-Stokes

¢l
equations can be described by an asymptotic expansion of the form:

o(t,z)

Wt x) ~ vo(t,x)+\/EV(t,x,“0m ), (17)

where the profile f/(t, x, X)) is also expected to satisfy

lim V X) = 0. 1
m V(tz, X) 0 (18)
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Plugging (14), (15) and (17) into the relations (8), taking into account (13) and equalling the
leading order terms leads to

nAdxV =Q. (19)
Hence the vorticity profile  has to satisfy the orthogonality condition:

Q-n=0. (20)

This condition is not a surprise: since w® is divergence free w® - n is continuous so that no (large

amplitude) layer is expected on the normal component of the vorticity.
Now the pressure p” can be recovered from the velocity v” by applying the operator divergence
to the equation (6) which yields the Laplace problem:

Nep’ ==Y (@w))(050)). (21)
1<6,j<3

If the velocity v” satisfies the expansion (17), the r.h.s. of (21) should admit an expansion of the
form:

@O(t, x)
Vvt

where the function F vanishes for X — +oo. Since the Laplacian is of order —2 we are lead to
consider a perturbation of order vt on the pressure:

Ny p” ~ Ay pO—I—F(t,x,

); (22)

oO(t, x)

Vot

is expected to be a local inner scale (since the Laplacian

p’(t,x) ~ p°(t,z) + vtP(t, x,

); (23)

3 800('5799)
where -once again- the fast scale N

operator is pseudo-local) so that

Xlﬂmiloo P(t,z,X) = 0. (24)

We plug the ansatz (17) and (23) into the equation (6). The leading order terms are of order
\/ITtO and provide the equation

D’ + Vp° + DloxV =0, (25)

which is actually satisfied since the velocity v? satisfies the Euler equations (10)-(11) and ¢ satisfies
the eikonal equation (12). At the following order v/vt we get the equality

o . _ 1 X - 1
DV +V-noxV+V V' +0xPn= g(|n1263(v +50xV = 5V). (26)

We now pay attention to the divergence free condition. Plugging the ansatz (17) into the equation

(7), retaining the terms at order v/ vt and taking into account that the velocity oY given by Euler
is divergence free leads to the orthogonality equation: n - 9xV = 0, which by integration, with the
condition (18) leads to the condition:

n-V=0. (27)
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An important consequence of the condition (27) is to kill the second term in (26) which is the only
nonlinear one.

The equation (26) involves both V and P. However the pressure in the NS equations is not
truly an unknown but can be recovered from the velocity (as recalled in (21)) so that we expect
that the same holds for the profiles. One way to proceed is to project normally the equation (26),
to take into account that the (non-unit) normal vector n(t, x) satisfies the equation:

Dn = —4(Vv°) - n. (28)

and to use the condition (27) to get that

29
e (29)
We now use the equation (29) to get rid of the pressure profile into the equation (26). Inverting
the two sides and dividing by ¢, we have:

(V- Vao')n

~ X ~
292 - _

V=t(DV+V -V’ -2 n), (30)

N | =

The vector field n may vanish, away the boundary of the patch, hence so may do the coefficient in
front of the leading order in the equation (30). To remedy to this we consider a function a in the
space

B:= L ([0, 1], CO’T(Rd)) N L (0, T; C”(Oﬂt))) (31)
satisfying the condition
inf a=:¢>0 (32)
[0,T]xR4

and such that a = |n|? when |¢°| < 7, and we consider for the profile V (¢, z, X) the linear partial
differential equation:
LV =0 (33)

where the differential operator L is given by
L:=E—-t(D+A)

where E and A are some operators of respective order 2 and 0 acting formally on functions V (¢, z, X)
as follows:
X 1 V-V.20
EV = ad%V + Eaxv — 5v and AV :=V -V, — QMH'

a

The substitution of a instead of |n|? is almost harmless since their values are different only for
0
|©°| > 7, so that the corresponding values of the (expected, so far) solutions V (¢, z, %) and

V(t,z, ‘pi}t;’f)) respectively given by the equations (30) and (33) both tend to 0 as /vt tends to 0,
because of the condition (18).

The condition (32) yields some ellipticity with respect to X for the operator E. Roughly
speaking the equation (33) is therefore hyperbolic in ¢,z and parabolic in ¢, X, but degenerates for

t = 0 into an elliptic equation in X. This degeneracy leads to the existence of parasite solutions.
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In effect if we look for solutions V not depending on X and neglecting® the term involving A the
equation (33) simplifies into the Fuschian differential equation t9;V = —V/2, which admits an
infinity of solutions i.e. V(t) = C/+/t, for C € R. However only one is in L?(0,T), corresponding to
C = 0; and of course we expect that our scaling is relevant enough to have a solution with L2(0, T')
smoothness (at least), even in the case of the full equation (33). Except this L?(0,7) condition
none initial condition at ¢ = 0 has to be prescribe.

Now because of the parabolic nature of the Navier Stokes equations, we expect that v and w”
are continuous including through ¢” = 0 (these are the Rankine- Hugonlot conditions associated to
the problem), which lead to the transmission conditions: V and w®+4Q should be continuous, which
(taking into account the equalities (19), (20) and (27)) is equivalent to the transmission conditions:

V and n A w® — |n|?0xV should be continuous. More precisely this means a priori that
Vix=otp0=0+ = Vlx=0-p0=0- = 0, (34)
|n|2axv’X:0+7¢0:0+ — ’n‘28Xv|X:0—7¢0:0— = —(nA w0|¢0:0+ —nA w0|<p0:0— ). (35)

Since X is the placeholder for \5;) the function V (¢, z, X) needs to be defined only when X and

O (t,m)
Vvt
in the whole domain

share the same sign. However it is useful to look for a profile V (¢, z, X') defined for (¢, z, X)

D:=(0,T) x RY x R.

As a consequence we will actually look at the following transmission conditions: for any (t,z) €
(0,T) x R,

[V]=0 and [OxV] = ——-—F———, (36)

where the brackets denote the jump [V] = V|x_g+ — V|x—o- across {X = 0} and where w9 are
two functions in L> ((O, T),C%" (Rd)) such that wl|o, ;) = w’.

The equation (33), with the transmission conditions (36) on the interface {X = 0} and the
conditions (18) for X at infinities are well-posed in appropriate spaces. Moreover the function
V(t,z, X) -n(t,x) vanishes identically, what is self-consistent with the condition (27). The solution
inherits the smoothness with respect to the usual variables ¢, z from the coefficients and is piecewise
smooth and rapidly decreasing with respect to the fast variable X.

Theorem 2.2. There exists exactly one function

V(t,z, X) € L ((0, T),Co (R, p — S(R))) n L™ (o, T;C5" (Ox(t),p — S(R)))
satisfying the equation (33) for £X > 0 and the transmission conditions (36).

We denote p — S(R) the space of the functions f(X) whose restrictions to the half-lines R are
in the Schwartz space of rapidly decreasing functions. Here the smoothness with respect to the
vectorfield D is a key point. Loosely speaking when applying D to the equations and commuting,
the coercivity in X is improved. Things go on the other way if one try to derivate in X first.

If piecewise smoothness of the initial data is sufficient it is possible to continue the expansion
with respect to vt of the solutions of the Navier-Stokes equations. At the extreme limit if the
initial data is piecewise smooth on each side of the interface {p° = 0} -that is if s = +oco- then it

6Cf. Baouendi and Goulaouic’s paper [2].
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is possible to write a complete formal asymptotic expansion of the Navier-Stokes velocities of the
form:

v’ (t,z) =0t 2) + Z\/Ej Vit oO(t, x)

The construction of the V7 for j > 2 is more involved, they are the sum of a regular part and
of a layer part. These expansions are stable: their lifetime is the one of the solution of the FEuler
equation (”the ground state”) which traps the main part of the nonlinearity of the problem. We
refer to [20] for a more detailed treatment.
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