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1 Introduction

The Gross-Pitaevskii (GP) Equation is a non-linear Schrödinger equation that
is widely used for describing the properties of Bose-Einstein condensates. Its
stationary version is

−∆ϕ(x) + V (x)ϕ(x) + 2g|ϕ(x)|2ϕ(x) = µϕ(x) (1)

and the time-dependent version

i∂tψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + 2g|ψ(x, t)|2ψ(x, t). (2)

Here ϕ and ψ are complex-valued functions with variables x ∈ Rd, d = 1, 2, 3
and t ∈ R, V an external potential, g a coupling constant and µ a Lagrange
multiplicator (chemical potential) determined by the normalization condition
‖ϕ‖22 = 1. In dimensions d = 2, 3 it is also of interest to consider the equations
for rotating systems obtained by the substitutions

−∆ → (i∇+ A(x))2 and V (x) → V (x)− |A(x)|2 (3)

with A(x) = 1
2Ω∧x, where Ω is the angular velocity of the container enclosing

the condensate.
In this lecture the following points will be discussed:

• The meaning of ϕ(x) resp. ψ(x, t) in the many-body context.

• The derivation of the GP equation from the full many-body Hamiltonian.

• Some properties of rapidly rotating systems.

The focus will be on the stationary situation, in fact on the ground state. A
general reference on the first two point, discussed in Sections 2-5 is [1]; rotating
systems will be discussed in the last Section 6.
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2 The Mathematical Setting

The basic quantum mechanical Hamiltonian for N spinless bosons in R3 that
are trapped in an external potential V and interact via a pair potential v is, in
a frame that rotates with angular velocity Ω

H =
N∑

j=1

{
(i∇j + A(xj))2 + V (xj)− 1

4Ω2r2j
}

+
∑

1≤i<j≤N

v(xi − xj). (4)

Here xi ∈ R3, i = 1, . . . , N are the positions of the particles. We shall as-
sume that the interaction potential v is nonnegative and spherically symmetric.
Moreover, V (x) →∞ for |x| → ∞. Units have been chosen so that the combi-
nation ~2/2m of Planck’s constant ~ and the particle mass m does not appear
explicitly as a pre-factor of the Laplacian.

The Hamiltonian operates on symmetric wave functions in L2(R3N , dx1 · · · dxN ).
For ultracold bosons the normalized ground state wave function Ψ0(x1, . . . ,xN )
of H is of particular interest.

The particle density associated with a wave function Ψ is

ρ(x) = N

∫
R3(N−1)

|Ψ(x,x2, . . . ,xN )|2dx2 · · · dxN (5)

and the one-particle density matrix is

ρ(1)(x,x′) = N

∫
R3(N−1)

Ψ(x,x2, . . . ,xN )Ψ∗(x′,x2, . . . ,xN ) dx2 · · · dxN . (6)

These definitions can be extended to mixed states in an obvious way by convex
combinations.

3 The Concept of Bose-Einstein Condensation

The general idea is that Bose-Einstein condensation (BEC) means “macroscopic
occupation of a single one-particle state”. In the case of ideal gases without
interaction between the particles, i.e., if v ≡ 0, the many-body ground state Ψ0

of H has the form ψ⊗N
0 with ψ0 the ground state of the one-particle operator

−∆ + V , or, more generally of (i∇ + A)2 + V − 1
4Ω2r2. Thus BEC trivially

holds for such a state: all particles occupy the same state ψ0. It is, however,
still a nontrivial question whether BEC holds for thermal equilibrium states at
(sufficiently low) positive temperatures. That this is true for an ideal Bose gas
in the thermodynamic limit and d = 3 was discovered by Albert Einstein in
1924.

For interacting bosons the question is nontrivial even at temperature zero,
i.e., in the many-particle ground state. To discuss it we must first define the
concept of BEC precisely for states that can be highly correlated. Let ϕ be
a single-particle wave function and denote the projector onto ϕ by Pϕ. Then
the average occupation of ϕ in a many-particle state 〈 · 〉 (that can be pure or
mixed) is

Nϕ = 〈Pϕ ⊗ 1⊗ 1 · · ·+ 1⊗ Pϕ ⊗ 1 · · · 〉. (7)
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In terms of creation and annihilation operators this can also be written as

Nϕ = 〈a(ϕ)†a(ϕ)〉. (8)

Now, by a definition, BEC in the many-particle state 〈 · 〉 means that for some
1-particle state ϕ,

Nϕ = O(N) (9)

as N → ∞, or more precisely, Nϕ/N ≥ c > 0 for all (large enough) N . (Here
N =

∑
i〈a(ϕi)†a(ϕi)〉 with {ϕi} an orthonormal basis of one-particle states.)

This definition can also be formulated as a property of the one-particle den-
sity matrix ρ(1)(x,x′) because (8) can be written

Nϕ =
∫ ∫

ϕ(x)∗ρ(1)(x,x′)ϕ(x′) dxdx′. (10)

The density matrix has a spectral decomposition:

ρ(1)(x,x′) =
∑

i

λiϕi(x)ϕ∗i (x
′) (11)

with λ0 ≥ λ1 ≥ . . . and orthonormal ϕi. Because Nϕ0 = λ0 is the maximal
occupancy of any single-particle state, BEC in the many-body state to which
ρ(1)(x,x′) belongs means that

λ0 = O(N), (12)

i.e., the one-particle density matrix has a macroscopic eigenvalue. The eigen-
function ϕ0(x) to the highest eigenvalue of ρ(1)(x,x′) is often referred to as the
wave function of the condensate. Note that

λ0|ϕ0(x)|2 resp. λ0|ϕ̃0(p)|2 (13)

is the spatial density resp. the momentum density of the condensate, where
ϕ̃0(p) denotes the Fourier transform of the wave function. Now for a homoge-
neous gas in a large box Λ the wave function of the condensate can be expected
to be constant, i.e., ϕ0 = |Λ|−1/2. Since

λ0 =
∫ ∫

ϕ∗0(x)ρ(1)(x,x′)ϕ0(x′)dxdx′, (14)

BEC for a homogeneous gas in the thermodynamic limit means that

|Λ|−2

∫ ∫
ρ(1)(x,x′)dxdx′ ≥ c > 0 (15)

rather than tending to zero as N → 0. Eq. (15) is called “Off Diagonal Long
Range Order”.
Important Remark: The definition of BEC is only precise if the N dependence
of the parameters of the many particle state has been specified. Important cases
are:

• Thermodynamic limit in a box Λ: N →∞, |Λ| → ∞, N/|Λ| = const.

• Gross-Pitaevskii-limit: N → ∞, Na/L = const. with a the scattering
length of v and L the length scale associated with −∆ + V .

• ‘Thomas-Fermi’-limit: N →∞, Na/L→∞, but Na3/L3 → 0.

Exp. no XI— Bosons in Rapid Rotation
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4 The Ground State Energy

Consider a spherically symmetric pair interaction potential v of finite range.
The zero energy scattering equation is

−∆ψ + 1
2vψ = 0. (16)

For r = |x| larger than the range of v the solution has the form

ψ(r) = (const.)
(
1− a

r

)
(17)

with a constant a that is called the scattering length of v.
If v ≥ 0 the scattering length determines completely the ground state energy

EQM(2, L) of a pair of Bosons in a large box Λ of side length L� a:

EQM(2,Λ) ≈ 8πa
L3

. (18)

Consider now for v ≥ 0 the Hamiltonian of N Bosons in a box Λ of side
length L (with appropriate boundary conditions):

H = −
N∑

i=1

∆2
i +

∑
1≤i<j≤N

v(xi − xj) (19)

We denote its ground state energy by EQM(N,L). The energy per particle in
the thermodynamic limit, i.e., N →∞ and L→∞ with ρ = N/L3 fixed, is

e0(ρ) = lim
L→∞

EQM(ρL3, L)/(ρL3). (20)

We ask for the low density asymptotics of e0(ρ), where low density means a�
ρ−1/3 i.e., the scattering length is much smaller than the mean particle distance.
This can also be written as

ρa3 � 1. (21)

The basic formula for the energy is

THEOREM (Ground state energy of a dilute gas)
For ρa3 � 1

e0(ρ) = 4π aρ (1 + o(1)). (22)

A heuristic argument for this formula can be given as follows: Since “for a
dilute gas only two body scattering matters”,

EQM(N,L) ≈ N(N − 1)
2

EQM(2, L) ≈ N2

2
8πa
L3

= N 4πaρ. (23)

This heuristic argument is, however, very far from a rigorous proof and it gives
a wrong answer in two dimensions [2].

The formula (22) has an interesting history and it took almost 70 years to
establish it rigorously, see [1]. An upper bound (for a gas of hard spheres) was
given by Dyson in 1957 [3] but a matching lower bound was not obtained by Lieb
and Yngvason until 40 years later [4]. Besides the result itself the techniques of
[4] turned out to be important for the subsequent developments [1].

Why is the lower bound so difficult? The basic reason is that we are looking
for a very small energy if ρ is small. One can distinguish two regimes:

Jakob Yngvason
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1. ‘Hard potential’, v large (in particular a hard sphere potential). The
energy is here mostly kinetic and the ground state highly correlated. There
is no perturbation theory in this region.

2. ‘Soft potential’, v small. The energy is mostly potential. Lowest order per-
turbation theory (with the uncorrelated, unperturbed state Ψ0 = L−3N/2)
gives

e0(ρ) ≈ 1
2ρ

∫
v(x)d3x. (24)

This is a wrong answer (it is independent of ~ and m!), but it is at least
the first Born approximation to 4πaρ. (Note that a depends on ~ and m
through the pre-factor ~2/2m of the Laplacian.)

The ground state energy of dilute gases does not distinguish the two regimes
according to (22). The question whether the same holds for BEC in the ther-
modynamic limit is still open.

Dyson [3] succeeded in transforming Regime 1 into Regime 2 (for hard
spheres) by sacrificing the kinetic energy. In this way he obtained a lower
bound ∼ ρa but the factor in front was only about 1/14 of the optimal one.
His idea of replacing a hard potential by a soft one was, however, taken up in
[4] and the following lemma is a key element in the proof of the lower bound
as well as for much of the subsequent developments, in particular the rigorous
derivations of the GP equation in [5] and [6].

LEMMA (Dyson’s Lemma): Let v(r) ≥ 0 with finite range R0. Let U(r) ≥ 0
satisfy

∫
U(r)r2dr ≤ 1, U(r) = 0 for r < R0. Then for all ψ and domains

B ⊂ R3 that are star shaped w.r.t. 0∫
B

[
|∇ψ|2 + 1

2v|ψ|
2
]
≥

∫
B∩ supp U

[
|∇ψ|2 + aU |ψ|2

]
. (25)

Proof: By superposition, it is sufficient to consider U(r) = 1
R2 δ(r−R) with R >

R0. Write ψ(r) = u(r)/r and minimize
∫ R

0
{µ[u′(r)−(u(r)/r)]2+ 1

2v(r)|u(r)]
2}dr

with u(0) = 0 and u(R) = R− a (normalization). This leads to the zero energy
scattering equation −µu′′ + 1

2vu = 0 with and u(r) = r − a for r > R0. The
Lemma now follows by partial integration.
Remark. For the proof of BEC in the GP limit one makes use of the fact that
the full kinetic energy outside the support of U , can be retained, i.e., one can
add add

∫
B\ supp U

|∇ψ|2 to the right side of (25).
Applying Dyson’s Lemma to the many-body problem implies that the inter-

action
∑

i<j v(xi − xj) can, for the purpose of a lower bound, be replaced by a
nearest neighbor interaction

a
∑

i

U(min
j,j 6=i

|xi − xj |).

Hence configurations where three-particles come close together are ignored but
the error is small for dilute gases. The proof of the energetic lower bound also
involves the following ingredients:

• Retaining part of the kinetic energy inside the support of the potential U .

• Splitting the big box Λ into smaller Neumann boxes with of side length
that stays fixed in the thermodynamic limit.

Exp. no XI— Bosons in Rapid Rotation
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5 Gross-Pitaevskii Theory

Consider now the N -body Hamiltonian (4) with an external Potential V repre-
senting a confining trap, but, to begin with, no rotation:

H =
N∑

i=1

{−∆i + V (xi)}+
∑

1≤i<j≤N

v(|xi − xj |). (26)

The external potential comes with a natural length scale Losc = e
−1/2
V where eV

is the spectral gap of −∆ + V .
One would like to study the ground state properties of H, and in particular

BEC, in the Gross-Pitaevskii (GP) limit where N → ∞ with a fixed value of
the GP interaction parameter

g ≡ 4πNa/Losc = e0(ρ)/eV (27)

with ρ = N/L3
osc. Note that ρa3 ∼ g/N2 = O(1/N2) if g is fixed, so the GP

limit is a special case of a dilute limit.
The GP limit can be achieved either by keeping a fixed and scaling the

external potential V so that Losc ∼ N , or, by keeping V fixed and taking
a ∼ N−1. The latter can formally be regarded as a scaling of the interaction
potential:

v(r) = N2v1(Nr) (28)

with v1 fixed. Note that this is the opposite of the usual mean field limit where
the potential is scaled with N as v(r) = N−3v1(r/N). In fact, the technique for
deriving the GP equation from the many-body Hamiltonian is quite different
from mean field techniques.

It turns out that in the GP limit the ground state can be described by
minimizing a functional of functions on R3, the GP energy functional

EGP[ϕ] =
∫

R3

(
|∇ϕ|2 + V |ϕ|2 + g|ϕ|4

)
d3x (29)

with the subsidiary condition
∫
|ϕ|2 = 1. The corresponding Euler-Lagranage

equation is precisely the GP equation (1).
The term g|ϕ|4 is motivated by the energy formula (22): With ρ(x) =

N |ϕ(x)|2 the local particle density, we have Ng
∫
|ϕ(x)|4 = 4πa

∫
ρ(x)2, and

4πaρ(x)2 is the interaction energy per unit volume.
The minimizer ϕGP(x) of the GP functional is the unique, nonnegative so-

lution of the GP equation (1). The corresponding energy is

EGP
g = EGP[ϕGP] = inf{EGP[ϕ] :

∫
|ϕ|2 = 1}. (30)

The GP energy functional can be obtained formally from the many body
Hamiltonian by replacing v(xi − xj) by 8πaδ(xi − xj) and making a Hartree-
type product ansatz for the many body wave function, i.e., writing

Ψ(x1, . . . ,xN ) = ϕ(x1) · · ·ϕ(xN ). (31)

This is not a proof, however, and the true ground state is not of this form. This
is particularly obvious if iv is a hard sphere potential since 〈Ψ,HΨ〉 = ∞ for
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all product wave functions (31). Finite energy can in this case only be obtained
for functions of the form

Ψ(x1, . . . ,xN ) = ϕ(x1) · · ·ϕ(xN )F (x1, . . . ,xN ) (32)

with F (x1, . . . ,xN ) = 0 if |xi−xj | ≤ a for some i 6= j. The upper bound on the
energy is, in fact, proved by using trial functions of this form with a judiciously
chosen F involving the zero-energy scattering solution of the two-body problem.

The basic results in GP theory are the following theorems, proved in [5] and
[6] respectively:

THEOREM (GP energy asymptotics) If N →∞ with g fixed, then

EQM(N, a)
NEGP

g

→ 1. (33)

THEOREM (BEC in GP limit) If N →∞ with g fixed (i.e., a ∼ N−1Losc),
then

1
N
ρ(1)(x,x′) → ϕGP(x)ϕGP(x′). (34)

In other words: There is complete BEC in the GP limit and the solution of
the GP equation is the wave function of the condensate.

COROLLARY(Momentum density in GP limit) In the GP limit the nor-
malized particle density in the many-body ground state converges to N |ϕGP(x)|2
and the momentum density to N |ϕ̃GP(p)|2.

6 The Rotating Case

The GP functional in the rotating case is

EGP[ϕ] =
∫

R3

{
|(i∇+ A(x))ϕ|2 + (V − 1

4Ω2r)|ϕ|2 + g|ϕ|4
}
dx. (35)

with corresponding GP equation

−(∇− iA(x))2ϕ(x) + V (x)ϕ(x) + 2g|ϕ(x)|2ϕ(x) = µϕ(x.) (36)

The infimum of (35) over normalized wave functions is denoted EGP
g,Ω. Contrary

to the nonrotating case the minimizer, i.e., the solution of (36), need not be
unique due to the appearance of vortices. The following basic results on the
relation to ground state of the quantum mechanical Hamiltonian (4) were proved
in [7] and [6]:

THEOREM (Energy asymptotics in GP limit, Ω fixed) If N →∞ with
g and Ω fixed, then

EQM(N, a,Ω)
NEGP

g,Ω

→ 1. (37)

THEOREM (BEC in GP limit, Ω fixed) If N → ∞ with g and Ω fixed,
then the convex hull of the projectors onto GP minimizers coincides with the

Exp. no XI— Bosons in Rapid Rotation
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possible N → ∞ limits of one particle density matrices of N -particle ground
states.

The technique of proof is by necessity rather different from the one originally
used in the non-rotating case. The reason is that the many-body wave functions
are no longer real valued (in general), and the phase factor prevents localization
of the system in small Neumann boxes as in the original proof.

Basic ingredients for the proof of the energetic lower bound in [6] are:

• Coherent states

• Dyson’s Lemma, leading to a ‘soft’ potential, but sacrificing the high fre-
quency part of the kinetic energy

• A bound on the three-particle density in the ground state, using a func-
tional integral representation.

The theorems above are stated for fixed coupling and rotational velocity.
What can be said if g → ∞ as N → ∞ and/or if Ω varies with N? For the
latter one should distinguish two cases:

• Anharmonic trap, V (x) ≥ (const. )|x|s with s > 2.

• Harmonic trap, V (x) quadratic, e.g. V (x) = 1
2Ωosc |x|2.

For harmonic traps it is necessary that Ω < Ωc =
√

2 Ωosc, but very interesting
phenomena, related to a fractional quantum Hall effect for bosons in the lowest
Landau level, are expected when Ω → Ωc. For recent results on this regime and
further references we refer to [8] and [9].

In the remainder of the lecture we shall discuss the case of an anharmonic
trap, where it is possible to take Ω → ∞. For simplicity we shall assume that
V is homogeneous of degree s > 2, i.e., V (λx) = λsV (x) for λ > 0.

The Thomas-fermi (TF) functional is obtained from the GP functional by
dropping the ‘magnetic’ kinetic energy term:

ETF [ρ] ≡
∫

R3

{
V ρ− 1

4
Ω2r2ρ+ gρ2

}
(38)

defined for nonnegative densities ρ(·), with the TF energy

ETF
g,Ω ≡ inf

{
ETF[ρ] : ‖ρ‖1 = 1

}
. (39)

There is a unique minimizer:

ρTF
g,Ω (x) =

1
2g

[
µTF

g,Ω +
1
4
Ω2r2 − V (x)

]
+

(40)

where [·]+ denotes the positive part and µTF
g,Ω is the TF chemical potential de-

termined by the normalization ||ρTF
g,Ω||1 = 1.

As g →∞ and/or Ω →∞ for N →∞, the TF energy and density give the
leading asymptotics of the (suitably scaled) many-body QM energy and density,
provided the gas remains dilute, i.e. ρ̄a3 → 0, where ρ̄ is the average density.

It is conveninet to define a scaled rotational velocity

ω ≡ g−
s−2

2(s+3) Ω (41)

and we distinguish the following three cases:

Jakob Yngvason
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• Slow rotation, ω � 1: The effect of the rotation is negligible to leading
order.

• Rapid rotation, ω ∼ 1: Rotational effects are comparable to those of
the interactions.

• Ultrarapid rotation, ω � 1: Rotational effects dominate.

The precise statement for the energy asymptotics is the following theorem
proved in [10]:

THEOREM (Leading QM Energy Asymptotics)
Assume that a3‖ρTF

g,Ω‖∞ → 0 as N →∞.
(i) If g →∞ and ω → 0 as N →∞, then

lim
N→∞

{
g−

s
s+3N−1EQM

g,Ω (N)
}

= ETF
1,0 (42)

(ii) If g →∞ and ω > 0 is fixed as N →∞, then

lim
N→∞

{
g−

s
s+3N−1EQM

g,Ω (N)
}

= ETF
1,ω (43)

(iii) If Ω →∞ and ω →∞ as N →∞, then

lim
N→∞

{
Ω−

2s
s−2N−1EQM

g,Ω (N)
}

= ETF
0,1 (44)

Sketch of proof:
1. Upper bound. For slow to rapid rotation (cases (i)-(ii)) we use a trial function
of the form

Ψ(x1, . . . ,xN ) =
N∏

i=1

ϕGP(xi)F (x1, . . . ,xN ) (45)

with a real valued function F and a GP minimizer ϕGP. Then

〈Ψ,HΨ〉
〈Ψ,Ψ〉

= NEGP + 4πgN
∫
|ϕGP

i |4

+ 〈Ψ,Ψ〉−1

∫ ∑
i

|∇iF |2 − 8πg|ϕGP
i |2F |2 +

∑
i<j

vij |F |2
 ∏

i

|ϕGP
i |2. (46)

For this computation the GP equation (36) for ϕGP has been used.
As a trial function for the last integral in (46) we can take a ‘Dyson wave

function’ [3] of the form

F (x1, . . . ,xN ) = F1(x1)F2(x1,x2) · · ·FN (x1, . . . ,xN ). (47)

Here Fi(x1, . . . ,xi) = f(minj<i |xi − xj |) and f is essentially the zero energy
scattering solution for the interaction potential v (assumed to be nonnegative,
radially symmetric and of short range.) Note: F is not symmetric, but this
is allowed because the quadratic form in F defined by the integral in (46) is
real valued [7]. The bound for this term is obtained in a similar way as for the
nonrotating case in [5]. The proof is then completed by bounding EGP in terms
of ETF and also the GP density in terms of the TF density.

Exp. no XI— Bosons in Rapid Rotation
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For ultrarapid rotations, ω →∞, the trial function has to be modified. One
can take

Ψ(x1, . . . ,xN ) =
N∏

i=1

ϕ(xi)F (x1, . . . ,xN ) (48)

with
ϕ(x) =

√
ρTF

ε (x) exp(iS(x)) (49)

where ρTF
ε is a regularized TF density and the phase factor S corresponds to a

‘giant vortex’ centered at the origin:

S(x) =
[
1
2r

2
ΩΩ

]
ϑ (50)

where [·] denotes the integer part and rΩ is the radius of the set MΩ where
V − Ω2r2/r is minimal. (This set is always a subset of a cylinder.)
2. Lower bound. In the case ω <∞ one first uses the diamagnetic inequality

|(i∇+ A)ϕ|2 ≥ |∇ϕ|2. (51)

Then one writes

V − ω2

4
r2 = V − ω2

4
r2 − µ+ µ ≥ −2ρTF + µ (52)

with the TF chemical potential µ = µTF
1,ω that satisfies

µ = ETF +
∫

(ρTF)2. (53)

We then have to bound the Hamiltonian

H̃ =
∑

i

(−∆i − 2g′ρTF
i ) +

∑
i<j

v′ij (54)

where the primes indicate suitable scalings of the coupling constant and the
interaction potential. A lowe bound on (54) is achieved by introducing Neumann
boxes inside which ρTF is approximately constant and using the basic bound for
the energy of n particles in a box of side length ` [4]:

EQM(n, `) ≥ 4πa(n/`3)(1− o(1)) (55)

where o(1) → 0 if an/`3 → 0 and n→∞. The result is a lower bound

−g′
∫

(ρTF)2(1 + o(1)) (56)

for H̃ and altogether the bound

NETF(1− o(1)) (57)

for the energy.
The case of ultrarapid rotations, ω →∞, is simpler than the case of finite ω

since in the lower bound for the energy we can ignore the (positive) interaction
altogether. Namely, with ΨN a normalized ground state, we can write

Ω−
2s

s−2N−1 〈ΨN ,HΨN 〉 = CΨN
+ inf

R3
W (58)

Jakob Yngvason
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with W (x) = V (x)− r2/4 and

CΨN
= Ω−

2s
s−2 ‖[i∇+A]ΨN‖22 +

∫
R3

ρ̂TF(~x)
(
W (x)− inf

R3
W

)
dx+

+ Ω−
2s

s−2N−1
∑

1≤i<j≤N

〈ΨN , v(|xi − xj |)ΨN 〉 . (59)

Since the interaction potential v is by assumption nonnegative the same holds
for CΨN

, and infW = ETF
0,1 .

What about the subleading terms beyond the TF term? This is question
is highly nontrivial already in the GP context, i.e., ignoring the many-body
aspects. The following has been proved in [11] for a two-dimensional GP theory
in a ‘flat’ trap (corresponding to s = ∞), or equivalently, in a 3D cylinder (‘beer
can’) with Neumann boundary conditions:

THEOREM (Energy to subleading order)
If log g � Ω � g1/2, then

EGP = ETF + (Ω/2) log(Ω/g)(1 + o(1)).

If g1/2 . Ω � g/| log g| then

EGP = ETF + (Ω/2) log(g1/2)(1 + o(1)).

7 Conclusions

For rapidly rotating, dilute Bose gases in anharmonic traps the many-body
leading energy and density asymptotics as g and/or Ω → ∞ can be calculated
exactly from a simple density functional. The subleading order has been calcu-
lated within GP theory. The following (difficult) problems are open:

• Derive the subleading order of the energy from the many-body Hamilto-
nian.

• Prove BEC into GP minimizers when g and Ω are not fixed.
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