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ANISOTROPIC INVERSE PROBLEMS AND
CARLEMAN ESTIMATES

DAVID DOS SANTOS FERREIRA

Abstract. This note reports on recent results on the anisotropic
Calderón problem obtained in a joint work with Carlos E. Kenig,
Mikko Salo and Gunther Uhlmann [8]. The approach is based
on the construction of complex geometrical optics solutions to the
Schrödinger equation involving phases introduced in the work [12]
of Kenig, Sjöstrand and Uhlmann in the isotropic setting. We char-
acterize those manifolds where the construction is possible, and
give applications to uniqueness for the corresponding anisotropic
inverse problems in dimension n ≥ 3.
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1. Introduction

In a foundational paper of 1980 [6], A. Calderón asked whether it
is possible to determine the electrical conductivity of a body by mak-
ing current and voltage measurements at the boundary. This inverse
problem, also known as Electrical Impedance Tomography (EIT), has
in particular applications to medical imaging. The question has been
extensively studied for isotropic conductivities, but the case where the
conductivities depend on the direction is also of great interest. For
instance muscle tissues may have different conductivities in the trans-
verse and longitudinal directions.

The problem can be formulated in mathematical terms as follows.
Let Ω ⊂ Rn be a bounded open set with smooth boundary, the con-
ductivity in the anisotropic case is represented by a smooth symmetric
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positive matrix γ = (γjk)1≤j,k≤n depending smoothly on x ∈ Ω. If there
are no sources or sinks of current in Ω, the potential u on Ω induced by
a voltage potential f ∈ H

1
2 (∂Ω) on the boundary solves the Dirichlet

problem 
∂

∂xj

(
γjk

∂u

∂xk

)
= 0 in Ω,

u = f on ∂Ω.

Here and throughout this note we are using Einstein’s summation con-
vention: repeated indices in lower and upper position are summed. The
boundary measurements are given by the Dirichlet-to-Neumann map,
defined by

Λγf = γjk
∂u

∂xj
νk

∣∣∣
∂Ω

where ν = (ν1, . . . , νn) denotes the unit outer normal to ∂Ω and u is
the solution of the Dirichlet problem. The inverse problem is whether
one can determine γ by knowing Λγ. In the isotropic case, the inverse
problem is restricted to conductivities which are multiple of the identity
γjk = c δjk.

Unfortunately, the Dirichlet-to-Neumann map Λγ doesn’t determine
γ uniquely, an observation due to L. Tartar. Indeed, if ψ : Ω → Ω is a
diffeomorphism which is the identity on the boundary ψ|∂Ω = Id then
we have

Λγ̃ = Λγ

where

γ̃ ◦ ψ =
1

| detψ′|
tψ′ γ ψ′.

The question is whether this is the only obstruction to unique deter-
mination of the conductivity. In the 2-dimensional case, as was shown
by Sylvester [30], the anisotropic conductivity problem can be reduced
to the isotropic one by using isothermal coordinates. In this note, we
will therefore be interested in the case n ≥ 3. It is noteworthy that the
2 and higher dimensional problems are quite different in many aspects.
Some evidence of this fact will be given in section 3.

Let us review some of the known results and begin by the isotropic
case. In [6] A. Calderón studied the linearized problem and proved
uniqueness for conductivities close to constants. Then R. Kohn and
M. Vogelius [14] proved that the knowledge of the Dirichlet-to-Neumann
map determines the Taylor expansion of the conductivity at the bound-
ary, settling the case of analytic conductivities. It was J. Sylvester and
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G. Uhlmann who finally solved Calderón’s problem in [31] in dimen-
sion n ≥ 3. Their approach is based on the observation that the con-
ductivity problem can be reduced to a similar inverse problem on the
Schrödinger operator

−∆ + q with q =
∆
√
c√
c

and on the construction of solutions

e
1
h
〈x,ζ〉(1 + r(x, ζ, h)), ζ ∈ Cn, ζ2 = 0(1.1)

to the Schrödinger equation by means of complex geometrical optics.
Finally in [20], A. Nachman proved uniqueness for the conductivity
problem in dimension n = 2. His result was recently extended to L∞

conductivities by K. Astala and L. Päivärinta [3] in the isotropic case
and by K. Astala, M. Lassas and L. Päivärinta [2] in the anisotropic
case. In dimension n ≥ 3, the best regularity for which uniqueness has
been obtained so far is W

3
2
,∞, a result of L. Päivärinta, A. Panchenko

and G. Uhlmann [22]. The problem is still open for less regular con-
ductivities.

In dimension n ≥ 3, the anisotropic conductivity problem is of ge-
ometrical nature. Let (M, g) be a smooth compact oriented manifold
with boundary. Consider the Dirichlet problem{

∆gu = 0 in M,

u = f on ∂M.

The Dirichlet-to-Neuman map Λg maps any function f ∈ H 1
2 (∂M) on

the boundary into the normal derivative of the corresponding solution
of the Dirichlet problem

Λgf = ∂νu
∣∣
∂M

= gjkνk
∂u

∂xj

∣∣∣
∂M
.

The inverse problem is to recover g from Λg. There is a similar ob-
struction to uniqueness as in the Calderón problem since

Λψ∗g = Λg(1.2)

if ψ : M →M is a diffeomorphism which is the identity on the bound-
ary. The relation between the conductivity problem and the geometri-
cal problem is given by

gjk = (det γ)
1

n−2γjk.

In [17], J. Lee and G. Uhlmann proved the analogue of Kohn and
Vogelius’ results, i.e. that the knowledge of the Dirichlet-to-Neumann
map determines the Taylor expansion of the metric at the boundary. It
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is usually referred to this result as boundary determination. Boundary
determination implies that (1.2) is the only obstruction to the unique
determination of the metric for real-analytic manifolds. This was first
proved in dimension1 n ≥ 3 for strongly convex and simply connected
manifolds. In [16], M. Lassas and G. Uhlmann removed the remaining
topological assumptions on the manifold. Einstein manifolds are real-
analytic in the interior and it was conjectured in [16] that Einstein man-
ifolds are determined, up to isometry from the Dirichlet-to-Neumann
map. This was recently proven by C. Guillarmou and A. Sa Barreto
[9]. These results on the anisotropic Calderón problem are all based on
the analyticity of the metric. The recovery of the metric in the interior
of M proceeds by analytic continuation, using the knowledge of Taylor
series of g at the boundary. Thus these results do not give information
from the interior of the manifold.

On the other hand, in the isotropic case (where g is a conformal
multiple of the Euclidean metric), many results are available even for
non-smooth coefficients. These results are based on special complex ge-
ometrical optics solutions to elliptic equations (1.1) introduced in [31].
However, complex geometrical optics solutions have not been available
in the anisotropic case, which has been a major difficulty in the study
of that problem. The purpose of this work was to try to generalize this
approach (described in more details in section 3) to the anisotropic
case, and to find out when the construction is possible.

2. Uniqueness results

In this section we state the main uniqueness results obtained in [8] in
collaboration with Carlos Kenig, Mikko Salo and Gunther Uhlmann.
Let us first introduce the class of manifolds for which we can prove
uniqueness results in inverse problems. For this we need the notion of
simple manifolds [26].

Definition 2.1. A manifold (M, g) with boundary is simple if ∂M is
strictly convex, and for any point x ∈ M the exponential map expx is
a diffeomorphism from some closed neighborhood of 0 in TxM onto M .

Definition 2.2. A compact manifold with boundary (M, g), of dimen-
sion n ≥ 3, is admissible if it is conformal to a submanifold with
boundary of R× (M0, g0) where (M0, g0) is a compact simple (n− 1)-
dimensional manifold.

Examples of admissible manifolds include the following:

1See [8] for an account of the corresponding results in dimension 2.
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1. Bounded domains in Euclidean space, in the sphere minus a
point, or in hyperbolic space. In the last two cases, the manifold
is conformal to a domain in Euclidean space via stereographic
projection.

2. More generally, any domain in a locally conformally flat man-
ifold is admissible, provided that the domain is appropriately
small. Such manifolds include locally symmetric 3-dimensional
spaces, which have parallel curvature tensor so their Cotton
tensor vanishes.

3. Any bounded domain M in Rn, endowed with a metric which
in some coordinates has the form

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

with c > 0 and g0 simple, is admissible.
4. The class of admissible metrics is stable under C2-small pertur-

bations of g0.

The first inverse problem involves the Schrödinger operator

Lg,q = −∆g + q,

where q is a smooth complex valued function on (M, g). We make the
standing assumption that 0 is not a Dirichlet eigenvalue of Lg,q in M .
Then the Dirichlet problem{Lg,qu = 0 in M,

u = f on ∂M

has a unique solution for any f ∈ H1/2(∂M), and we may define the
Dirichlet-to-Neumann map

Λg,q : f 7→ ∂νu|∂M .
Let us point out the gauge invariance of the Dirichlet-to-Neumann map
under conformal change of metrics

Λg,q = Λc−1g,c(q−qc) where qc = c
n−2

4 ∆g

(
c−

n−2
4

)
.(2.1)

Given a fixed admissible metric, one can determine the potential q from
boundary measurements.

Theorem 2.3. Let (M, g) be admissible, and let q1 and q2 be two
smooth functions on M . If Λg,q1 = Λg,q2, then q1 = q2.

This result was known previously in dimensions n ≥ 3 for the Eu-
clidean metric [31] and for the hyperbolic metric [11]. We remark that
in the two dimensional case global uniqueness is not known even for
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the Euclidean metric. It is only known for potentials coming from
conductivities [20] or for a generic class of potentials [28].

We obtain similar uniqueness results for the Schrödinger operator in
the presence of a magnetic field. Let A be a smooth complex valued
1-form on M (the magnetic potential), and denote

Lg,A,q = dĀ
∗dA + q,

where dA = d+iA∧ : C∞(M) → Ω1(M) and dA
∗ is the formal adjoint2

of dA. As before, we assume throughout that 0 is not a Dirichlet
eigenvalue of Lg,A,q in M , and consider the Dirichlet problem{Lg,A,qu = 0 in M,

u = f on ∂M.

We define the Dirichlet-to-Neumann map as the magnetic normal de-
rivative

Λg,A,q : f 7→ dAu(ν)|∂M .
This map is invariant under gauge transformations of the magnetic
potential:

Λg,A+dψ,q = Λg,A,q

for any smooth function ψ which vanishes on the boundary. Thus, it
is natural to expect to recover the magnetic field dA and the electric
potential q from the map Λg,A,q.

Theorem 2.4. Let (M, g) be admissible, let A1, A2 be two smooth 1-
forms on M and let q1, q2 be two smooth functions on M . If Λg,A1,q1 =
Λg,A2,q2, then dA1 = dA2 and q1 = q2.

This result was proved in [21] for the Euclidean metric. The proof
in [8] is closer to [7] which considers partial boundary measurements.
See [24] for further references on the inverse problem for the magnetic
Schrödinger operator in the Euclidean case.

The next result considers the anisotropic Calderón problem. Under
the additional condition that the metrics are in the same conformal
class, one expects uniqueness since the only diffeomorphism that leaves
a conformal class invariant is the identity. In dimensions n ≥ 3 this
was known earlier for metrics conformal to the Euclidean metric [31],
conformal to the hyperbolic metric [11], and analytic metrics in the
same conformal class [18] (based on [17]).

Theorem 2.5. Let (M, g1) and (M, g2) be two admissible Riemannian
manifolds in the same conformal class. If Λg1 = Λg2, then g1 = g2.

2For the sesquilinear inner product induced by the Hodge dual on the exterior
form algebra.
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Proof. We want to show that if (M, g) is admissible and c is smooth
and positive and if Λcg = Λg then c = 1. Boundary determination
implies c|∂M = 1 and ∂νc|∂M = 0, and then the assumption and (2.1)
imply

Λcg,0 = Λg,0 = Λcg,q,

where q = −∆g(c
n−2

4 )/c
n+2

4 . This is the analogue of Sylvester and
Uhlmann’s observation according to which the conductivity problem
may be solved by considering the inverse problem on the Schrödinger
equation. We conclude from Theorem 2.3 that q = 0, so ∆g(c

n−2
4 ) = 0

in M . Since c
n−2

4 = 1 on ∂M , uniqueness of solutions for the Dirichlet
problem shows that c ≡ 1. �

3. The isotropic Calderón problem

The purpose of this section is to describe the method developed in
the isotropic case (and in dimension n ≥ 3) to obtain uniqueness in the
inverse problem for the Schrödinger equation.

The first step is to relate the information provided by the Dirichlet-
to-Neumann map to the interior of the domain. This can be done by
an integration by parts: if u1 and u2 are solutions of the equations
−∆uj + qjuj = 0 for j = 1, 2 then we have∫

Ω

(q1 − q2)u1u2 dx =

∫
∂Ω

(Λq1 − Λq2)u1u2 ds.(3.1)

The aim is therefore to construct a family of solutions of the Schrödinger
equation which is rich enough so that the cancellation∫

Ω

(q1 − q2)u1u2 dx = 0

implies q1 = q2. The use of solutions constructed by complex geomet-
rical optics

uj = e
1
h
〈x,ζj〉

(
1 + hrj(x, ζj)

)
, ζj ∈ Cn ζ2

j = 0

with ‖rj‖L2 = O(1) if |Re ζj| = 1, has proved to be successful.
Suppose that one is able to construct such solutions then one has∫

Ω

(q1 − q2)e
1
h
〈x,ζ1+ζ2〉 dx = O(h)(3.2)

if Re(ζ1 + ζ2) = 0. It seems natural after passing to the limit in (3.2)
to try to obtain information on the Fourier transform of the function
1Ω(q1 − q2). This leads to the following choice for ζj

ζ1 = η + i
(h

2
ξ + τ

)
, ζ2 = −η + i

(h
2
ξ − τ

)
,
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so that taking the limit when h tends to 0 in (3.2) gives

F
(
1Ω(q1 − q2)

)
(ξ) = 0

hence q1 = q2 on Ω. The constraints ζ2
j = 0 and |Re ζj| = 1 give∣∣∣h

2
ξ ± τ

∣∣∣ = |η| = 1,
h

2
ξ ± τ ⊥ η(3.3)

which implies that ξ, η and τ are non-vanishing orthogonal vectors.
This construction is therefore only possible when n ≥ 3. Note that the
choice of the spectral parameters ζ1 and ζ2 is done in such a way that
the exponential growth of the product u1u2 is canceled since

Re(〈x, ζ1〉+ 〈x, ζ2〉) = 0.(3.4)

To sum up, the method consists in

(1) Constructing solutions of the Schrödinger equation by means of
complex geometrical optics, and obtain estimates on the cor-
rection rj.

(2) Passing to the limit when h tends to 0 in the integration by parts
formula (3.1), and use the injectivity of the Fourier transform.

The second part is somewhat flexible, and there are some alternative
arguments using the Radon transform, or microlocal analysis (for in-
stance in the case where the Dirichlet-to-Neumann map is only known
on part of the boundary). In the anisotropic problem, we use an alter-
native argument (see final section).

We now proceed to the construction of the correction rj. One way
is to use Carleman estimates. We will use the following semi-classical
Sobolev norm

‖u‖H1
scl

=
(
‖u‖2

L2 + ‖h∇u‖2
L2

) 1
2 .

Theorem 3.1. Let q be a bounded function on Ω. There exist constants
C > 0 and h0 ∈ (0, 1) such that for all ξ ∈ Sn−1, h ≤ h0 and all
u ∈ C∞

0 (Ω) the following estimate holds

‖e
1
h
〈x,ξ〉u‖H1

scl
≤ Ch−1‖e

1
h
〈x,ξ〉h2(∆− q)u‖L2 .(3.5)

Proof. Without loss of generality we can assume q = 0, since a pertur-
bation of the Carleman inequality by zero order terms yields an error
which can be absorbed in the left-hand side of the inequality provided
h is small enough. Consider the phase

ϕ̃ = 〈x, ξ〉+
h

2
〈x, ξ〉2

and the conjugated operator

Pϕ̃ = −e
ϕ̃
hh2∆e−

ϕ̃
h .

David Dos Santos Ferreira
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It suffices to prove the a priori estimate

‖v‖H1
scl
≤ C1h

−1‖Pϕ̃v‖L2

since on Ω× Sn−1

e
1
h
〈x,ξ〉 ≤ e

1
2
〈x,ξ〉2e

1
h
〈x,ξ〉 ≤ C2 e

1
h
〈x,ξ〉.

One has

Pϕ̃ = h2D2 − (1 + h〈x, ξ〉)2︸ ︷︷ ︸
=A

+ 2i(1 + h〈x, ξ〉)〈ξ, hD〉+ h2︸ ︷︷ ︸
=iB

where A and B are two selfadjoint operators, and also

‖Pϕ̃u‖2
L2 = ‖Au‖2

L2 + ‖Bu‖2
L2 + i([A,B]u, u)L2 .

A computation gives

i[A,B] = 4h2
(
(1 + h〈x, ξ〉)2 + 〈ξ, hD〉2

)
thus we get

i([A,B]u, u)L2 = 4h2‖(1 + h〈x, ξ〉)u‖2
L2 + 4h2‖〈ξ, hD〉u‖2

L2

≥ 2h2‖u‖2
L2

if h is small enough. Therefore we get ‖Pϕ̃u‖2
L2 ≥ 2h2‖u‖2

L2 .
We can furthermore control the gradient of u since we have

‖h∇u‖2
L2 = (Au, u)L2 + ‖(1 + h〈x, ξ〉)u‖2

L2

≤ ‖Au‖2
L2 + 3‖u‖2

L2 ≤ ‖Pϕ̃u‖2
L2 + 3‖u‖2

L2

if h is small enough. Finally we obtain

‖h∇u‖2
L2 + ‖u‖2

L2 ≤ (1 + h−2)‖Pϕ̃u‖2
L2 + 3‖u‖2

L2

≤ 4h−2‖Pϕ̃u‖2
L2 .

This completes the proof. �

The Carleman estimate can easily be modified into

‖e
1
h
〈x,ξ〉u‖L2 ≤ Ch−1‖e

1
h
〈x,ξ〉h2(∆− q)u‖H−1

scl
(3.6)

and classical arguments involving the Hahn-Banach theorem show that
the equation

e−
1
h
〈x,ξ〉h2(∆− q)

(
e

1
h
〈x,ξ〉u

)
= w(3.7)

has a solution u ∈ H1(Ω) satisfying ‖u‖H1
scl(Ω) ≤ Ch−1‖w‖L2(Ω). Now if

we take w = h2ei〈x,η〉/hq and denote r = h−1e−i〈x,η〉/hu, where u solves
(3.7), then we have

h2(∆− q)
(
e

1
h
〈x,ξ+iη〉(1 + hr

))
= 0
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and ‖r‖H1
scl(Ω) ≤ C‖q‖L2(Ω).

This ends the proof of the uniqueness in the inverse problem on
the Schrödinger equation. Note that only q ∈ L∞(Ω) is needed in the
method. The question is to what extent this method can be generalized
to the anisotropic setting.

4. Limiting Carleman weights

Let h ∈ (0, 1] be a small parameter, consider the semiclassical Laplace-
Beltrami operator P = −h2∆g. If ϕ is a smooth real-valued function
on M , consider the conjugated operator

Pϕ = eϕ/hPe−ϕ/h(4.1)

and denote pϕ its semiclassical principal symbol.
We want to construct complex geometrical solutions

u = e−
1
h
(ϕ+iψ)(a+ hr)(4.2)

of the Schrödinger equation (−∆g + q)u = 0. Given a function ϕ,
the construction amounts to looking for solutions of the conjugated
equation

Pϕv + h2qv = 0

of the form v = e−
i
h
ψ(a + hr) and then applying the usual WKB

method. This includes solving the eikonal equation

pϕ(x, dψ) = 0

and a transport equation on a. Note that Pϕ is not a self-adjoint
operator and that the symbol pϕ is complex valued. The existence of
a solution ψ to the eikonal equation implies

{pϕ, pϕ}(x, dψ) = 0.(4.3)

It seems natural to ask for the conjugated operator Pϕ to be locally
solvable in the semiclassical sense, in order to find the correction term r
and go from an approximate solution to an exact solution. This means
that the principal symbol pϕ of the conjugated operator needs to satisfy
Hörmander’s local solvability condition

1

i
{pϕ, pϕ} ≤ 0 when pϕ = 0.

Since applications of the complex geometrical optics construction to
inverse problems require to construct solutions with both exponential
weights eϕ/h and e−ϕ/h in order to cancel possible exponential behaviour
in the product of two solutions (see for instance the remark before (3.4)
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in section 3) and since p−ϕ = pϕ, it seems natural to impose the bracket
condition

{pϕ, pϕ} = 0 when pϕ = 0.

Working with weights ϕ satisfying this condition is a way to ensure
that both the integrability condition (4.3) for the eikonal equation and
the solvability condition on P±ϕ are fulfilled.

We define such weights as being limiting Carleman weights. Here it
is natural to work with open manifolds.

Definition 4.1. A real-valued smooth function ϕ in an open manifold
(M, g) is said to be a limiting Carleman weight if it has non-vanishing
differential, and if it satisfies on T ∗M the Poisson bracket condition

{pϕ, pϕ} = 0 when pϕ = 0,(4.4)

where pϕ is the semiclassical principal symbol of the conjugated Laplace-
Beltrami operator (4.1).

This notion was introduced in [12], where the limiting Carleman
weight ϕ = log |x| was used in the isotropic context to prove that
the knowledge of the Dirichlet-to-Neumann map, measured on possibly
small subsets of the boundary, determines q ∈ L∞(Ω).

The existence of limiting Carleman weights is a property which only
depends on conformal classes of geometries. The following result is a
characterization of those Riemannian manifolds which admit limiting
Carleman weights.

Theorem 4.2. If (M, g) is an open manifold having a limiting Car-
leman weight, then some conformal multiple of the metric g admits a
parallel unit vector field. For simply connected manifolds, the converse
is also true.

Locally, a manifold admits a parallel unit vector field if and only
if it is isometric to the product of an Euclidean interval and another
Riemannian manifold. This is an instance of the de Rham decomposi-
tion theorem or is easy to prove directly. Thus, if (M, g) has a limiting
weight ϕ, one can choose local coordinates in such a way that ϕ(x) = x1

and

g(x1, x
′) = c(x)

(
1 0
0 g0(x

′)

)
,

where c is a positive conformal factor. Conversely, any metric of this
form admits ϕ(x) = x1 as a limiting weight. Note that in the case
n = 2, limiting Carleman weights in (M, g) are exactly the harmonic
functions with non-vanishing differential.
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The following lemma gives some geometrical properties of limiting
Carleman weights. The Levi-Civita connection on (M, g) is denoted by
D and D2ϕ is the Hessian of the function ϕ.

Lemma 4.3. A function ϕ with non-vanishing differential is a limiting
Carleman weight if and only if |∇ϕ|−2∇ϕ is a conformal Killing field.
In particular, if ϕ is a limiting Carleman weight then the level sets of
ϕ in (M, g) are totally umbilical submanifolds with normal |∇ϕ|−1∇ϕ,
with principal curvatures equal to

µ = −|∇ϕ|−3D2ϕ(∇ϕ,∇ϕ).

Umbilical hypersurfaces are known for the Euclidean space: they are
parts of either hyperplanes or hyperspheres. Using this information,
it is possible to determine all the limiting Carleman weights for the
Euclidean metric.

Theorem 4.4. Let Ω be an open subset of Rn, n ≥ 3, and let e be the
Euclidean metric. The limiting Carleman weights in (Ω, e) are locally
of the form

ϕ(x) = aϕ0(x− x0) + b

where a ∈ R \ {0} and ϕ0 is one of the following functions:

〈x, ξ〉, arg〈x, ω1 + iω2〉,

log |x|, 〈x, ξ〉
|x|2

, arg
(
eiθ(x+ iξ)2

)
, log

|x+ ξ|2

|x− ξ|2

with ω1, ω2 orthogonal unit vectors, θ ∈ [0, 2π) and ξ ∈ Rn \ {0}.

Limiting Carleman weights can be used to prove Carleman estimates.

Theorem 4.5. Let (U, g) be an open Riemannian manifold and (M, g)
be a smooth compact Riemannian submanifold with boundary such that
M b U . Suppose that ϕ is a limiting Carleman weight on (U, g).
Let q be a smooth function on M . There exist two constants C > 0
and h0 ∈ (0, 1] such that for all functions u ∈ C∞

0 (intM) and all
0 < h ≤ h0, one has the inequality

‖e
ϕ
hu‖H1

scl(M) ≤ Ch‖e
ϕ
h (∆− q)u‖L2(M).(4.5)

A direct application of the commutator method will not be enough
to get an a priori estimate assuming the bracket condition (4.4); one
needs to use convexification. This classical argument consists in taking
a modified weight f ◦ ϕ where f is a convex function chosen so that
the bracket in (4.4) becomes positive. The proof is similar to the one
given in the isotropic setting.
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We would like to express our deepest thanks to Johannes Sjöstrand
who made substantial contributions to the paper [8]. His unpublished
notes on characterizing limiting Carleman weights in the Euclidean case
are the basis for the study described in this section. In particular he
proved that the level sets of limiting Carleman weights in the Euclidean
case are either hyperspheres or hyperplanes.

5. Sketch of proof for the uniqueness

5.1. Complex geometrical solutions. Let (M, g) be an admissible
Riemannian manifold. Following the program described in section 3 in
the isotropic setting, we first want to construct the complex geometrical
optics solutions (4.2). Suppose that ϕ is a limiting Carleman weight
on an open Riemannian manifold (U, g) containing (M, g), the eikonal
equation reads

|∇ψ|2 = |∇ϕ|2, 〈∇ϕ,∇ψ〉 = 0.(5.1)

and the transport equation

2(∇ϕ+ i∇ψ)a+ ∆(ϕ+ iψ)a = 0.(5.2)

We will work in special coordinates to solve both equations.
We know that (M, g) is conformally embedded in R × (M0, g0) for

some compact simple (n − 1)-dimensional (M0, g0). Assume, after re-
placing M0 with a slightly larger simple manifold if necessary, that for
some simple (U, g0) b (intM0, g0) one has

(M, g) b (R× intU, g) b (R× intM0, g).

On the manifold R×M0 the metric g has the form

g(x) = c(x)

(
1 0
0 g0(x

′)

)
,

where c > 0 and g0 is simple. We choose the limiting Carleman weight
to be ϕ(x) = x1.

In these coordinates one has

∇ϕ =
1

c

∂

∂x1

and |∇ϕ| = 1

c

thus the eikonal equation now reads

|∇ψ| = 1

c
, ∂x1ψ = 0.

Under the given assumptions on (M, g), there is an explicit construction
for ψ. Let ω ∈ U be a point such that (x1, ω) /∈ M for all x1. Take
(r, θ) to be polar normal coordinates in (U, g0) with center ω, that is
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x′ = expUω (rθ) where r > 0 and θ ∈ Sn−2. In these coordinates (which
depend on the choice of ω) the metric has the form

g(x1, r, θ) = c(x1, r, θ)

 1 0 0
0 1 0
0 0 m(r, θ)

 ,

where m is a smooth positive definite matrix. A solution of the eikonal
equation is ψ(x) = r = dU(x′, ω).

With this choice of ψ and in these coordinates (x1, r, θ) one has

ϕ+ iψ = x1 + ir and ∇ϕ+ i∇ψ =
2

c
∂

with

∂ =
1

2

( ∂

∂x1

+ i
∂

∂r

)
.

The transport equation now reads

4∂a+
(
∂ log

|g|
c2

)
a = 0.

The function
a = |g|−1/4c1/2a0(x1, r)b(θ)

is a solution provided ∂a0 = 0.
As in the isotropic case, the Carleman estimates ensures the solvabil-

ity of the conjugated equation and the construction of the correction
term r. This completes the construction of complex geometrical optics
solutions of the Schrödinger equation.

5.2. The geodesical ray transform. As in the isotropic setting, an
integration by parts gives∫

M

(q1 − q2)u1u2 dv =

∫
∂M

(Λq1 − Λq2)u1u2 ds = 0(5.3)

for any solution uj ∈ H1(M) of −∆guj + qjuj = 0. Following the first
part of this section, we take two solutions of the form

u1 = e−
1
h
(x1+ir)

(
|g|−1/4c1/2eiλ(x1+ir)b(θ) + hr1

)
,

u2 = e
1
h
(x1+ir)

(
|g|−1/4c1/2 + hr2

)
,

where λ is a real number and ‖rj‖H1
scl(M) = O(1). Note that contrary to

the isotropic case, we choose to kill the oscillations eiψ/h in the product
u1u2; instead we will use the freedom in the choice of the amplitudes.
Using these solutions in (5.3) and letting h tend to 0 gives∫

R

∫∫
Mx1

eiλ(x1+ir)(q1 − q2)c(x1, r, θ)b(θ) dr dθ dx1 = 0,
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with Mx1 = {(r, θ) ; (x1, r, θ) ∈M}. The functions qj can be extended
to U by boundary determination. Since the former integral is zero for
any smooth function b this implies∫

e−λr
( ∫ ∞

−∞
eiλx1(q1 − q2)c(x1, r, θ) dx1︸ ︷︷ ︸

=Qλ(r,θ)

)
dr = 0.

By analiticity of the Fourier transform if we can prove that Qλ = 0
for λ small enough then we are done. But we have∫

γ

e−λrQλ(γ(r)) dr = 0

for all the geodesics γ in U issued from the point ω. Varying ω we
obtain that the attenuated geodesic ray transform of Qλ

IλQλ(x
′, ξ′) =

∫ τ(x′,ξ′)

0

e−λtQλ(γx′,ξ′(t)) dt

vanishes identically. Here (x′, ξ′) is an inward pointing vector of M0

(x′, ξ′) ∈ TM0, x′ ∈ ∂M0, |ξ′| = 1, 〈ξ′, ν0(x
′)〉 < 0,

(ν0 is the outer unit normal vector to ∂M0), γx′,ξ′ denotes the geodesic
starting from γ(0) = x′ with speed γ̇(0) = ξ′ and τ(x′, ξ′) is the time
when γx′,ξ′ exits M0. To finish the proof it suffices therefore to prove
the injectivity of Iλ for λ small.

We denote

∂+SM0 = {(x′, ξ′) ∈ TM0, x
′ ∈ ∂M0, |ξ′| = 1, 〈ξ′, ν0(x

′)〉 < 0}

the set of inward pointing vectors. The injectivity of the geodesic ray
transform is given in the following theorem.

Theorem 5.1. Let (M0, g0) be a compact simple manifold with smooth
boundary. There exists ε > 0 such that for all λ satisfying |λ| ≤ ε if

Iλf(x′, ξ′) = 0

for all (x′, ξ′) ∈ ∂+SM0, then f = 0.

This result is proved by a perturbation argument (which explains
why the parameter λ has to be taken small) from the well known [1],
[19], [26] injectivity of the geodesic ray transform I = I0. In the inverse
problem for the magnetic Schrödinger equation, we need a similar result
for the geodesic transform acting on 1-forms.
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