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ON THE GLOBAL WELL-POSEDNESS OF THE BOUSSINESQ SYSTEM WITH
ZERO VISCOSITY

TAOUFIK HMIDI
(JOINT WORK WITH S. KERAANI)

ABSTRACT. In this paper we prove the global well-posedness of the two-dimensional
Boussinesq system with zero viscosity for rough initial data.

1. INTRODUCTION

This paper deals with the global well-posedness for the two-dimensional Boussinesq sys-
tem,
01v+v-Vu—vAv+ Vi = Oey,
(Byx) 010 +v-VO —xAO =0,
v divo =0,
U|t=0 = UO, 9|t=0 = 90.
Here, e, denotes the vector (0,1), v = (v1,v2) is the velocity field, 7t the scalar pressure
and 0 the temperature. The coefficients v and x are assumed to be positive; v is called the
kinematic viscosity and x the molecular conductivity.
In the case of strictly positive coefficients v and x both velocity and temperature have
sufficiently smoothing effects leading to the global well-posedness of smooth solutions.
This was proved by numerous authors in various function spaces (see [4, 9, 15] and the
references therein).
Forv > 0and x = 0 the problem of global well-posedness is well understood. In [5], Chae
proved global well-posedness for initial data (v°,6°) lying in Sobolev spaces H® x H?,
with s > 2 (' see also [14]). This result has been recently improved by Keraani and the
author [12] to initial data in H® x H®, with s > 0. However we give only a global existence
result without uniqueness in the energy space L? x L2. In a joint work with Abidi [1], we
prove the uniqueness for data belonging to L? N %’;/11 X 938/1. More recently Danchin and
Paicu [8] have proved the uniqueness in the energy space.
Our goal here is to study the global well-posedness of the system (By ), with « > 0. First
of all, let us recall that the two-dimensional incompressible Euler system, corresponding
to 8° = 0, is globally well-posed in the Sobolev space H®, with s > 2. This is due to
the advection of the vorticity by the flow: there is no accumulation of the vorticity and
thus there is no finite-time singularities according to B-K-M criterion [3]. In critical spaces

. 7+ o . . L
like 95’;’ , thesituation is more complicate because we do not know if the B-K-M criterion

works or not. In [16], Vishik proved that Euler system is globally well-posed in these
critical Besov spaces. He used for the proof a new logarithmic estimate taking advantage
of the particular structure of the vorticity equation in dimension two. For the Boussinesq
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system (B ), Chae proved in [5] the global well-posedness for initial data v°,6° lying
in Soboloev space H®, with s > 2. We intend here to improve this result for rough initial
data. Our results reads as follows.

1+2
Theorzem L1 Let p € [Loo[, o° € #,," be a divergence-free vector field of R* and 6° €
—142
%p’1+p NL", with2 < r < oo. There exists a unique global solution (v,0) to the Boussinesq

system (Bo, ), x > 0 such that

1+2
UE(K(R%%J']) and 60 € L. (Ry; #

145 Ly AT L5 L
pl NL ) N Lloc(IR-F; %P,l N '%)r,oo)'
The situation in the case p = +o0 is more subtle since Leray’s projector is not continu-
ous on L* and we overcome this by working in homogeneous Besov spaces leading to
more technical difficulties. Before stating our result we introduce the following sub-space
of L*:

ue B o |ullas = ulls + A 1ullz < co.

We notice that #* is a Banach space and independent of the choice of the dyadic partition
of unity. For the definition of Besov spaces and the frequency localization operator A_
we can see next section. Our second main result is the following:

Theorem 1.2. Let v° € B, |, with zero divergence and 6° € 2% . Then there exists a unique

global solution (v, 0) to the Boussinesq system (B ), x > 0 such that
v€C(Ry; BL) and 6 € Lo (Ry; B°) NLL (R B2 ).

For the proofs it suffices to estimate the quantities | Vo(t)||1~ and ||V0|| pig~- This will
be done by using some logarithmic estimates combined with some smoothing effects.
Theorem 3.1 is very crucial and it describes new smoothing effects for the transport-
diffusion equation governed by a vector field which is not necessary Lipschitz but only
quasi-lipschitz.

The rest of this paper is organized as follows. In section 2, we recall some preliminary
results on Besov spaces. Section 3 is devoted to the proof of smoothing effects. In section
4 and 5 we give respectively the proof of Theorem 1.1 and 1.2. We give in the appendix a
commutator lemma.

2. NOTATION AND PRELIMINARIES

Throughout this paper we shall denote by C some real positive constant which may be
different in each occurrence and by Cy a real positive constant depending on the norms
of the initial data.
Let us introduce the so-called Littlewood-Paley decomposition and the correspond-
ing cut-off operators. There exist two radial positive functions y € Z(RY) and ¢ €
2(R%\{0}) such that

D) x(0)+ ) ¢2778) =1 Vq=1,supp xNsupp ¢p(277) = 2

720
ii) supp @(277-) Nsupp ¢(271-) = @, if |[p —q| > 2.
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Exp. n°® XXIV— On the global well-posedness of the Boussinesq system with zero viscosity

For every v € .7 (R?) we set
Aqv=x[D)v;VgeN, Ajp=¢(27D)o and S;= Y, A,

The homogeneous operators are defined by
Aqv = ¢(279D)o, qu = Z A]'U, Vg € Z.
j<q-1
(From [2] we split the product uv into three parts:
uv = T,v + Tyu + R(u,v),
with

T,o=) S qubw and R(u,0)= Y Audgo.
q lg'—ql<1

Let us now define inhomogeneous and homogeneous Besov spaces. For (p, ) € [1,4o0]?
and s € R we define the inhomogeneous Besov space %, , as the set of tempered distri-
butions u such that

lull g, = (27 18quler) , < +oo

The homogeneous Besov space @;/V is defined as the set of u € .’ (IR%) up to polynomials

such that
Ul s = 218 A u ) < —4o00.
|| HJW ( H q ||er (@)

Let T > 0and p > 1, we denote by L’}%’;/r the space of distributions u such that
. gs
g, = | (27 18lir), |, < o
We say that u belongs to the space Z‘%%’;J if

Il sy, = (2518gullg1r), < +eo.
The following result is due to Vishik [16].

Lemma 2.1. Let d > 2, there exists a positive constant C such that for any smooth function f
and for any diffeomorphism ¢ of R? preserving Lebesgue measure, we have for all p € [1,+o0]
and forall j,q € Z,
18;(Agf o)l < C27VIWYI0D || Agf s,

with

1(j,q) = sign(j —q)-
Let us now recall the following result proven in [8, 10].
Proposition 2.2. Let v > 0, (p,7) € [1,0)?, s €] —1,1[, v € LL _(Ry;Lip(IR?)) with zero
divergence and f be a smooth function. Let a be any smooth solution of the transport-diffusion

equation
oia+v-Va—vha = f.
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Then there is a constant C := C(s,d) such that for every t € R4

1
Jallgsy, + vl = Asal, o < CVO (1, + [ 150, 7).

mBH'W -

where V (t / IVo(T)||=dT.
We shall now give a logarithmic estimate which is an extension of Vishik’s one [16]. For
the proof we refer to [13].

Proposition 2.3. Let p, r € [1,400], v be a divergence-free vector field belonging to the space
L} (Ry;Lip(RY)) and let a be a smooth solution of the following transport-diffusion equation
(withv > 0),
oia+v-Va—vAha=f
{ o = a°.

If the initial data a° € BY,, then we have for all t € Ry

pr’

t
0
lalzgag, < CUIallng, + 1 fllgysy,) (14 [ 190(0)l1mtr),

where C depends only on the dimension d but not on the viscosity v.

3. SMOOTHING EFFECTS

This section is devoted to the proof of a smoothing effect for a transport-diffusion equa-
tion with respect to a vector field which is not necessary Lipschitz. This problem was
studied by the author [11] in the case of singular vortex patches for two dimensional
Navier-Stokes equations. The estimate given below is more precise than [11].

Theorem 3.1. Let v be a smooth divergence-free vector field of R? with vorticity w := curl v.
Let a be a smooth solution of the transport-diffusion equation

dia+v-Va—Aa=0; Aj—p = .
Then we have forq € NU{—1}and t > 0

t
2 [ aa(@)lmde S 16 (14 £+ @ + Dl e + VA1l 00 ).

Remark 1. In [10], the author proved in the case of Lipschitz velocity the following esti-
mate

1) ﬂ/n% nwﬁ<w%m@+HJWvamh)

But this is not useful in our case. We emphasize that the above theorem is also true when
we change L® by L?, with p € [1, o0].

Proof. The idea of the proof is the same as in [10]. We use Lagrangian formulation com-
bined with intensive use of paradifferential calculus.
Let g € IN*, then the Fourier localized function a, := A,a satisfies
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Exp. n°® XXIV— On the global well-posedness of the Boussinesq system with zero viscosity

(2) 0y + Sy-10-Vay — Nag = (S4-1 —1d)v - Va, — [Ag,v-V]a = g,.
Let ¢, denote the flow of the regularized velocity S, 1v:

t
Wyt x) = x+/0 Sq—10(T, Pq(T, x))dT.

We set
ag(t,x) = aq(t, Pq(t,x)) and  Z4(f,x) = go(t, Pg(t, x)).
¢From Leibniz formula we deduce the following identity
d

Mg (t,x) = Y (Hy - (@) (%), (0'5) (£,%) ) + (Vag) (£, (£, )) - gy (1),
i=1
where H,(t,x) := (V2a,)(t, 4(t, x)) is the Hessian matrix.
Straightforward computations based on the definition of the flow and Gronwall’s in-
equality yield
'y (t, x) = e; + hy(t, x),

where (e;)%_, is the canonical basis of R? and the function hﬁl is estimated as follows

. t
3) Hh;(t) e < Vq(t)ecv‘?(t), with Vq(t) = / HVSq_lv(T) ||LdT.
0
Applying Leibniz formula and Bernstein inequality we find
(4) 1Awg () |1 S 27V, (£)e<Ya ),
The outcome is
© 8y(t,%) = (Bag)(t (1)) = Ry(£,),
with

IRgW)llee S 1Vag(#)lle= [ Agq () |1
+ [[V2aq(t) |1 sup (Il (D)l + (115 ()1 7)
6) S V(e lag ().

In the last line we have used Bernstein inequality.
(From (2) and (5) we see that 4, satisfies

(0t — A)ag(t,x) = Ry(t, x) + 34(t, x).

Now, we will again localize in frequency this equation through the operator A;. So we
write from Duhamel formula,

t
Ajag(t,x) = etAA]-aq(O)+/0 e mIAA R (T, x)dT

t
(7) + /0 e(t’T)AAjg'q(T, x)dT.

At this stage we need the following lemma (see for instance [7]).
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Lemma 3.2. Foru € L and j € N,

®) e ajulle < Ce=||Ajullr=,

where the constants C and c depend only on the dimension d.

Combined with (6) this lemma yields, for every j € IN,

©) e A Ry (1)1 227V (7)™ De Um0 g (1) |
Since the flow is an homeomorphism then we get again in view of Lemma 8

et gDl S eI (118 0.91a() 1

~

(10) + |(Sq10—0)- quLw).

From Proposition 6.1 we have
1150 VIa®lis S lla@les(IVA-12(8) | + (g +2) () 1)
(an S el (IVA-2(8) = + (@ +2)leo(®) 1=).

We have used in the last line the maximum principle: ||a(t)| 1~ < [|a°| L.
On the other hand since g € IN*, we can easily obtain

1(Sg1v=0) - Vaglli= S lagh=2? Y 27| Ajew]l=
jz9-1

(12) S el flwlls.

~

Putting together (7), (9), (10), (11) and (12) we find

- — 2.
18351l < e[| A1

~

t .

+ Vq(t)eCVq(t)zzq/ efc(tff)?’Haq(T)HLwdT
0
t .

+ @+ [ eI (o) rmd

+ %z /Ote“”ﬂ”uww(rwmdr
Integrating in time and using Young inequalities, we obtain for all j € IN
gl < @) (IIAjaglle + @+ 2"l llwll gy +
0l VA2l 31 ) + V(£ O220D g .

Let N be a large integer that will be chosen later. Since the flow is an homeomorphism,
then we can write

P agllgre = 22|yl
< 2 Iyt L 180g.)-
lj—ql<N lji—ql=N
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Hence, for all g > N, one has

2 agllype < Na’llee + 220l ( (g + 2wl + IVA-10] 1o
t t t

+ V(eI gy +227 Y (| Al e
li—ql=N

According to Lemma 2.1, we have
1825 (1) [ S 277D lag (1) | 1.
Thus, we infer
ZZq\]aqHL}Lw < e e + 22V o ((‘1 +2)|wl g~ + HVA—ﬂ)HL}L“’)
+ Vq(t)ecvq(t)22N22q||aqHL}L°° + Z_Necvq(t)ZZqHaqHL}Lw-
For low frequencies, g < N, we write
227 ||ag|l 3 S 22Nl o

Therefore we get forg € NU {—1},

22qHaqHL}L°° S Nl + ZZNH“HL}Lw
+ 22V (9 + 2wl e + IVA-12] 1)
+ (Va(£)eC 22N 42 NeCH) 22| |
Choosing N and ¢ such that
Vq(t)eCVq(t)ZZN + Vil =N < ¢
where € << 1. This is possible for small time ¢ such that
Vy(t) <Gy,

where C; is a small absolute constant.
Under this assumption, one obtains for g > —1

Paglye < Nallge +12%s (14 @+ 2)[@lyrn + VA2l e )-

Let us now see how to extend this for arbitrarly large time T. We take a partition (T;)M,

of [0, T] such that
Tita
/T‘ 1VSy_10(t) | ~dt ~ Cy.

Reproducing the same arguments as above we find in view of [|a(T;) |1~ < ||a°|| 1,

XXIV-7
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5 Tit1 T 0
20 [ agOlleat S [ et + 0%

i i

Tit1
+ el (g +2) [ o)t

i

Tita
n / IVA 10(t) ).
T;

i

Summing these estimates we get
2agllipre S Nl + (M+1)]]al +
+ [ales (g + Dlwliyre +1VA-10] 1y )-
As M = V,(T), then
2aglliyre S Nl + (Vo(T) + Dla]| +
+ 1= (9 + 2wy + VA 10y )-
Since
IVSg-10lles < [VA10]l1= + (g +2)[|e]| 1,
then inserting this estimate into the previous one

P agliyre S s (U4 T) + @+ 2@l e+ (VA 10130 )-

This is the desired result. O

4. PROOF OF THEOREM 1.1
We restrict ourselves to the a priori estimates. The existence and uniqueness parts can be
done in classical manner.
Proposition 4.1. For W e ,@;% and 80 € L', with2 < r < o0, we have for t € R
1)
lo(t) [ < 116°]c--

2)
Cot
101, + o) e + oz, < Coe”
3)
Cot
~ eL
By + 181, g5+ 10y < Coe™

where the constant Cy depends on the initial data.
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Proof. The first estimate can be easily obtained from L" energy estimate. For the second
one, we recall that the vorticity w = 0; v? — 9,v! satisifies the equation

(13) diw +v-Vw = d40.
Taking the L* norm we get
(14) lo®)lle < [l + V0] 310

2
Using the embedding %’rplr " — Lip(R?) we obtain
(15) lo®lls < e+ ll6l]

2.
1+%
1 T
t‘@r,l

(From Theorem 3.1 applied to the temperature equation and by Bernstein inequalities we
deduce for e > 0,

101 S 160 (14 £+ [wlgre + 181 T0] )

S 10 (14 £+ lwllyie + 1 V0l )
with p := max{p,r}. This leads for r > 2 to the inequality

6,53 S 160l (1+ £+ lewlgzm + IV 2l g0r)-

On the other hand we have the classical result | Vv||; s ~ ||w]| 7. Thus we get

(16) 1011, ez S 16%Ner (1 + £+ ool gy + el o )-
1
The estimate of the L? norm of the vorticity can be done as its L* norm
lo@®ller < Nl + 1VOll 310

(17) < el + ||9HL}<%3T%'

Set f(t) := ||9HL1%1+%, then combining (15), (16) and (17) leads
t<r1

t
F&) S N6 (L4t + el pne) + 116°)11r /0 f(r)dz.
According to Gronwall’s inequality, one has

Cot
(18) HGHL}A%:T% < Coe 0 ’
where Cj is a constant depending on the initial data. From (15) and (16) we deduce

|| LorLr < Coe™".
Let us now turn to the estimate of [|w(t)|| 4 . Applying Proposition 2.3 to the vorticity
equation and using Besov embeddings, ,
HWHZ?&@SO,1 S (lw’lles + HQHL}%&OJ) (14 [IVoll-)

(19) S (Il + 100, iz) 1+ IVl ge).
t

r,1
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On the other hand we have
IVo(t)|li= < [VA_1o(t)|=+ ) [8,VO(t)] 1
geN
S IVAav(®)ler + lw(®)]z
0) < @Ol + @llzmg

Putting together (18), (19) and (20) and using Gronwall’s inequality gives

It remains to prove the third point of the proposition. The first smoothing effect on 0 is a
direct consequence of (1) and the above inequality,

C
1611, < Coe™™.

For the second one we apply Proposition 2.2 to the temperature equation .
To establish the velocity estimate we write

loll__ vz Slollepre +llwll 5
L2%,, L))

Using the velocity equation, we obatin

t
lo())llr < 19°0le + 6% 2 +/0 IP(v- Vo) (t)||rdt.

where P denotes Leray projector. It is well-known that Riesz transforms act continuously
on L?, with 1 < p < oo, which yields

IP(w- Vo)l S llo- Vol < vl Vol .
Thus we get in view of Gronwall’s inequality and (21)
Lot
(22) HUHL;’QLP < Cpe*
It remains to estimate ||w ()] 2 - We apply Proposition 2.2 to the vorticity equation com-
B 7

“pl
bined with the temperature snfoothing, (18) and (21),

loll_ 5 S YOl 5 10l ).
Lye#), Al L1 B,

5. PROOF OF THEOREM 1.2

The case p = +oo is more subtle and the difficulty comes from the term |[|[VA_19||1~,
since Riesz transforms do not map L™ to itself. To avoid this problem we use a frequency
interpolation method. The main result is the following:

XXIV-10



Exp. n°® XXIV— On the global well-posedness of the Boussinesq system with zero viscosity

Proposition 5.1. There exists a constant Cy depending on ||v°|] 40 and 16°|| 5 such that for
t € (0,00 ’

3
() lee < N10%1e; [10llpsr, < Coe™  and

Cnt3
1ollzesm , + 161710, + 10z < Coe’ !

Proof. The L*-bound of the temperature can be easily obtained from the maximum prin-
ciple. To give the other bounds we start with the following estimate for the vorticity,
which is again a direct consequence of the maximum principle,

(23) lo@®lls < Nl + V00 e < lle®llie + 1101l 1, -
Let N € IN¥, then we get by definition of Besov spaces and the maximum principle
160z, = 2 2740l e + 3 2718000 11
’ g<N-1 g>N
S 2VH|60 e + ) 29)| 8g0| 3 o
q2N

By virtue of Theorem 3.1 one has
100, S 2VEI6° N + 27 N6 i (1 + £+ IV A 10 g + Nl
S 216 m + 27N 6w (14 £+ VA 10l ) + ol e

Choosing judiciously N we get

1

(24) 18llz1, S Neollggim + 100 e (14 £+ 19810 110 )
The following lemma gives an estimate of the low frequency of the velocity.
Lemma 5.2. Forall t > 0, wed have

IVA_0())le S 1+ Co(1+ ) [@lligre + Hlw s
with Co a constant depending on the norms of the initial data.
Proof. Fix N € N*.Since A 1 = A _1(S_n+ 22:_1\] A;) then we have

0
IVA 1ol S (IVS-nollie + ) (VA1
g=—N

0
< 27N olls + ) 1Al
—N

< 27Nv)li= + N|w|| .

Taking N ~ log(e + ||v||r~) we get
(25) IVA_1o[lre S 14 [|w| L= Tog(e + [|o][1=).
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It remains to estimate ||v||;~. Let M € IN then we have
ol < 1S-molls +2M|w]| .
Now using the equation of the velocity we get
IS-mo(t)lee < 1S-m0°|[1s + | PS-mbl| 111
t .
+ [ 15 wdivP(o @ 0)()|1odr

t
< IRl + 1Al +27 [ o) udr.

We have used the following inequality based on the uniform continuity with respect to g
of the operator A;P : L® — L™ :

[S_mdivP(v®0)|re < ), [|AdivP(0o®0)[1~

g<—-M-1
S )Y, 2o®o|rs.
g<—-M-1
Thus we obtain
[o]lr= S (0%l + (1A 10/l +27 M/ [o(T) [|ZdT 4+ 2M[|w (t) || .

To estimate ||A_16|| L1 We use the temperature equation,
120l < 1Al + [[Ag (v VO) [ 131 + [|Ag A0y

S 1148681 + 27060 13 + 22716 10

S 1860 + 2716 ([0l g o + 2271160 .

Therefore we get

2 1800l S Y N18q0° L + £]16°]| = + ||90||L°°/ [o(7) || =d.

7<0 g<0
Taking M such that
v, Ja o[t
leollz=~
we find
1

follis S o+ + 1801 [ o) st + @l ( [ lo(olfedz)’
According to Gronwall’s inequality we get
(26) ol < CoetateCe s,
Inserting this estimate into (25) we find the desired inequality. 0

XXIV-12
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Lemma 5.2 and (24) yield
t
61,0, < Coll+ )+ @l + Col1+ ) [ lwlfprede
2 ! 2
< Go+A)(1+ /0 s dT)-
Combining this estimate with (23) yields

t
@l < CoL+ ) (1+ [ wlFspedr).

Applying Gronwall’s inequality we get

(27) lw (Bl < Coe®"'.
This gives
(28) ||9||L}93}>0’1 < Coeo”.

(From Lemma 5.2 we have

(29) IVA_10() 1= < Coe®”.

Let us now turn to the estimate of the vorticity in %2, | space. For this purpose we apply
Proposition 2.3 to the vorticity equation, with p = +coandr =1

t
(30) [@lgpas, S (16 lm + IV8lg0,) (14 [ 1903 Iumd).
On the other hand we have by definition and from (29) and (30)

Vo)l S ol , S IVA-10l1prs + Zﬂ:\{ [Agw|| g
qe

3
< COECOt + HWHZgOgggoJ

Cot® !
< (14 [ ool ).

It suffices now to use Gronwall’s inequality.

To estimate [|6]| 15, it suffices to combine (1) with Lipschitz estimate of the velocity.
This concludes the proof of the proposition. O

6. APPENDIX: COMMUTATOR ESTIMATE
Our task now is to prove the following commutator result.

Proposition 6.1. Let u be a smooth function and v be a divergence-free vector field of R such
that its vorticity w := curl v belongs to L*°. Then we have for all ¢ > —1,

11800 Vull o S llles (IVA-10]l= + (0 +2) @]l )
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Proof. The main tool is Bony’s decomposition [2]:
(31) [Ag,0-V]u=[Ag, Ty - V]u+[Ag, Ty. - vJu+ [Ag, R(v -V, )]u,
where
[Ag, Ty - V]u = Ag(Ty - Vu) — T, - VAGu
[Ag, Ty. - v]u = Ay (Tyy - 0) — Toau
[Ag,R(v-V,)]u=A(R(v-V,u)) —R(v-V,Au).
(From the definition of the paraproduct and according to Bernstein inequalities

180, To. olulis < ¥ 1S Vullis Aol
li—gl<4

(32) < lufles lolles,

where we have used here the following equivalence: Vj € IN,
1870]le= ~ 27| Ajewo|| .

For the second term of the right-hand side of (31), we have

[Ag, Ty -Vu = Y [Ag,Sj-10- VAju,
j=1

= ‘ Z| [Aq,S]'_lv'V]A]'u.
j—ql<4

To estimate each commutator, we write Agasa convolution

[Ag, Sj10 - V]Aju(x) =29 / h(27(x — y))(Sj—1o(y) — Sj—19(x)) - VAju(y)dy.

Thus, Young and Bernstein inequalities yield, for |j — g| < 4,

(33) H[Aq,Sj_lv-V]A]-uHLw 5 Z_qHVS]'_l’UHLooHA]'VMHLoo
S IVSjrolfluli
S (IVA-olis + (g +2) [l ) full.

Let us move to the remainder term. It can be written, in view of the definition, as
Jo:=[AuR(-V,)Ju=Y [A,Ap]-VAu+ Y [Ay,A10]- VA 1 u.

j29-4j20 ic{0,1}
ie{F1,0} ’

It follows from the zero divergence condition that
o= Y (B A 0] - VA u+ Y, div ([Ag, Ajp] @ Ajyu) =5+ 5.

i€{0,1 24-4,>0
ie{o1} ic{F1,0}

By the same way as (33) one has

1

Dglle < 27VA-olle Y VA1 u1s
i=0
S VA of|reffuf]rs.
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To estimate the second term we use Bernstein inequality
Gl < Y 29)Aapl | Al

j29-4j20
ie{F1,0}
S Al Y 277 Ajw] 1
jzq—4
S el lulle=,
This completes the proof of Proposition 6.1. ]
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