

SEMINAIRE

Equations aux Dérivées Partielles 2007-2008

Taoufik Hmidi

On the global well-posedness of the Boussinesq system with zero viscosity $S\'{e}minaire$ $\'{E}$. D. P. (2007-2008), Exposé n° XXIV, 15 p.

http://sedp.cedram.org/item?id=SEDP_2007-2008____A24_0

U.M.R. 7640 du C.N.R.S. F-91128 PALAISEAU CEDEX

> Fax : 33 (0)1 69 33 49 49 Tél : 33 (0)1 69 33 49 99

cedram

Exposé mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

ON THE GLOBAL WELL-POSEDNESS OF THE BOUSSINESQ SYSTEM WITH ZERO VISCOSITY

TAOUFIK HMIDI (JOINT WORK WITH S. KERAANI)

ABSTRACT. In this paper we prove the global well-posedness of the two-dimensional Boussinesq system with zero viscosity for rough initial data.

1. Introduction

This paper deals with the global well-posedness for the two-dimensional Boussinesq system,

$$(B_{
u,\kappa}) \left\{ egin{aligned} &\partial_t v + v \cdot
abla v -
u \Delta v +
abla \pi = heta e_2, \ &\partial_t heta + v \cdot
abla heta - \kappa \Delta heta = 0, \ &\operatorname{div} v = 0, \ &v_{|t=0} = v^0, \quad heta_{|t=0} = heta^0. \end{aligned}
ight.$$

Here, e_2 denotes the vector (0,1), $v=(v_1,v_2)$ is the velocity field, π the scalar pressure and θ the temperature. The coefficients ν and κ are assumed to be positive; ν is called the kinematic viscosity and κ the molecular conductivity.

In the case of strictly positive coefficients ν and κ both velocity and temperature have sufficiently smoothing effects leading to the global well-posedness of smooth solutions. This was proved by numerous authors in various function spaces (see [4, 9, 15] and the references therein).

For v>0 and $\kappa=0$ the problem of global well-posedness is well understood. In [5], Chae proved global well-posedness for initial data (v^0,θ^0) lying in Sobolev spaces $H^s\times H^s$, with s>2 (see also [14]). This result has been recently improved by Keraani and the author [12] to initial data in $H^s\times H^s$, with s>0. However we give only a global existence result without uniqueness in the energy space $L^2\times L^2$. In a joint work with Abidi [1], we prove the uniqueness for data belonging to $L^2\cap \mathscr{B}_{\infty,1}^{-1}\times \mathscr{B}_{2,1}^0$. More recently Danchin and Paicu [8] have proved the uniqueness in the energy space.

Our goal here is to study the global well-posedness of the system $(B_{0,\kappa})$, with $\kappa > 0$. First of all, let us recall that the two-dimensional incompressible Euler system, corresponding to $\theta^0 = 0$, is globally well-posed in the Sobolev space H^s , with s > 2. This is due to the advection of the vorticity by the flow: there is no accumulation of the vorticity and thus there is no finite-time singularities according to B-K-M criterion [3]. In critical spaces

like $\mathcal{B}_{p,1}^{\frac{2}{p}+1}$ the situation is more complicate because we do not know if the B-K-M criterion works or not. In [16], Vishik proved that Euler system is globally well-posed in these critical Besov spaces. He used for the proof a new logarithmic estimate taking advantage of the particular structure of the vorticity equation in dimension two. For the Boussinesq

system $(B_{0,\kappa})$, Chae proved in [5] the global well-posedness for initial data v^0 , θ^0 lying in Soboloev space H^s , with s > 2. We intend here to improve this result for rough initial data. Our results reads as follows.

Theorem 1.1. Let $p \in [1, \infty[$, $v^0 \in \mathscr{B}_{p,1}^{1+\frac{2}{p}}$ be a divergence-free vector field of \mathbb{R}^2 and $\theta^0 \in \mathscr{B}_{p,1}^{-1+\frac{2}{p}} \cap L^r$, with $2 < r < \infty$. There exists a unique global solution (v, θ) to the Boussinesq system $(B_{0,\kappa})$, $\kappa > 0$ such that

$$v\in\mathscr{C}(\mathbb{R}_+;\mathscr{B}^{1+\frac{2}{p}}_{p,1})\quad and \quad \theta\in L^\infty_{\mathrm{loc}}(\mathbb{R}_+;\mathscr{B}^{-1+\frac{2}{p}}_{p,1}\cap L^r)\cap \widetilde{L}^1_{\mathrm{loc}}(\mathbb{R}_+;\mathscr{B}^{1+\frac{2}{p}}_{p,1}\cap \mathscr{B}^2_{r,\infty}).$$

The situation in the case $p=+\infty$ is more subtle since Leray's projector is not continuous on L^∞ and we overcome this by working in homogeneous Besov spaces leading to more technical difficulties. Before stating our result we introduce the following sub-space of L^∞ :

$$u \in \mathscr{B}^{\infty} \Leftrightarrow \|u\|_{\mathscr{B}^{\infty}} := \|u\|_{L^{\infty}} + \|\Delta_{-1}u\|_{\mathscr{B}^{0}_{\infty,1}} < \infty.$$

We notice that \mathscr{B}^{∞} is a Banach space and independent of the choice of the dyadic partition of unity. For the definition of Besov spaces and the frequency localization operator Δ_{-1} we can see next section. Our second main result is the following:

Theorem 1.2. Let $v^0 \in \mathscr{B}^1_{\infty,1}$, with zero divergence and $\theta^0 \in \mathscr{B}^\infty$. Then there exists a unique global solution (v,θ) to the Boussinesq system $(B_{0,\kappa})$, $\kappa > 0$ such that

$$v \in \mathscr{C}(\mathbb{R}_+; \mathscr{B}^1_{\infty,1})$$
 and $\theta \in L^{\infty}_{\mathrm{loc}}(\mathbb{R}_+; \mathscr{B}^{\infty}) \cap \widetilde{L}^1_{\mathrm{loc}}(\mathbb{R}_+; \mathscr{B}^2_{\infty,\infty}).$

For the proofs it suffices to estimate the quantities $\|\nabla v(t)\|_{L^\infty}$ and $\|\nabla \theta\|_{L^1_t L^\infty}$. This will be done by using some logarithmic estimates combined with some smoothing effects. Theorem 3.1 is very crucial and it describes new smoothing effects for the transport-diffusion equation governed by a vector field which is not necessary Lipschitz but only quasi-lipschitz.

The rest of this paper is organized as follows. In section 2, we recall some preliminary results on Besov spaces. Section 3 is devoted to the proof of smoothing effects. In section 4 and 5 we give respectively the proof of Theorem 1.1 and 1.2. We give in the appendix a commutator lemma.

2. NOTATION AND PRELIMINARIES

Throughout this paper we shall denote by C some real positive constant which may be different in each occurrence and by C_0 a real positive constant depending on the norms of the initial data.

Let us introduce the so-called Littlewood-Paley decomposition and the corresponding cut-off operators. There exist two radial positive functions $\chi \in \mathscr{D}(\mathbb{R}^d)$ and $\varphi \in \mathscr{D}(\mathbb{R}^d \setminus \{0\})$ such that

i)
$$\chi(\xi) + \sum_{q \ge 0} \varphi(2^{-q}\xi) = 1; \quad \forall \ q \ge 1, \ \operatorname{supp} \chi \cap \operatorname{supp} \varphi(2^{-q}) = \varnothing$$

ii) supp
$$\varphi(2^{-p}\cdot) \cap \text{supp } \varphi(2^{-q}\cdot) = \emptyset$$
, if $|p-q| \ge 2$.

For every $v \in \mathscr{S}'(\mathbb{R}^d)$ we set

$$\Delta_{-1}v=\chi(\mathrm{D})v$$
; $\forall q\in\mathbb{N},\ \Delta_qv=\varphi(2^{-q}\mathrm{D})v$ and $S_q=\sum_{-1\leq p\leq q-1}\Delta_p.$

The homogeneous operators are defined by

$$\dot{\Delta}_q v = \varphi(2^{-q}\mathrm{D})v, \quad \dot{S}_q v = \sum_{j \leq q-1} \dot{\Delta}_j v, \quad \forall q \in \mathbb{Z}.$$

¿From [2] we split the product uv into three parts:

$$uv = T_uv + T_vu + R(u,v),$$

with

$$T_u v = \sum_q S_{q-1} u \Delta_q v$$
 and $R(u,v) = \sum_{|q'-q| \le 1} \Delta_q u \Delta_{q'} v$.

Let us now define inhomogeneous and homogeneous Besov spaces. For $(p,r) \in [1,+\infty]^2$ and $s \in \mathbb{R}$ we define the inhomogeneous Besov space $\mathscr{B}^s_{p,r}$ as the set of tempered distributions u such that

$$||u||_{\mathscr{B}^s_{p,r}}:=\left(2^{qs}||\Delta_q u||_{L^p}\right)_{\ell^r}<+\infty.$$

The homogeneous Besov space $\hat{\mathscr{B}}_{p,r}^s$ is defined as the set of $u \in \mathscr{S}'(\mathbb{R}^d)$ up to polynomials such that

$$\|u\|_{\dot{\mathscr{B}}^s_{p,r}}:=\left(2^{qs}\|\dot{\Delta}_q u\|_{L^p}\right)_{\ell^r(\mathbb{Z})}<+\infty.$$

Let T > 0 and $\rho \ge 1$, we denote by $L_T^{\rho} \mathscr{B}_{v,r}^s$ the space of distributions u such that

$$||u||_{L_T^{\rho}\mathscr{B}_{p,r}^s} := ||(2^{qs}||\Delta_q u||_{L^p})_{\ell^r}||_{L_T^{\rho}} < +\infty.$$

We say that u belongs to the space $\widetilde{L}_T^{\rho}\mathscr{B}_{p,r}^s$ if

$$||u||_{\widetilde{L}^{
ho}_{T}\mathscr{B}^{s}_{p,r}}:=\left(2^{qs}||\Delta_{q}u||_{L^{
ho}_{T}L^{p}}\right)_{\varrho^{r}}<+\infty.$$

The following result is due to Vishik [16].

Lemma 2.1. Let $d \geq 2$, there exists a positive constant C such that for any smooth function f and for any diffeomorphism ψ of \mathbb{R}^d preserving Lebesgue measure, we have for all $p \in [1, +\infty]$ and for all $j, q \in \mathbb{Z}$,

$$\|\dot{\Delta}_{j}(\dot{\Delta}_{q}f \circ \psi)\|_{L^{p}} \leq C2^{-|j-q|} \|\nabla \psi^{\eta(j,q)}\|_{L^{\infty}} \|\dot{\Delta}_{q}f\|_{L^{p}},$$

with

$$\eta(j,q) = sign(j-q).$$

Let us now recall the following result proven in [8, 10].

Proposition 2.2. Let $\nu \geq 0$, $(p,r) \in [1,\infty]^2$, $s \in]-1,1[$, $v \in L^1_{loc}(\mathbb{R}_+; Lip(\mathbb{R}^d))$ with zero divergence and f be a smooth function. Let a be any smooth solution of the transport-diffusion equation

$$\partial_t a + v \cdot \nabla a - \nu \Delta a = f.$$

Then there is a constant C := C(s, d) such that for every $t \in \mathbb{R}_+$

$$||a||_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{p,r}^{s}} + \nu^{\frac{1}{m}}||a - \Delta_{-1}a||_{\widetilde{L}_{t}^{m}B_{p,r}^{s+\frac{2}{m}}} \leq Ce^{CV(t)} (||a^{0}||_{\mathscr{B}_{p,r}^{s}} + \int_{0}^{t} ||f(\tau)||_{\mathscr{B}_{p,r}^{s}} d\tau),$$

where
$$V(t) := \int_0^t \|\nabla v(\tau)\|_{L^{\infty}} d\tau$$
.

We shall now give a logarithmic estimate which is an extension of Vishik's one [16]. For the proof we refer to [13].

Proposition 2.3. Let $p, r \in [1, +\infty]$, v be a divergence-free vector field belonging to the space $L^1_{loc}(\mathbb{R}_+; \operatorname{Lip}(\mathbb{R}^d))$ and let a be a smooth solution of the following transport-diffusion equation (with $v \geq 0$),

$$\begin{cases} \partial_t a + v \cdot \nabla a - v \Delta a = f \\ a_{|t=0} = a^0. \end{cases}$$

If the initial data $a^0 \in B^0_{p,r}$, then we have for all $t \in \mathbb{R}_+$

$$||a||_{\widetilde{L}_{t}^{\infty}B_{p,r}^{0}} \leq C(||a^{0}||_{B_{p,r}^{0}} + ||f||_{\widetilde{L}_{t}^{1}B_{p,r}^{0}}) \Big(1 + \int_{0}^{t} ||\nabla v(\tau)||_{L^{\infty}} d\tau\Big),$$

where C depends only on the dimension d but not on the viscosity v.

3. SMOOTHING EFFECTS

This section is devoted to the proof of a smoothing effect for a transport-diffusion equation with respect to a vector field which is not necessary Lipschitz. This problem was studied by the author [11] in the case of singular vortex patches for two dimensional Navier-Stokes equations. The estimate given below is more precise than [11].

Theorem 3.1. Let v be a smooth divergence-free vector field of \mathbb{R}^d with vorticity $\omega := \operatorname{curl} v$. Let a be a smooth solution of the transport-diffusion equation

$$\partial_t a + v \cdot \nabla a - \Delta a = 0; \quad a_{|t=0} = a^0.$$

Then we have for $q \in \mathbb{N} \cup \{-1\}$ and $t \geq 0$

$$2^{2q} \int_0^t \|\Delta_q a(\tau)\|_{L^{\infty}} d\tau \ \lesssim \ \|a^0\|_{L^{\infty}} \Big(1 + t + (q+2)\|\omega\|_{L^1_t L^{\infty}} + \|\nabla \Delta_{-1} v\|_{L^1_t L^{\infty}}\Big).$$

Remark 1. In [10], the author proved in the case of Lipschitz velocity the following estimate

(1)
$$2^{2q} \int_0^t \|\Delta_q a(\tau)\|_{L^{\infty}} d\tau \lesssim \|a^0\|_{L^{\infty}} \Big(1 + t + \int_0^t \|\nabla v(\tau)\|_{L^{\infty}} d\tau \Big).$$

But this is not useful in our case. We emphasize that the above theorem is also true when we change L^{∞} by L^p , with $p \in [1, \infty]$.

Proof. The idea of the proof is the same as in [10]. We use Lagrangian formulation combined with intensive use of paradifferential calculus.

Let $q \in \mathbb{N}^*$, then the Fourier localized function $a_q := \Delta_q a$ satisfies

(2)
$$\partial_t a_q + S_{q-1} v \cdot \nabla a_q - \Delta a_q = (S_{q-1} - \operatorname{Id}) v \cdot \nabla a_q - [\Delta_q, v \cdot \nabla] a := g_q.$$

Let ψ_q denote the flow of the regularized velocity $S_{q-1}v$:

$$\psi_q(t,x) = x + \int_0^t S_{q-1}v(\tau,\psi_q(\tau,x))d\tau.$$

We set

$$\bar{a}_q(t,x) = a_q(t,\psi_q(t,x))$$
 and $\bar{g}_q(t,x) = g_q(t,\psi_q(t,x)).$

¿From Leibniz formula we deduce the following identity

$$\Delta \bar{a}_q(t,x) = \sum_{i=1}^d \left\langle H_q \cdot (\partial^i \psi_q)(t,x), (\partial^i \psi_q)(t,x) \right\rangle + (\nabla a_q)(t,\psi_q(t,x)) \cdot \Delta \psi_q(t,x),$$

where $H_q(t, x) := (\nabla^2 a_q)(t, \psi_q(t, x))$ is the Hessian matrix.

Straightforward computations based on the definition of the flow and Gronwall's inequality yield

$$\partial^i \psi_a(t,x) = e_i + h_a^i(t,x),$$

where $(e_i)_{i=1}^d$ is the canonical basis of \mathbb{R}^d and the function h_q^i is estimated as follows

(3)
$$||h_q^i(t)||_{L^{\infty}} \lesssim V_q(t)e^{CV_q(t)}, \text{ with } V_q(t) := \int_0^t ||\nabla S_{q-1}v(\tau)||_{L^{\infty}} d\tau.$$

Applying Leibniz formula and Bernstein inequality we find

The outcome is

(5)
$$\Delta \bar{a}_q(t,x) = (\Delta a_q)(t,\psi_q(t,x)) - \mathcal{R}_q(t,x),$$

with

$$\|\mathcal{R}_{q}(t)\|_{L^{\infty}} \lesssim \|\nabla a_{q}(t)\|_{L^{\infty}} \|\Delta \psi_{q}(t)\|_{L^{\infty}} + \|\nabla^{2} a_{q}(t)\|_{L^{\infty}} \sup_{i} \left(\|h_{q}^{i}(t)\|_{L^{\infty}} + \|h_{q}^{i}(t)\|_{L^{\infty}}^{2}\right)$$

$$\lesssim 2^{2q} V_{q}(t) e^{CV_{q}(t)} \|a_{q}(t)\|_{L^{\infty}}.$$

In the last line we have used Bernstein inequality. From (2) and (5) we see that \bar{a}_q satisfies

$$(\partial_t - \Delta)\bar{a}_q(t, x) = \mathcal{R}_q(t, x) + \bar{g}_q(t, x).$$

Now, we will again localize in frequency this equation through the operator Δ_j . So we write from Duhamel formula,

(7)
$$\Delta_{j}\bar{a}_{q}(t,x) = e^{t\Delta}\Delta_{j}a_{q}(0) + \int_{0}^{t} e^{(t-\tau)\Delta}\Delta_{j}\mathcal{R}_{q}(\tau,x)d\tau + \int_{0}^{t} e^{(t-\tau)\Delta}\Delta_{j}\bar{g}_{q}(\tau,x)d\tau.$$

At this stage we need the following lemma (see for instance [7]).

Lemma 3.2. For $u \in L^{\infty}$ and $j \in \mathbb{N}$,

(8)
$$||e^{t\Delta}\Delta_j u||_{L^{\infty}} \leq Ce^{-ct2^{2j}}||\Delta_j u||_{L^{\infty}},$$

where the constants C and c depend only on the dimension d.

Combined with (6) this lemma yields, for every $j \in \mathbb{N}$,

(9)
$$||e^{(t-\tau)\Delta}\Delta_{j}\mathcal{R}_{q}(\tau)||_{L^{\infty}} \lesssim 2^{2q}V_{q}(\tau)e^{CV_{q}(\tau)}e^{-c(t-\tau)2^{2j}}||a_{q}(\tau)||_{L^{\infty}}.$$

Since the flow is an homeomorphism then we get again in view of Lemma 8

From Proposition 6.1 we have

$$\|[\Delta_{q}, v \cdot \nabla] a(t)\|_{L^{\infty}} \lesssim \|a(t)\|_{L^{\infty}} \Big(\|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} + (q+2)\|\omega(t)\|_{L^{\infty}} \Big)$$

$$\lesssim \|a^{0}\|_{L^{\infty}} \Big(\|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} + (q+2)\|\omega(t)\|_{L^{\infty}} \Big).$$
(11)

We have used in the last line the maximum principle: $||a(t)||_{L^{\infty}} \le ||a^0||_{L^{\infty}}$. On the other hand since $q \in \mathbb{N}^*$, we can easily obtain

$$||(S_{q-1}v - v) \cdot \nabla a_q||_{L^{\infty}} \lesssim ||a_q||_{L^{\infty}} 2^q \sum_{j \geq q-1} 2^{-j} ||\Delta_j \omega||_{L^{\infty}}$$

$$\lesssim ||a^0||_{L^{\infty}} ||\omega||_{L^{\infty}}.$$
(12)

Putting together (7), (9), (10), (11) and (12) we find

$$\begin{split} \|\Delta_{j}\bar{a}_{q}(t)\|_{L^{\infty}} & \lesssim e^{-ct2^{2j}}\|\Delta_{j}a_{q}^{0}\|_{L^{\infty}} \\ & + V_{q}(t)e^{CV_{q}(t)}2^{2q}\int_{0}^{t}e^{-c(t-\tau)2^{2j}}\|a_{q}(\tau)\|_{L^{\infty}}d\tau \\ & + (q+2)\|a^{0}\|_{L^{\infty}}\int_{0}^{t}e^{-c(t-\tau)2^{2j}}\|\omega(\tau)\|_{L^{\infty}}d\tau \\ & + \|a^{0}\|_{L^{\infty}}\int_{0}^{t}e^{-c(t-\tau)2^{2j}}\|\nabla\Delta_{-1}v(\tau)\|_{L^{\infty}}d\tau. \end{split}$$

Integrating in time and using Young inequalities, we obtain for all $j \in \mathbb{N}$

$$\begin{split} \|\Delta_{j}\bar{a}_{q}\|_{L^{1}_{t}L^{\infty}} & \lesssim (2^{2j})^{-1} \Big(\|\Delta_{j}a^{0}_{q}\|_{L^{\infty}} + (q+2)\|a^{0}\|_{L^{\infty}}\|\omega\|_{L^{1}_{t}L^{\infty}} + \\ \|a^{0}\|_{L^{\infty}}\|\nabla\Delta_{-1}v\|_{L^{1}_{t}L^{\infty}} \Big) + V_{q}(t)e^{CV_{q}(t)}2^{2(q-j)}\|a_{q}\|_{L^{1}_{t}L^{\infty}}. \end{split}$$

Let *N* be a large integer that will be chosen later. Since the flow is an homeomorphism, then we can write

$$\begin{split} 2^{2q} \|a_q\|_{L^1_t L^\infty} &= 2^{2q} \|\bar{a}_q\|_{L^1_t L^\infty} \\ &\leq 2^{2q} \Big(\sum_{|j-q| < N} \|\Delta_j \bar{a}_q\|_{L^1_t L^\infty} + \sum_{|j-q| > N} \|\Delta_j \bar{a}_q\|_{L^1_t L^\infty} \Big). \end{split}$$

Hence, for all q > N, one has

$$\begin{split} 2^{2q} \|a_q\|_{L^1_t L^\infty} & \lesssim & \|a^0\|_{L^\infty} + 2^{2N} \|a^0\|_{L^\infty} \Big((q+2) \|\omega\|_{L^1_t L^\infty} + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty} \Big) \\ & + & V_q(t) e^{CV_q(t)} 2^{2N} 2^{2q} \|a_q\|_{L^1_t L^\infty} + 2^{2q} \sum_{|j-q| \geq N} \|\Delta_j \bar{a}_q\|_{L^1_t L^\infty}. \end{split}$$

According to Lemma 2.1, we have

$$\|\Delta_j \bar{a}_q(t)\|_{L^{\infty}} \lesssim 2^{-|q-j|} e^{CV_q(t)} \|a_q(t)\|_{L^{\infty}}.$$

Thus, we infer

$$\begin{split} 2^{2q} \|a_q\|_{L^1_t L^\infty} & \lesssim \|a^0\|_{L^\infty} + 2^{2N} \|a^0\|_{L^\infty} \Big((q+2) \|\omega\|_{L^1_t L^\infty} + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty} \Big) \\ & + V_q(t) e^{CV_q(t)} 2^{2N} 2^{2q} \|a_q\|_{L^1_t L^\infty} + 2^{-N} e^{CV_q(t)} 2^{2q} \|a_q\|_{L^1_t L^\infty}. \end{split}$$

For low frequencies, $q \leq N$, we write

$$2^{2q} \|a_q\|_{L^1_t L^\infty} \lesssim 2^{2N} \|a\|_{L^1_t L^\infty}.$$

Therefore we get for $q \in \mathbb{N} \cup \{-1\}$,

$$\begin{split} 2^{2q} \|a_q\|_{L^1_t L^\infty} & \lesssim \|a^0\|_{L^\infty} + 2^{2N} \|a\|_{L^1_t L^\infty} \\ & + 2^{2N} \|a^0\|_{L^\infty} \Big((q+2) \|\omega\|_{L^1_t L^\infty} + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty} \Big) \\ & + \Big(V_q(t) e^{CV_q(t)} 2^{2N} + 2^{-N} e^{CV_q(t)} \Big) 2^{2q} \|a_q\|_{L^1_t L^\infty}. \end{split}$$

Choosing *N* and *t* such that

$$V_q(t)e^{CV_q(t)}2^{2N}+e^{CV_q(t)}2^{-N}\lesssim \epsilon$$
,

where $\epsilon << 1$. This is possible for small time t such that

$$V_q(t) \leq C_1$$
,

where C_1 is a small absolute constant.

Under this assumption, one obtains for $q \ge -1$

$$2^{2q} \|a_q\|_{L^1_t L^\infty} \lesssim \|a\|_{L^1_t L^\infty} + \|a^0\|_{L^\infty} \Big(1 + (q+2) \|\omega\|_{L^1_t L^\infty} + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty}\Big).$$

Let us now see how to extend this for arbitrarly large time T. We take a partition $(T_i)_{i=1}^M$ of [0, T] such that

$$\int_{T_{-}}^{T_{i+1}} \|\nabla S_{q-1} v(t)\|_{L^{\infty}} dt \simeq C_{1}.$$

Reproducing the same arguments as above we find in view of $||a(T_i)||_{L^{\infty}} \le ||a^0||_{L^{\infty}}$,

$$2^{2q} \int_{T_i}^{T_{i+1}} \|a_q(t)\|_{L^{\infty}} dt \lesssim \int_{T_i}^{T_{i+1}} \|a(t)\|_{L^{\infty}} dt + \|a^0\|_{L^{\infty}}$$

$$+ \|a^0\|_{L^{\infty}} \Big((q+2) \int_{T_i}^{T_{i+1}} \|\omega(t)\|_{L^{\infty}} dt$$

$$+ \int_{T_i}^{T_{i+1}} \|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} dt \Big).$$

Summing these estimates we get

$$2^{2q} \|a_q\|_{L^1_T L^{\infty}} \lesssim \|a\|_{L^1_T L^{\infty}} + (M+1) \|a^0\|_{L^{\infty}} +$$

$$+ \|a^0\|_{L^{\infty}} \Big((q+2) \|\omega\|_{L^1_T L^{\infty}} + \|\nabla \Delta_{-1} v\|_{L^1_T L^{\infty}} \Big).$$

As $M \approx V_q(T)$, then

$$2^{2q} \|a_q\|_{L^1_T L^{\infty}} \lesssim \|a\|_{L^1_T L^{\infty}} + (V_q(T) + 1) \|a^0\|_{L^{\infty}} +$$

$$+ \|a^0\|_{L^{\infty}} \Big((q+2) \|\omega\|_{L^1_T L^{\infty}} + \|\nabla \Delta_{-1} v\|_{L^1_T L^{\infty}} \Big).$$

Since

$$\|\nabla S_{q-1}v\|_{L^{\infty}} \leq \|\nabla \Delta_{-1}v\|_{L^{\infty}} + (q+2)\|\omega\|_{L^{\infty}},$$

then inserting this estimate into the previous one

$$2^{2q} \|a_q\|_{L^1_T L^\infty} \lesssim \|a^0\|_{L^\infty} \Big((1+T) + (q+2) \|\omega\|_{L^1_T L^\infty} + \|\nabla \Delta_{-1} v\|_{L^1_T L^\infty} \Big).$$

This is the desired result.

4. Proof of Theorem 1.1

We restrict ourselves to the *a priori* estimates. The existence and uniqueness parts can be done in classical manner.

Proposition 4.1. For $v^0 \in \mathscr{B}_{p,1}^{1+\frac{2}{p}}$ and $\theta^0 \in L^r$, with $2 < r < \infty$, we have for $t \in \mathbb{R}_+$

$$\|\theta(t)\|_{L^r}\leq \|\theta^0\|_{L^r}.$$

2)

$$\|\theta\|_{L^{1}_{t}\mathscr{B}^{1+\frac{2}{r}}_{r,1}} + \|\omega(t)\|_{L^{\infty}} + \|\omega\|_{\widetilde{L}^{\infty}_{t}\mathscr{B}^{0}_{\infty,1}} \leq C_{0}e^{e^{C_{0}t}}.$$

3)

$$\|\theta\|_{\widetilde{L}_{t}^{1}\mathscr{B}_{r,\infty}^{2}}+\|\theta\|_{L_{t}^{1}\mathscr{B}_{p,1}^{1+\frac{2}{p}}}+\|v\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{p,1}^{1+\frac{2}{p}}}\leq C_{0}e^{e^{c^{C_{0}t}}},$$

where the constant C_0 depends on the initial data.

Proof. The first estimate can be easily obtained from L^r energy estimate. For the second one, we recall that the vorticity $\omega = \partial_1 v^2 - \partial_2 v^1$ satisfies the equation

(13)
$$\partial_t \omega + v \cdot \nabla \omega = \partial_1 \theta.$$

Taking the L^{∞} norm we get

(14)
$$\|\omega(t)\|_{L^{\infty}} \leq \|\omega^{0}\|_{L^{\infty}} + \|\nabla\theta\|_{L^{1}_{t}L^{\infty}}.$$

Using the embedding $\mathscr{B}_{r,1}^{1+\frac{2}{r}}\hookrightarrow \operatorname{Lip}(\mathbb{R}^2)$ we obtain

(15)
$$\|\omega(t)\|_{L^{\infty}} \lesssim \|\omega^{0}\|_{L^{\infty}} + \|\theta\|_{L_{t}^{1}\mathscr{B}_{r,1}^{1+\frac{2}{r}}}.$$

¿From Theorem 3.1 applied to the temperature equation and by Bernstein inequalities we deduce for $\epsilon > 0$,

$$\begin{split} \|\theta\|_{L^{1}_{t}\mathscr{B}^{2-\epsilon}_{r,\infty}} & \lesssim \|\theta^{0}\|_{L^{r}} \Big(1+t+\|\omega\|_{L^{1}_{t}L^{\infty}}+\|\Delta_{-1}\nabla v\|_{L^{1}_{t}L^{\infty}}\Big) \\ & \lesssim \|\theta^{0}\|_{L^{r}} \Big(1+t+\|\omega\|_{L^{1}_{t}L^{\infty}}+\|\nabla v\|_{L^{1}_{t}L^{\bar{p}}}\Big), \end{split}$$

with $\bar{p} := \max\{p, r\}$. This leads for r > 2 to the inequality

$$\|\theta\|_{L^{1}_{t}\mathscr{B}^{1+\frac{7}{p}}_{r,\infty}} \lesssim \|\theta^{0}\|_{L^{r}} \Big(1+t+\|\omega\|_{L^{1}_{t}L^{\infty}}+\|\nabla v\|_{L^{1}_{t}L^{\bar{p}}}\Big).$$

On the other hand we have the classical result $\|\nabla v\|_{L^p} \approx \|\omega\|_{L^p}$. Thus we get

(16)
$$\|\theta\|_{L^1_t \mathcal{B}^{1+\frac{2}{r}}_{r,1}} \lesssim \|\theta^0\|_{L^r} \Big(1+t+\|\omega\|_{L^1_t L^\infty}+\|\omega\|_{L^1_t L^{\bar{p}}}\Big).$$

The estimate of the $L^{\bar{p}}$ norm of the vorticity can be done as its L^{∞} norm

(17)
$$\|\omega(t)\|_{L^{\bar{p}}} \leq \|\omega^{0}\|_{L^{\bar{p}}} + \|\nabla\theta\|_{L^{1}_{t}L^{\bar{p}}}.$$

$$\lesssim \|\omega^{0}\|_{L^{\bar{p}}} + \|\theta\|_{L^{1}_{t}\mathcal{P}^{1+\frac{2}{\bar{p}}}}.$$

Set $f(t) := \|\theta\|_{L^{1}\mathscr{B}^{1+\frac{2}{7}}}$, then combining (15), (16) and (17) leads

$$f(t) \lesssim \|\theta^0\|_{L^r} (1+t+t\|\omega^0\|_{L^\infty \cap L^{\bar{p}}}) + \|\theta^0\|_{L^r} \int_0^t f(\tau) d\tau.$$

According to Gronwall's inequality, one has

(18)
$$\|\theta\|_{L^1_t \mathscr{B}^{1+\frac{2}{r}}_{r,1}} \le C_0 e^{C_0 t},$$

where C_0 is a constant depending on the initial data. From (15) and (16) we deduce

$$\|\omega^0\|_{L^\infty \cap L^{\bar{p}}} \le C_0 e^{C_0 t}.$$

Let us now turn to the estimate of $\|\omega(t)\|_{\mathscr{B}^0_{\infty,1}}$. Applying Proposition 2.3 to the vorticity equation and using Besov embeddings,

(19)
$$\|\omega\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{\infty,1}^{0}} \lesssim (\|\omega^{0}\|_{L^{\infty}} + \|\theta\|_{L_{t}^{1}\mathscr{B}_{\infty,1}^{1}}) (1 + \|\nabla v\|_{L_{t}^{1}L^{\infty}}) \\ \lesssim (\|\omega^{0}\|_{L^{\infty}} + \|\theta\|_{L_{t}^{1}\mathscr{B}_{r,1}^{1+\frac{7}{2}}}) (1 + \|\nabla v\|_{L_{t}^{1}L^{\infty}}).$$

On the other hand we have

$$\|\nabla v(t)\|_{L^{\infty}} \leq \|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} + \sum_{q \in \mathbb{N}} \|\Delta_{q} \nabla v(t)\|_{L^{\infty}}$$

$$\lesssim \|\nabla \Delta_{-1} v(t)\|_{L^{\bar{p}}} + \|\omega(t)\|_{\mathscr{B}^{0}_{\infty,1}}$$

$$\lesssim \|\omega(t)\|_{L^{\bar{p}}} + \|\omega\|_{\widetilde{L}^{\infty}_{t}\mathscr{B}^{0}_{\infty,1}}.$$

$$(20)$$

Putting together (18), (19) and (20) and using Gronwall's inequality gives

It remains to prove the third point of the proposition. The first smoothing effect on θ is a direct consequence of (1) and the above inequality,

$$\|\theta\|_{\widetilde{L}^1\mathscr{B}^2_{2,1}}\leq C_0e^{e^{C_0t}}.$$

For the second one we apply Proposition 2.2 to the temperature equation . To establish the velocity estimate we write

$$\|v\|_{\widetilde{L}^\infty_t\mathscr{B}^{1+\frac{2}{p}}_{p,1}}\lesssim \|v\|_{L^\infty_tL^p}+\|\omega\|_{\widetilde{L}^\infty_t\mathscr{B}^{\frac{2}{p}}_{p,1}}.$$

Using the velocity equation, we obatin

$$||v(t)||_{L^p} \lesssim ||v^0||_{L^p} + t||\theta^0||_{L^p} + \int_0^t ||\mathcal{P}(v \cdot \nabla v)(\tau)||_{L^p} d\tau.$$

where \mathcal{P} denotes Leray projector. It is well-known that Riesz transforms act continuously on L^p , with 1 , which yields

$$\|\mathcal{P}(v\cdot\nabla v)\|_{L^p}\lesssim \|v\cdot\nabla v\|_{L^p}\lesssim \|v\|_{L^p}\|\nabla v\|_{L^\infty}.$$

Thus we get in view of Gronwall's inequality and (21)

$$||v||_{L_t^{\infty}L^p} \leq C_0 e^{e^{cC_0t}}.$$

It remains to estimate $\|\omega(t)\|_{\mathscr{B}_{p,1}^{\frac{2}{p}}}$. We apply Proposition 2.2 to the vorticity equation combined with the temperature smoothing, (18) and (21),

$$\|\omega\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{p,1}^{\frac{2}{p}}} \lesssim e^{CV(t)}(\|\omega^{0}\|_{\mathscr{B}_{p,1}^{\frac{2}{p}}} + \|\theta\|_{L_{t}^{1}\mathscr{B}_{p,1}^{1+\frac{2}{p}}}).$$

5. Proof of Theorem 1.2

The case $p=+\infty$ is more subtle and the difficulty comes from the term $\|\nabla \Delta_{-1} v\|_{L^{\infty}}$, since Riesz transforms do not map L^{∞} to itself. To avoid this problem we use a frequency interpolation method. The main result is the following:

Proposition 5.1. There exists a constant C_0 depending on $||v^0||_{\mathscr{B}^0_{\infty,1}}$ and $||\theta^0||_{\mathscr{B}^\infty}$ such that for $t \in [0,\infty[$

$$\|\theta(t)\|_{L^{\infty}} \leq \|\theta^{0}\|_{L^{\infty}}; \quad \|\theta\|_{L_{t}^{1}\mathscr{B}_{\infty,1}^{1}} \leq C_{0}e^{C_{0}t^{3}} \quad and$$

$$\|v\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{\infty,1}^{1}} + \|\theta\|_{\widetilde{L}_{t}^{1}\mathscr{B}_{\infty,\infty}^{2}} + \|\theta(t)\|_{\mathscr{B}^{\infty}} \leq C_{0}e^{e^{C_{0}t^{3}}}.$$

Proof. The L^{∞} -bound of the temperature can be easily obtained from the maximum principle. To give the other bounds we start with the following estimate for the vorticity, which is again a direct consequence of the maximum principle,

(23)
$$\|\omega(t)\|_{L^{\infty}} \leq \|\omega^{0}\|_{L^{\infty}} + \|\nabla\theta\|_{L^{1}_{t}L^{\infty}} \leq \|\omega^{0}\|_{L^{\infty}} + \|\theta\|_{L^{1}_{t}\mathscr{B}^{1}_{\infty_{1}}}.$$

Let $N \in \mathbb{N}^*$, then we get by definition of Besov spaces and the maximum principle

$$\begin{aligned} \|\theta\|_{L^{1}_{t}\mathscr{B}^{1}_{\infty,1}} &= \sum_{q \leq N-1} 2^{q} \|\Delta_{q}\theta\|_{L^{1}_{t}L^{\infty}} + \sum_{q \geq N} 2^{q} \|\Delta_{q}\theta\|_{L^{1}_{t}L^{\infty}} \\ &\lesssim 2^{N} t \|\theta^{0}\|_{L^{\infty}} + \sum_{q \geq N} 2^{q} \|\Delta_{q}\theta\|_{L^{1}_{t}L^{\infty}}. \end{aligned}$$

By virtue of Theorem 3.1 one has

$$\begin{split} \|\theta\|_{L^1_t\mathscr{B}^1_{\infty,1}} & \lesssim & 2^N t \|\theta^0\|_{L^\infty} + 2^{-N} \|\theta^0\|_{L^\infty} \Big(1 + t + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty} + N \|\omega\|_{L^1_t L^\infty} \Big) \\ & \lesssim & 2^N t \|\theta^0\|_{L^\infty} + 2^{-N} \|\theta^0\|_{L^\infty} \Big(1 + t + \|\nabla \Delta_{-1} v\|_{L^1_t L^\infty} \Big) + \|\omega\|_{L^1_t L^\infty}. \end{split}$$

Choosing judiciously N we get

(24)
$$\|\theta\|_{L^{1}_{t}\mathscr{B}^{1}_{\infty,1}} \lesssim \|\omega\|_{L^{1}_{t}L^{\infty}} + t^{\frac{1}{2}} \|\theta^{0}\|_{L^{\infty}} \left(1 + t + \|\nabla \Delta_{-1}v\|_{L^{1}_{t}L^{\infty}}\right)^{\frac{1}{2}}$$

The following lemma gives an estimate of the low frequency of the velocity.

Lemma 5.2. *For all* $t \ge 0$ *, wed have*

$$\|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} \lesssim 1 + C_0 (1+t) \|\omega\|_{L^{\infty}_t L^{\infty}} + t \|\omega\|_{L^{\infty}_t L^{\infty}}^2,$$

with C_0 a constant depending on the norms of the initial data.

Proof. Fix $N \in \mathbb{N}^*$. Since $\Delta_{-1} = \Delta_{-1}(\dot{S}_{-N} + \sum_{q=-N}^0 \dot{\Delta}_q)$ then we have

$$\begin{split} \|\nabla \Delta_{-1} v\|_{L^{\infty}} & \lesssim \|\nabla \dot{S}_{-N} v\|_{L^{\infty}} + \sum_{q=-N}^{0} \|\nabla \dot{\Delta}_{q} v\|_{L^{\infty}} \\ & \lesssim 2^{-N} \|v\|_{L^{\infty}} + \sum_{-N}^{0} \|\dot{\Delta}_{q} \omega\|_{L^{\infty}} \\ & \lesssim 2^{-N} \|v\|_{L^{\infty}} + N \|\omega\|_{L^{\infty}}. \end{split}$$

Taking $N \approx \log(e + ||v||_{L^{\infty}})$ we get

(25)
$$\|\nabla \Delta_{-1} v\|_{L^{\infty}} \lesssim 1 + \|\omega\|_{L^{\infty}} \log(e + \|v\|_{L^{\infty}}).$$

It remains to estimate $||v||_{L^{\infty}}$. Let $M \in \mathbb{N}$ then we have

$$||v||_{L^{\infty}} \lesssim ||\dot{S}_{-M}v||_{L^{\infty}} + 2^M ||\omega||_{L^{\infty}}.$$

Now using the equation of the velocity we get

$$\begin{split} \|\dot{S}_{-M}v(t)\|_{L^{\infty}} & \leq & \|\dot{S}_{-M}v^{0}\|_{L^{\infty}} + \|\mathcal{P}\dot{S}_{-M}\theta\|_{L^{1}_{t}L^{\infty}} \\ & + & \int_{0}^{t} \|\dot{S}_{-M}\mathrm{div}\,\mathcal{P}(v\otimes v)(\tau)\|_{L^{\infty}}d\tau \\ & \lesssim & \|v^{0}\|_{L^{\infty}} + \|\Delta_{-1}\theta\|_{L^{1}_{t}\dot{\mathscr{B}}^{0}_{\infty,1}} + 2^{-M}\int_{0}^{t} \|v(\tau)\|_{L^{\infty}}^{2}d\tau. \end{split}$$

We have used the following inequality based on the uniform continuity with respect to q of the operator $\dot{\Delta}_q \mathcal{P}: L^\infty \to L^\infty$:

$$\|\dot{S}_{-M}\mathrm{div}\,\mathcal{P}(v\otimes v)\|_{L^\infty} \le \sum_{q\leq -M-1} \|\dot{\Delta}_q\mathrm{div}\,\mathcal{P}(v\otimes v)\|_{L^\infty} \ \lesssim \sum_{q\leq -M-1} 2^q \|v\otimes v\|_{L^\infty}.$$

Thus we obtain

$$\|v\|_{L^{\infty}} \lesssim \|v^{0}\|_{L^{\infty}} + \|\Delta_{-1}\theta\|_{L^{1}_{t}\mathscr{B}^{0}_{\infty,1}} + 2^{-M} \int_{0}^{t} \|v(\tau)\|_{L^{\infty}}^{2} d\tau + 2^{M} \|\omega(t)\|_{L^{\infty}}.$$

To estimate $\|\Delta_{-1}\theta\|_{L^1_t\dot{\mathscr{B}}^0_{\infty,1}}$ we use the temperature equation,

$$\begin{split} \|\dot{\Delta}_{q}\theta(t)\|_{L^{\infty}} & \leq \|\dot{\Delta}_{q}\theta^{0}\|_{L^{\infty}} + \|\dot{\Delta}_{q}(v\cdot\nabla\theta)\|_{L^{1}_{t}L^{\infty}} + \|\dot{\Delta}_{q}\Delta\theta\|_{L^{1}_{t}L^{\infty}} \\ & \lesssim \|\dot{\Delta}_{q}\theta^{0}\|_{L^{\infty}} + 2^{q}\|v\,\theta\|_{L^{1}_{t}L^{\infty}} + 2^{2q}\|\theta\|_{L^{1}_{t}L^{\infty}} \\ & \lesssim \|\dot{\Delta}_{q}\theta^{0}\|_{L^{\infty}} + 2^{q}\|\theta^{0}\|_{L^{\infty}}\|v\|_{L^{1}L^{\infty}} + 2^{2q}t\|\theta^{0}\|_{L^{\infty}}. \end{split}$$

Therefore we get

$$\sum_{q \le 0} \|\dot{\Delta}_q \theta(t)\|_{L^{\infty}} \lesssim \sum_{q \le 0} \|\dot{\Delta}_q \theta^0\|_{L^{\infty}} + t \|\theta^0\|_{L^{\infty}} + \|\theta^0\|_{L^{\infty}} \int_0^t \|v(\tau)\|_{L^{\infty}} d\tau.$$

Taking *M* such that

$$2^{2M} \approx \frac{\int_0^t \|v\|_{L^{\infty}}^2 d\tau}{\|\omega\|_{L^{\infty}}},$$

we find

$$\|v\|_{L^{\infty}} \lesssim C_0(1+t) + \|\theta^0\|_{L^{\infty}} \int_0^t \|v(\tau)\|_{L^{\infty}} d\tau + \|\omega(t)\|_{L^{\infty}}^{\frac{1}{2}} \left(\int_0^t \|v(\tau)\|_{L^{\infty}}^2 d\tau\right)^{\frac{1}{2}}.$$

According to Gronwall's inequality we get

(26)
$$||v||_{L^{\infty}} \le C_0 e^{C_0 t} e^{Ct ||\omega||_{L^{\infty}_t L^{\infty}}}.$$

Inserting this estimate into (25) we find the desired inequality.

Lemma 5.2 and (24) yield

$$\|\theta\|_{L_{t}^{1}\mathscr{B}_{\infty,1}^{1}}^{2} \leq C_{0}(1+t^{2}) + \|\omega\|_{L_{t}^{1}L^{\infty}}^{2} + C_{0}(1+t^{2}) \int_{0}^{t} \|\omega\|_{L_{\tau}^{\infty}L^{\infty}}^{2} d\tau$$

$$\leq C_{0}(1+t^{2}) \Big(1 + \int_{0}^{t} \|\omega\|_{L_{\tau}^{\infty}L^{\infty}}^{2} d\tau\Big).$$

Combining this estimate with (23) yields

$$\|\omega\|_{L^{\infty}_{t}L^{\infty}}^{2} \leq C_{0}(1+t^{2})\Big(1+\int_{0}^{t}\|\omega\|_{L^{\infty}_{\tau}L^{\infty}}^{2}d\tau\Big).$$

Applying Gronwall's inequality we get

$$\|\omega(t)\|_{L^{\infty}} \le C_0 e^{C_0 t^3}.$$

This gives

(28)
$$\|\theta\|_{L^1_t \mathscr{B}^1_{\infty,1}} \le C_0 e^{C_0 t^3}.$$

¿From Lemma 5.2 we have

$$\|\nabla \Delta_{-1} v(t)\|_{L^{\infty}} \le C_0 e^{C_0 t^3}.$$

Let us now turn to the estimate of the vorticity in $\mathscr{B}^0_{\infty,1}$ space. For this purpose we apply Proposition 2.3 to the vorticity equation, with $p=+\infty$ and r=1

(30)
$$\|\omega\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{\infty,1}^{0}} \lesssim (\|\omega^{0}\|_{L^{\infty}} + \|\nabla\theta\|_{L_{t}^{1}\mathscr{B}_{\infty,1}^{0}}) \left(1 + \int_{0}^{t} \|\nabla v(\tau)\|_{L^{\infty}} d\tau\right).$$

On the other hand we have by definition and from (29) and (30)

$$\begin{split} \|\nabla v(t)\|_{L^{\infty}} &\lesssim \|v\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{\infty,1}^{1}} &\lesssim \|\nabla \Delta_{-1}v\|_{L_{t}^{\infty}L^{\infty}} + \sum_{q \in \mathbb{N}} \|\Delta_{q}\omega\|_{L_{t}^{\infty}L^{\infty}} \\ &\lesssim C_{0}e^{C_{0}t^{3}} + \|\omega\|_{\widetilde{L}_{t}^{\infty}\mathscr{B}_{\infty,1}^{0}} \\ &\lesssim C_{0}e^{C_{0}t^{3}} \left(1 + \int_{0}^{t} \|v(\tau)\|_{\mathscr{B}_{\infty,1}^{1}} d\tau\right). \end{split}$$

It suffices now to use Gronwall's inequality.

To estimate $\|\theta\|_{L^1_t B^2_{\infty,\infty}}$ it suffices to combine (1) with Lipschitz estimate of the velocity. This concludes the proof of the proposition.

6. APPENDIX: COMMUTATOR ESTIMATE

Our task now is to prove the following commutator result.

Proposition 6.1. Let u be a smooth function and v be a divergence-free vector field of \mathbb{R}^d such that its vorticity $\omega := \text{curl } v \text{ belongs to } L^{\infty}$. Then we have for all $q \geq -1$,

$$\|[\Delta_q, v \cdot \nabla]u\|_{L^{\infty}} \lesssim \|u\|_{L^{\infty}} \Big(\|\nabla \Delta_{-1}v\|_{L^{\infty}} + (q+2)\|\omega\|_{L^{\infty}}\Big).$$

Proof. The main tool is Bony's decomposition [2]:

$$[\Delta_q, v \cdot \nabla] u = [\Delta_q, T_v \cdot \nabla] u + [\Delta_q, T_{\nabla} \cdot v] u + [\Delta_q, R(v \cdot \nabla, \cdot)] u,$$

where

$$[\Delta_q, T_v \cdot \nabla] u = \Delta_q (T_v \cdot \nabla u) - T_v \cdot \nabla \Delta_q u$$

$$[\Delta_q, T_{\nabla} \cdot v] u = \Delta_q (T_{\nabla u} \cdot v) - T_{\nabla \Delta_q u} \cdot v$$

$$[\Delta_q, R(v \cdot \nabla, .)] u = \Delta_q (R(v \cdot \nabla, u)) - R(v \cdot \nabla, \Delta_q u).$$

¿From the definition of the paraproduct and according to Bernstein inequalities

$$\|[\Delta_{q}, T_{\nabla \cdot} \cdot v]u\|_{L^{\infty}} \lesssim \sum_{|j-q|\leq 4} \|S_{j-1}\nabla u\|_{L^{\infty}} \|\Delta_{j}v\|_{L^{\infty}}$$

$$\lesssim \|u\|_{L^{\infty}} \|\omega\|_{L^{\infty}},$$
(32)

where we have used here the following equivalence: $\forall j \in \mathbb{N}$,

$$\|\Delta_j v\|_{L^\infty} \approx 2^{-j} \|\Delta_j \omega\|_{L^\infty}.$$

For the second term of the right-hand side of (31), we have

$$\begin{split} [\Delta_q, T_v \cdot \nabla] u &= \sum_{j \ge 1} [\Delta_q, S_{j-1} v \cdot \nabla \Delta_j] u, \\ &= \sum_{|j-q| \le 4} [\Delta_q, S_{j-1} v \cdot \nabla] \Delta_j u. \end{split}$$

To estimate each commutator, we write Δ_q as a convolution

$$[\Delta_q, S_{j-1}v \cdot \nabla]\Delta_j u(x) = 2^{qd} \int h(2^q(x-y)) \big(S_{j-1}v(y) - S_{j-1}v(x)\big) \cdot \nabla \Delta_j u(y) dy.$$

Thus, Young and Bernstein inequalities yield, for $|j - q| \le 4$,

Let us move to the remainder term. It can be written, in view of the definition, as

$$J_q:=[\Delta_q,R(v\cdot\nabla,.)]u=\sum_{j\geq q-4,j\geq 0\atop i\in\{\pm 1,0\}}[\Delta_q,\Delta_jv]\cdot\nabla\Delta_{j+i}u+\sum_{i\in\{0,1\}}[\Delta_q,\Delta_{-1}v]\cdot\nabla\Delta_{-1+i}u.$$

It follows from the zero divergence condition that

$$J_q = \sum_{i \in \{0,1\}} [\Delta_q, \Delta_{-1}v] \cdot \nabla \Delta_{-1+i}u + \sum_{j \geq q-4, j \geq 0 \atop i \in I+1} \operatorname{div} \left([\Delta_q, \Delta_j v] \otimes \Delta_{j+i}u \right) = J_q^1 + J_q^2.$$

By the same way as (33) one has

$$||J_{q}^{1}||_{L^{2}} \lesssim 2^{-q} ||\nabla \Delta_{-1} v||_{L^{\infty}} \sum_{i=0}^{1} ||\nabla \Delta_{-1+i} u||_{L^{\infty}}$$
$$\lesssim ||\nabla \Delta_{-1} v||_{L^{\infty}} ||u||_{L^{\infty}}.$$

To estimate the second term we use Bernstein inequality

$$\begin{split} \|J_{q}^{2}\|_{L^{2}} & \lesssim & \sum_{j \geq q-4, j \geq 0} 2^{q} \|\Delta_{j}v\|_{L^{\infty}} \|\Delta_{j+i}u\|_{L^{\infty}} \\ & \lesssim & \|u\|_{L^{\infty}} \sum_{j \geq q-4} 2^{q-j} \|\Delta_{j}\omega\|_{L^{\infty}} \\ & \lesssim & \|\omega\|_{L^{\infty}} \|u\|_{L^{\infty}}, \end{split}$$

This completes the proof of Proposition 6.1.

REFERENCES

[1] H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Diff. Equa., 233, 1 (2007) 199-220.

- [2] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. de l' Ecole Norm. Sup., **14** (1981) 209-246.
- [3] J. T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for 3-D Euler equations, Comm. Math. Phys **94** (1984) 61-66.
- [4] J. R. Cannon, E. Dibenedetto, *The initial value problem for the Boussinesq equations with data in L^p*, in Approximation Methods for Navier-Stokes Problems, Lecture Notes in Math. **771**, Springer, Berlin 1980, 129-144.
- [5] D. Chae, Global regularity for the 2-D Boussinesq equations with partial viscous terms, Advances in Math., 203, 2 (2006) 497-513.
- [6] J.-Y. Chemin, Perfect incompressible Fluids, Oxford University Press.
- [7] J.-Y. Chemin, Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999)
 27-50.
- [8] R. Danchin, M. Paicu, Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux, to appear in Bull. S. M. F.
- [9] B. Guo, Spectral method for solving two-dimensional Newoton-Boussinesq equation, Acta Math. Appl. Sinica, 5 (1989) 201-218.
- [10] T. Hmidi, Régularité höldérienne des poches de tourbillon visqueuses, J. Math. Pures Appl. (9) 84, 11 (2005) 1455-1495.
- [11] T. Hmidi, Poches de tourbillon singulières dans un fluide faiblement visqueux. Rev. Mat. Iberoamericana, 22, 2 (2006) 489-543.
- [12] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Diff. Equations, 12, 4 (2007) 461-480.
- [13] T. Hmidi, S. Keraani, *Incompressible viscous flows in borderline Besov spaces*, to appear in Arch. Ratio. Mech. Ana.
- [14] T. Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete and Continuous Dynamical Systems, 12, 1 (2005) 1-12.
- [15] O. Sawada, Y. Taniuchi, On the Boussinesq flow with nondecaying initial data, Funkcial. Ekvac. 47, 2 (2004) 225-250.
- [16] M. Vishik, Hydrodynamics in Besov Spaces, Arch. Rational Mech. Anal 145(1998) 197-214.