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Abstract

We study the Weyl asymptotics of the distribution of eigenvalues
of non-self-adjoint (pseudo)differential operators with small random
multiplicative perturbations in arbitrary dimension. We were led to
quite essential improvements of many of the probabilistic aspects.

Résumé
Nous étudions l’asymptotique de Weyl de la distribution des valeurs

propres d’opérateurs (pseudo-)différentiels avec des petites perturba-
tions aléatoires multiplicatives en dimension quelconque. Nous avons
été amenés à faire des améliorations essentielles des aspects proba-
bilistes.

1 Introduction

Following works of E.B. Davies [2], M. Zworski [15] and others [3, 10] we
know that quasimode constructions, going back to Hörmander (1960), can
be used to show that non-self-adjoint pseudodifferential operators in general
have wildly growing resolvents when the spectral parameter is in the interior
of the range of the principal symbol. Correspondingly, the spectrum will in
general be very unstable under small perturbations of the operator.

M. Hager [7] studied certain classes of semi-classical (pseudo)differential
operators P on R with small random perturbations. She showed that with
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probability tending to 1 when h → 0, the eigenvalues in the interior of the
range of the leading symbol p distribute according to the Weyl law (well-
known in the self-adjoint case, see [4] and further references there for the
semi-classical case):

#(σ(Pδ) ∩W ) =
1

2πh
(vol (p−1(W ) + o(1)), h → 0, (1.1)

for natural classes of domains W with smooth boundary, where Pδ = P +
δQω, and δQω is the small random perturbation, σ(Pδ) is the spectrum of
Pδ (here discrete) and #(σ(Pδ) ∩ W ) is the number of eigenvalues in W ,
counted with their algebraic multiplicity. For the more concrete examples,
she took Qωu(x) = qω(x)u(x), where qω is a random linear combination of
eigenfunctions of an auxiliary self-adjoint operator, with coefficients given by
independent Gaussian random variables.

For example, if P = 1
2
((hDx)

2 + ix2), we have p(x, ξ) = ξ2 + ix2, the
range of p is equal to [0,∞[+i[0,∞[ while the spectrum of P is given by
σ(P ) = {eiπ/4(k + 1

2
)h; k = 0, 1, 2, ...}, so (1.1) does not hold as soon as the

open set W intersects the range of p but not eiπ/4[0,∞[. On the other hand
the results of Hager give (1.1) with probability close to 1 for Pδ for domains
W b]0,∞[+i]0,∞[ with smooth boundary.

In the above example the symbol is even in ξ and some additional symme-
try seems to be needed in the case of multiplicative perturbations, as can be
seen from the simple example when P = hDx+g(x) on S1 where g is smooth.

Then the spectrum is contained in the line =z = (2π)−1
∫ 2π

0
=g(x)dx while

the range of p(x, ξ) = ξ + g(x) is the band given by inf =g ≤ =z ≤ sup=g,
so clearly we will not get the Weyl law for small multiplicative random per-
turbations of P , since such a perturbation will only displace slightly the line
containing the spectrum.

W. Bordeaux Montrieux [1] adapted some of the results of Hager to the
case of the compact manifold S1 and extended them to the case of systems.
He also considered elliptic differential operators on S1 in the usual sense
(h = 1) and showed with suitable symmetry assumptions on p and for a
suitable class of random perturbations, that the Weyl law holds almost surely
for the distribution of large eigenvalues in closed sectors, contained in the
interior of the (union of the) range(s) of (the eigenvalues of) p.

In [8], we passed to higher dimensions and showed for quite general P on
Rn, that we still have (1.1) with probability tending to 1, when h → 0. In
this case it was conveneient to have random perturbations with Qω of the
form

Qωu(x) = S
∑

j,k∈N

αj,k(ω)(Tu|fk)ej, (1.2)
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where S, T are elliptic h-pseudodifferential operators of Hilbert-Schmidt class,
αj,k(ω) are independent N (0, 1)-laws and e0, e1, ..., f0, f1, ... are orthonormal
bases in L2(Rn) (the choice of which does not affect the class of operators
of the form (1.2)). Since δ is very small, the interpretation of this result
is that we have Weyl asymptotics for “most” h-pseudodifferential operators.
However, since our perturbations are not multiplicative, the same (rough)
conclusion about h-differential operators with symmetry could not be made.

In this talk we shall describe the recent result from [13] that deals with
multiplicative perturbations in any dimension. Several elements of [8] carry
over to the multiplicative case, while the study of a certain effective Hamil-
tonian, here a finite random matrix, turned out to be more difficult. Because
of that we were led to abandon the fairly explicit calculations with Gaussian
random variables and instead resort to arguments from complex analysis. A
basic difficulty was then to find at least one perturbation within the class of
permissible ones, for which we have a lower bound on the determinant of the
associated effective Hamiltonian. This is achieved via an iterative (“renor-
malization”) procedure, with estimates on the singular values at each step.
An advantage with the new approach is that we can treat much more general
random perturbations.

2 The result

We first specify the assumptions about the unperturbed operator. Let m ≥ 1
be an order function on R2n in the sense that

m(ρ) ≤ C0〈ρ− µ〉N0m(µ), ρ, µ ∈ R2n

for some fixed positive constants C0, N0, where we use the standard notation
〈ρ〉 = (1 + |ρ|2)1/2.

Let

p ∈ S(m) := {a ∈ C∞(R2n); |∂α
ρ a(ρ)| ≤ Cαm(ρ), ∀ρ ∈ R2n, α ∈ N2n}.

We assume that p − z is elliptic (in the sense that (p − z)−1 ∈ S(m−1))
for at least one value z ∈ C. Put Σ = p(R2n) = p(R2n) ∪ Σ∞, where Σ∞
is the set of accumulation values of p(ρ) near ρ = ∞. Let P (ρ) = P (ρ; h),
0 < h ≤ h0 belong to S(m) in the sense that |∂α

ρ P (ρ; h)| ≤ Cαm(ρ) as
above, with contants that are independent of h. Assume that there exist
p1, p2, ... ∈ S(m) such that

P ∼ p + hp1 + ... in S(m), h → 0.

Exp. no XX— Weyl asymptotics for non-self-adjoint operators
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Let Ω b C be open, simply connected, with Ω ∩ Σ∞ = ∅, Ω 6⊂ Σ. Then for
h > 0 small enough, the spectrum σ(P ) of P is discrete in Ω and constituted
of eigenvalues of finite algebraic multiplicity ([7, 8]). We will also need the
symmetry assumption,

P (x,−ξ; h) = P (x, ξ; h). (2.1)

Let Vz(t) := vol ({ρ ∈ R2n; |p(ρ) − z|2 ≤ t}). For κ ∈]0, 1], z ∈ Ω, we
consider the property that

Vz(t) = O(tκ), 0 ≤ t � 1. (2.2)

Let K ⊂ Rn
x be a compact neighborhood of the x-space projection of

p−1(Ω). The random potential will be of the form

qω(x) = χ0(x)
∑

0<µk≤L

αk(ω)εk(x), |α|CD ≤ R, R � h−(sM−κ+3n/2) (2.3)

where εk is the orthonormal basis of eigenfunctions of h2R̃, and R̃ is a posi-
tive elliptic h-independent 2nd order operator with smooth coefficients on a
compact manifold of dimension n, containing an open set diffeomorphic to
an open neighborhood of supp χ0. Here χ0 ∈ C∞

0 (Rn) is equal to 1 near K.

µ2
k denote the corresponding eigenvalues, so that h2R̃εk = µ2

kεk. We choose
L = L(h) in the interval

h
κ−3n

s−n
2−ε � L ≤ h−M , M = Const ≥ 3n− κ

s− n
2
− ε

, (2.4)

for some ε ∈]0, s − n
2
[, s > n

2
, so by Weyl’s law for the large eigenvalues of

elliptic self-adjoint operators, the dimension D is of the order of magnitude
O((L/h)n). We introduce the small parameter δ = τ0h

N1+n, 0 < τ0 ≤
√

h,
where N1 := 2n− κ + (s + n

2
+ ε)M . The randomly perturbed operator is

Pδ = P + δhN1qω =: P + δQω. (2.5)

The random variables αj(ω) will have a joint probability distribution

P (dα) = C(h)eΦ(α;h)L(dα), (2.6)

where for some N5 > 0,
|∇αΦ| = O(h−N5), (2.7)

and L(dα) is the Lebesgue measure. (C(h) is the normalizing constant,
assuring that the probability of BCD(0, R) is equal to 1.)
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We also need the parameter

ε0(h) = (hκ + hn ln
1

h
)(ln

1

τ0

+ (ln
1

h
)2) (2.8)

and assume that τ0 = τ0(h) is not too small, so that ε0(h) is small. The main
result of [13] is:

Theorem 2.1 Under the assumptions above, let Γ b Ω have smooth bound-
ary, let κ ∈]0, 1] be the parameter in (2.3), (2.4), (2.8) and assume that (2.2)
holds uniformly for z in a neighborhood of ∂Γ. Then there exists a constant
C > 0 such that for C−1 ≥ r > 0, ε̃ ≥ Cε0(h) we have with probability

≥ 1− Cε0(h)

rhN5+(n+s)M+ 7n
2
−κ

e
− eε

Cε0(h) (2.9)

that:

|#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))| ≤ (2.10)

C

hn

(
ε̃

r
+ CfM(r

fM + ln(
1

r
)vol (p−1(∂Γ + D(0, r))))

)
,

for every M̃ > 0, where CfM depends on M̃ but not on the other parameters.
Here #(σ(Pδ) ∩ Γ) denotes the number of eigenvalues of Pδ in Γ, counted
with their algebraic multiplicity.

When κ > 1/2 the second volume in (2.10) is O(r2κ−1) and choosing M̃
sufficiently large, and r to be equal to a suitable power of ε̃, we see that the
right hand side of (2.10) is O(ε̃α/hn) for some α > 0. We therefore have
Weyl asymptotics in that case, provided that ε̃ is small. If we assume that
τ0 ≥ exp(−h−κ0), 0 < κ0 < κ, then ε0(h) = O(hκ−κ0 ln 1

h
) and it suffices to

choose ε̃ = heκ, 0 < κ̃ < κ− κ0. With these choices the lower bound (2.9) is
≥ 1− Ch−N exp(−heκ−(κ−κ0)(ln 1

h
)−1), which is very close to 1 in the limit of

small h. When 0 < κ ≤ 1/2 it may still happen that the volume in (2.10) is
rβ for some β > 0 and we get the same conclusion.

As in [8] we also have a result valid simultaneously for a family C of
domains Γ ⊂ Ω satisfying the assumptions of Theorem 2.1 uniformly in the
natural sense: With a probability

≥ 1− O(1)ε0(h)

r2hN5+(n+s)M+ 7n
2
−κ

e
− eε

Cε0(h) , (2.11)

the estimate (2.10) holds simultaneously for all Γ ∈ C.

Exp. no XX— Weyl asymptotics for non-self-adjoint operators
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Remark 2.2 When R̃ has real coefficients, we may assume that the eigen-
functions εj are real. Then Theorem 2.1 remains valid if we restrict qω to be
real.

Example 2.3 Let 1 ≤ m0(x) be an order function on Rn and let V ∈ S(m0)
be a smooth potential which is elliptic in the sense that |V (x)| ≥ m0(x)/C
and assume that −π + ε0 ≤ arg (V (x)) ≤ π − ε0 for some fixed ε0 > 0.
Then it is easy to see that p(x, ξ) := ξ2 + V (x) is an elliptic element of
S(m), where m(x, ξ) is the order function m0(x) + ξ2. Let Σ∞(V ) be the
set of accumulation points of V (x) at infinity and define Σ(V ) = V (Rn) =
V (Rn) ∪ Σ∞(V ). Then with Σ and Σ∞ defined for p as above, we get Σ =
Σ(V ) + [0, +∞[, Σ∞ = Σ∞(V ) + [0, +∞[. Using the fact that ∂2

ξ1
<p ≥ 1/C,

we further see that if K̃ ⊂ C is compact and disjoint from Σ∞, then (2.2)

holds uniformly for z ∈ K̃ with κ = 1/4. The non-self-adjoint Schrödinger
operator P := −h2∆ + V (x) has P (x, ξ) = p(x, ξ) as its symbol and (2.1) is
fulfilled. This means that Theorem 2.1 is applicable.

In the remainder of this text, we shall describe the ideas of the proof. The
strategy is the same as in [8], but there are also some essential differences.

3 Some Hs properties

Let Hs = 〈hD〉−sL2(Rn) be the semi-classical Sobolev space of order s. For
s > n

2
, we have ‖u‖L∞ ≤ Ch−n/2‖u‖Hs , ‖uv‖Hs ≤ Ch−n/2‖u‖Hs‖v‖Hs , for all

u, v ∈ Hs.
We can also define Hs(Ω̃) when Ω̃ is a compact n-dimensional manifold

by using local coordinates and a partition of unity. Using essentially the
functional calculus of R. Seeley [11], we get that Hs(Ω̃) = (1+h2R̃)−s/2L2(Ω̃)

where R̃ is as in Section 2. It follows that for qω as in (2.3), we have for
s1 ∈ R,

‖qω‖2
Hs1 �

∑
0<µk≤L

|αk|2〈µk〉2s1 .

If s1 ≥ 0, we get, using that |α| ≤ R: ‖qω‖Hs1 ≤ CRLs1 . In particular with
our choices of parameters, we have for s1 = s > n/2:

‖δhN1qω‖Hs ≤ Cτ0h
7n
2
−κ+(n+2ε)M � 1. (3.1)

4 Grushin problems and strategy of [7, 8]

We construct p̃ ∈ S(m), equal to p outside a compact set, such that if

P̃ = P + (p̃ − p), then P̃ − z has a bounded inverse in Op (S( 1
m

)) for every

Johannes Sjöstrand
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z ∈ Ω. The eigenvalues of P in Ω coincide with the zeros of the holomorphic
function,

Ω 3 z 7→ det(P̃ − z)−1(P − z) = det(1− (P̃ − z)−1(P̃ − P )).

If we introduce a more general perturbed operator Pδ = P + δQ, Qu(x) =

q(x)u(x), ‖q‖Hs ≤ 1, then for δ � hn/2, h � 1, P̃δ := P̃ + δQ has no

spectrum in Ω and (P̃δ− z)−1 is bounded. The eigenvalues of Pδ in Ω are the
zeros of

Ω 3 z 7→ det(Pδ,z),

where
Pδ,z = (P̃δ − z)−1(Pδ − z) = 1− (P̃δ − z)−1(P̃ − P ).

Put Pz = P0,z.
If H is a complex separable Hilbert space and A : H → H a bounded

operator, we let s1(A), s2(A), ... denote the singular values of A, i.e. the
decreasing sequence of eigenvalues of (A∗A)1/2 starting with s1(A) = ‖A‖
(and possibly continued by an infinite repetition of sup σess((A

∗A)1/2) when
there are only finitely many discrete eigenvalues above σess((A

∗A)1/2)). When
A is a Fredholm operator of index 0 we let 0 ≤ t1(A) ≤ t2(A) ≤ ... denote the
increasing sequence of discrete eigenvalues of (A∗A)1/2 (possibly continued as
an infinite repetition of inf σess((A

∗A)1/2), when there are only finitely many
such eigenvalues below the essential spectrum).

For 0 < α � 1, let 0 ≤ t1(Pz) ≤ t2(Pz) ≤ ... ≤ tN(Pz) be the singu-
lar values of Pz in [0,

√
α[ and let e1, ..., eN be a corresponding orthonormal

family of eigenfunctions of P ∗
z Pz. The t2j are also the eigenvalues of PzP

∗
z in

[0, α[, and we can choose a corresponding orthonormal family of eigenfunc-
tions f1, ..., fN so that Pzej = tjfj, P ∗

z fj = tjej. Define R+ : L2 → CN ,

R− : CN → L2 by R+u(j) = (u|ej), R−u− =
∑N

1 u−(j)fj. Then

Pz =

(
Pz R−
R+ 0

)
: L2 ×CN → L2 ×CN

is bijective and the inverse

E0(z) =

(
E0 E0

+

E0
− E0

−+

)
is quite explicit: E0 can be identified with P−1

z : (f1, ..., fN)⊥ → (e1, ..., eN)⊥,
E0

+v+ =
∑

v+(j)ej, E0
−v(j) = (v|fj), E0

−+ = diag (tj). In particular, ‖E0‖ ≤
1/tN+1 ≤ 1/

√
α, ‖E0

±‖ ≤ 1, ‖E0
−+‖ ≤ tN .

Exp. no XX— Weyl asymptotics for non-self-adjoint operators
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Now Pδ,z = Pz + O(‖δQ‖) = Pz + O(δh−n/2) and if the norm of the
perturbation is �

√
α, the perturbed Grushin matrix

Pδ =

(
Pz,δ R−
R+ 0

)
has a bounded inverse

Eδ(z) =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
and we have Neumann series expansions for the different entries, in particular,

Eδ
−+ = E0

−+ + δE0
−Q̃E0

+ + δ2E0
−Q̃E0Q̃E0

+ + ..., (4.1)

where Q̃ := ((P̃δ − z)−1 − (P̃ − z)−1)(P̃ − P ).
The strategy in [8] (close to the one of [7]) was the following:

• Step 1. Show that with probability close to 1, we have for all z in a
neighborhood of Γ that

ln | det Pδ,z| ≤
1

(2πh)n
(

∫
ln |pz(ρ)|dρ + o(1)), (4.2)

where pz(ρ) = (p̃(ρ)− z)−1(p(ρ)− z) is the principal symbol of Pz.

• Step 2. Show that for each z in a neighborhood of Γ we have with
probability close to one that

ln | det Pδ,z| ≥
1

(2πh)n
(

∫
ln |pz(ρ)|dρ + o(1)). (4.3)

Here the probability is so close to one that we can take a finite set
of z, of cardinal not growing too fast when h → 0, and have (4.3)
similtaneously for all z in that set, still with probability close to 1 for
small h.

• Step 3. Apply results from [6, 7, 8] about counting zeros of holomor-
phoic functions with exponential growth near the boundary of Γ. Very
roughly, these results say that if u(z) = u(z; h̃) is holomorphic with
respect to z in a neighborhood of Γ such that |u(z)| ≤ exp(φ(z)/h)
near the boundary of Γ and such that we have a reverse estimate
|u(zj)| ≥ exp((φ(zj)− ”small”)/h) for a finite set of points, distributed
“densely” along the boundary, then the number of zeros of u in Γ is
equal to (2πh̃)−1(

∫∫
Γ
∆φ(z)d<zd=z + ”small”). This is applied with

h̃ = (2πh)n, φ(z) =
∫

ln |pz(ρ)|dρ.

Johannes Sjöstrand
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The first step could be carried out along the lines of [9] with some sharp-
ening in order to improve the remainder estimates.

The second step was more delicate. Using some calculations from [14] we
first established under more general assumptions, that

det Pδ,z = detPδ,z det Eδ
−+ (4.4)

and showed by using some functional calculus that with α = h:

ln | detPδ,z| =
1

(2πh)n
(

∫
ln |pz(ρ)|dρ + “small”). (4.5)

Hence the problem is reduced to showing that

ln | det Eδ
−+| ≥ −“small”

(2πh)n
(4.6)

with a probability very close to 1. In [8] we did so by using the Gaussian
nature of the random variables. Using (4.1) and especially the second term
there, we showed that Eδ

−+ is close to a random matrix with independent
Gaussian entries, for which the probability of smallness of the determinant
could be estimated. An essential feature is that the size N of Eδ

−+ satisfies

N = O(hκ−n) � h−n, (4.7)

which is heuristically clear, since the volume of the set of ρ for which |pz(ρ)| ≤√
α =

√
h, is O(hκ)

In the case of multiplicative perturbations we follow the same strategy.
The steps 1 and 3 work quite the same way and again we have (4.4), (4.5)
so the problem is to get (4.6) with probability close to 1. Here an essential
difference seems to appear since we were not able to approximate Eδ

−+ by
an easily understandable random matrix, even when assuming the αj to be
independent and Gaussian. We chose a different and less explicit method.
The first step is to construct at least one admissible perturbation of the
form (2.3) for which | det Eδ

−+| is not too small, and the second step is to
use arguments of complex analysis in the variables α = α(ω), to show that
| det Eδ

−+| is not too small for “most” α.

5 Construction of a special admissible per-

turbation

We can show that tj(Pδ,z) � tj(E
δ
−+) for 1 ≤ j ≤ N(α), so the problem is

to construct a perturbation qω of the form (2.3) for which we have a nice

Exp. no XX— Weyl asymptotics for non-self-adjoint operators
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lower bound on
∏N

1 tj(Pδ,z). Using simple inequalities between the singular
values, the problem can further be reduced to that of finding a perturbation
for which

∏N
1 tj(Pδ−z) is not too small and this can be done using a Grushin

problem for Pδ−z associated to the singular values tj(P−z) in [0,
√

α] whose
number is roughly equal to N(α). We now have operator matrices,

P =

(
P − z R−
R+ 0

)
, Pδ =

(
Pδ − z R−

R+ 0

)
,

constructed in the same way as for Pz and Pδ,z, and the problem is then to find
Pδ so that the singular values of the new matrix Eδ

−+, appearing in the inverse
of the second matrix above, is not too small. Again, we have the expansion
(4.1), now with Q̃ replaced by −Q = −Qω, given by Qωu(x) = hN1qω(x)u(x).
As can be expected, the main problem is then to construct q so that we get
a nice lower bound on the singular values of Mq := E0

−QE0
+, where E0

± now
denote the operators that appear at the appropriate places in the inverse of
P . The matrix of Mq is given by

Mq;j,k =

∫
q(x)ek(x)fj(x)dx,

where e1, ..., eN and f1, ..., fN are orthonormal systems of eigenfunctions of
(P −z)∗(P −z) and (P −z)(P −z)∗ respectively. The symmetry assumption
(2.1) is equivalent to the statement that P ∗ = ΓPΓ on the operator level,
where Γu = u, and (up to the use of a unitary map) we may assume that
fj = ej, so

Mq;j,k =

∫
q(x)ej(x)ek(x)dx.

We start by looking for q as a sum of N Dirac masses. We have the
following general result:

Lemma 5.1 Let Ω b Rn be open and let e1, ..., eN ∈ C(Ω) ∩ L2(Ω). Let
L ⊂ CN be a linear subspace of dimension M−1, for some M ∈ {1, 2, ..., N}.
Then there exists x ∈ Ω such that

dist (−→e (x), L)2 ≥ 1

vol (Ω)
tr ((1− πL)EΩ),

where EΩ = ((ek|ek)L2(Ω)) and πL is the orthogonal projection CN → L. Here,
−→e (x) = (e1(x), ..., eN(x))t.

Proof A straight forward calculation gives,∫
Ω

dist (−→e (x), L)2dx = tr ((1− πL)EΩ).

Johannes Sjöstrand
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2

Continuing the general discussion, let 0 ≤ ε1 ≤ ε2 ≤ ... ≤ εN denote the
eigenvalues of EΩ. Using the mini-max principle, we can show that

inf
dim L=M−1

tr ((1− πL)EΩ) = ε1 + ... + εN−M+1 =: EM .

Using this and the lemma we can choose successively a1, a2, ..., eN ∈ Ω such
that

‖−→e (a1)‖2 ≥ E1

vol (Ω)
,

dist (−→e (a2),C−→e (a1))
2 ≥ E2

vol (Ω)
,

...

dist (−→e (aM),C−→e (a1)⊕ ...⊕C−→e (aM−1))
2 ≥ EM

vol (Ω)
,

...

Consider the N ×N matrix E given by the columns −→e (a1), ...,−→e (aN). Ex-
pressing these columns in the Gram-Schmidt orthonormalization of the basis
−→e (a1), ...,−→e (aN), we see that

| det E| = |c1 · ... · cN |, cj = dist (−→e (aj),C−→e (a1)⊕ ...⊕C−→e (aj−1)),

so

| det E| ≥ (E1E2...EN)
1
2

(vol (Ω))
N
2

.

Now, with q =
∑N

1 δ(x− aj) we get

Mq = Et ◦ E,

so

det Mq = (det E)2, | det Mq| ≥
E1 · ... · EN

vol (Ω)N
.

When the ej form an orthonormal system in L2(Ω), we have EΩ = 1 and

Ej = j, E1 · ... ·EN = N !. If sj = sj(Mq), then using that | det Mq| =
∏N

1 sj,
we get

sk ≥ s1(
N∏
1

(
Ej

s1vol (Ω)
))

1
N−k+1 .

Returning to P and more generally to Pδ we can now

• approximate δ-measures in H−s with admissible potentials as in (2.3),
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• establish nice Hs-properties for the ej,

• show that EΩ = 1 + O(h∞) if Ω is a neighborhood of the x-space
projection of supp (p̃− p),

and obtain nice estimates on Mq:

Proposition 5.2 We can find an admissible potential q as in (2.3) such that
the matrix Mq satisfies,

‖Mq‖ ≤ CNh−n, (5.1)

sk(Mq) ≥
(1 +O(h∞))

C
k−1

N−k+1 (vol (Ω))
N

N−k+1

(
hn

N

) k−1
N−k+1

(N !)
1

N−k+1 − CεL
−(s−n

2
−ε)h−nN.

(5.2)

Here the negative term in (5.2) corresponds to losses appearing when we ap-
proximate our delta potential by an admissible one. Using Stirling’s formula,
we get for k ≤ N/2 that

sk(Mq) ≥
hn

C
− CεL

−(s−n
2
−ε) N

hn
.

Here N = O(hκ−n) and by the choice of L, we get

sk(Mq) ≥
hn

C
, 1 ≤ k ≤ N

2
, (5.3)

for a new constant C > 0.
Under the assumptions of Theorem 2.1, we fix θ ∈]0, 1

4
[. Consider the

Grushin problem for P with
√

α replaced by a parameter τ0 = O(
√

h), so
that tN(P ) < τ0 ≤ tN+1(P ). If N2 = 2(N1 + n) + ε0 with ε0 > 0 fixed, we
consider two cases:

• Case 1. sj(E−+) ≥ τ0h
N2 for 1 ≤ j ≤ N − [(1 − θ)N ]. Then we keep

P unchanged so that the “perturbation” is Pδ = P , and replace N by
Ñ = [(1− θ)N ]. Then, we get a new τ̃0 := t eN+1(P ) ≥ τ0h

N2 .

• Case 2. sj(E−+) < τ0h
N2 for some j ≤ N− [(1−θ)N ]. Then we replace

P by Pδ = P + δhN1eC q = P +δQ with q as above. Using the development

(4.1), or rather its analogue with Q̃ replaced by −Q, and well-known
inequalities for the singular values of sums of operators ([5]), we get

sν(E
δ
−+) ≥ 8τ0h

N2 , 1 ≤ ν ≤ N − [(1− θ)N ],

tj(Pδ) ≥ τ0h
N2 , [(1− θ)N ] + 1 ≤ j ≤ N.

Moreover, the perturbation is so small that it will not modify very
much the tj(P ) for j > N , since these values are already ≥ τ0.
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We repeat the procedure with (P, N, τ0) replaced by (Pδ, [(1−θ)N ], τ0h
N2),

so in the next step we pose a Grushin problem for Pδ − z instead of P − z.
Again, we consider two cases and add a new (smaller) perturbation in the
second case. (Once N reaches a fixed bounded value, we decrease N by one
unit during the last steps of the iteration.) We end up with a perturbation
Pδ for which

tν(Pδ − z) ≥ (1−O(hN1+n))τ
(k)
0 , for N (k) < ν ≤ N (k−1),

where τ
(k)
0 = τ0h

kN2 , and N (k) = [(1 − θ)N (k−1)] as long as N (k−1) � 1 and
N (k) = N (k−1) − 1 at the end of the iteration until we reach 0. This can be
used to prove:

Proposition 5.3 There exists an admissible perturbation Pδ such that

ln | det Pδ,z| ≥
1

(2πh)n
(

∫
ln |pz(ρ)|dρ−O((hκ + hn ln

1

h
)(ln

1

τ0

+ (ln
1

h
)2))).

6 End of step 2

Still with z fixed in a small neighborhood of the boundary of Γ, we consider
the holomorphic function

F (α) = (det Pδ,z) exp(− 1

(2πh)n

∫∫
ln |pz|dxdξ), (6.1)

Then we can establish the upper bound,

ln |F (α)| ≤ ε0(h)h−n, |α| < 2R, (6.2)

and for one particular value α = α0 with |α0| ≤ 1
2
R, we also have the lower

bound,
ln |F (α0)| ≥ −ε0(h)h−n, (6.3)

where we put

ε0(h) = C

(
(hκ + hn ln

1

h
)(ln

1

τ0

+ (ln
1

h
)2)

)
. (6.4)

Let α1 ∈ CD with |α1| = R and consider the holomorphic function of one
complex variable

f(w) = F (α0 + wα1). (6.5)
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We will mainly consider this function for w in the disc determined by the
condition |α0 + wα1| < R:

Dα0,α1 :

∣∣∣∣w +

(
α0

R
|α

1

R

)∣∣∣∣2 < 1−
∣∣∣∣α0

R

∣∣∣∣2 +

∣∣∣∣(α0

R
|α

1

R

)∣∣∣∣2 =: r2
0, (6.6)

whose radius is between
√

3
2

and 1.
From (6.2), (6.3) we get

ln |f(0)| ≥ −ε0(h)h−n, ln |f(w)| ≤ ε0(h)h−n. (6.7)

By (6.2), we may assume that the last estimate holds in a larger disc, say
D(−(α0

R
|α1

R
), 2r0). Let w1, ..., wM be the zeros of f in D(−(α0

R
|α1

R
), 3r0/2).

Then it is standard to get the factorization

f(w) = eg(w)

M∏
1

(w − wj), w ∈ D(−(
α0

R
|α

1

R
), 4r0/3), (6.8)

together with the bounds

|g(w)| ≤ O(ε0(h)h−n), M = O(ε0(h)h−n). (6.9)

See for instance Section 5 in [12] where further references are also given.
For 0 < ε � 1, put

Ω(ε) = {r ∈ [0, 1[; ∃w ∈ Dα0,α1 such that |w| = r and |f(w)| < ε}. (6.10)

If r ∈ Ω(ε) and w is a corresponding point in Dα0,α1 , we have with rj = |wj|,
M∏
1

|r − rj| ≤
M∏
1

|w − wj| ≤ ε exp(O(ε0(h)h−n)). (6.11)

Then at least one of the factors |r−rj| is bounded by (εeO(ε0(h)h−n))1/M . In
particular, the Lebesgue measure λ(Ω(ε)) of Ω(ε) is bounded by 2M(εeO(ε0(h)h−n))1/M .
Noticing that the last bound increases with M when the last member of (6.11)
is ≤ 1, we get

Proposition 6.1 Let α1 ∈ CD with |α1| = R and assume that ε > 0 is small
enough so that the last member of (6.11) is ≤ 1. Then

λ({r ∈ [0, 1]; |α0 + rα1| < R, |F (α0 + rα1)| < ε}) ≤ (6.12)

ε0(h)

hn
exp(O(1) +

hn

O(1)ε0(h)
ln ε).

Here, the symbol O(1) in the denominator indicates a bounded positive quan-
tity.
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Writing α = α0 + Rrα1, 0 ≤ r < r(α1), α1 ∈ S2D−1, we get

P (dα) = C̃(h)eφ(r)r2D−1drS(dα1), (6.13)

where φ(r) = φα0,α1(r) = Φ(α0 + rRα1) so that φ′(r) = O(h−N6), N6 =

N5 + N4. Here
√

3
2
≤ r(α1) ≤ 1, R = O(h−N4), N4 = sM − κ + 3n

2
, where M

is the constant in (2.4). S(dα1) denotes the Lebesgue measure on S2D−1.
Comparing this measure with the Lebesgue measure in r, we get an es-

timate similar to (6.12) for the normalized radial part of the measure (6.13)
and after integration with respect to α1, we get

Proposition 6.2 Let ε > 0 be small enough for the right hand side of (6.11)
to be ≤ 1. Then

P (|F (α)| < ε) ≤ O(1)h−N7
ε0(h)

hn
exp(

hn

O(1)ε0(h)
ln ε), (6.14)

where N7 = N6 + n(M + 1).

This concludes the step 2 in the procedure outlined in Section 4, and we
can perform the step 3 as in [8].
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