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§1. Introduction and a main result
In the present note, we consider the local solvability of the Cauchy problem

for the modified Korteweg-de Vries equation on the one-dimensional torus T =
R/(2πZ).

∂tu + ∂3
xu + u2∂xu = 0, t ∈ [−T, T ], x ∈ T,(1.1)

u(0, x) = u0(x), x ∈ T,(1.2)

where T is a positive constant and the unknown function u is real-valued. If u is a
“nice” solution of (1.1)-(1.2), then we have the conservation law of L2 norm, that
is, ‖u(t)‖L2 = ‖u0‖L2 . In that case, we change the spatial variable x to x + ct with
c = ‖u0‖2

L2 to rewrite equation (1.1) as follows.

(1.3) ∂tu + ∂3
xu +

(
u2 − 1

2π

∫
T

u2(t, x) dx
)
∂xu = 0, t ∈ [−T, T ], x ∈ T.

Hereafter, we consider equation (1.3) instead of (1.1), since (1.3) is better than
(1.1) as far as the the time local well-posedness is concerned.

In [1] Bourgain introduced the Fourier restriction norm method to study the
well-posedness of the Cauchy problem for nonlinear dispersive wave equations such
as the (modified) Korteweg-de Vries and the nonlinear Schrödinger equations (for
nonlinear wave equations, see, e.g., [10]). For simplicity, we refer to the (time)
local well-posedness as (LWP) and we put Hs ≡ Hs(T) and Lp ≡ Lp(T). In [1],
Bourgain proved (LWP) of (1.2)-(1.3) in Hs for s ≥ 1/2 (for the global existence
of solution, see Colliander, Keel, Staffilani, Takaoka and Tao [3] and Kappeler and
Topalov [6]). His proof in [1] is based on the following trilinear estimate.

(1.4)
∥∥(

u2 − 1
2π

∫
T

u2(t, x) dx
)
∂xu

∥∥
Y−1/2,s

≤ C‖u‖3
Y1/2,s
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for s ≥ 1/2, where

‖u‖Yb,s
=

( +∞∑
k=−∞

∫ +∞

−∞
〈k〉2s〈τ − k3〉2b|ũ(τ, k)|2 dτ

)1/2
,

Yb,s = {u ∈ S ′(R×R); u(t, x + 2π) = u(t, x), ‖u‖Yb,s
< +∞}

for b, s ∈ R. Here, ũ denotes the Fourier transform of u with respect to t and x
and 〈a〉 = (1 + |a|) for a ∈ R. In [8] Kenig, Ponce and Vega showed that when
s < 1/2, the trilinear estimate (1.4) breaks down. In [2] Bourgain also proved that
the flow map corresponding to (1.2)-(1.3) is not in C3 for s < 1/2 as a mapping
from the initial data in Hs to the solution of (1.2)-(1.3) in C([−T, T ];Hs). But
these negative results do not necessarily imply that (1.2)-(1.3) is ill-posed in Hs for
s < 1/2. In [4], Christ, Colliander and Tao showed that when s < 1/2, the uniform
continuous dependence of solution on initial data breaks down (for the case of R,
see [9]). That is, when s < 1/2, the continuous dependence on initial data does not
hold in the following sense.

∀R > 0,∃η(r) ∈ C([0,∞)),∃T > 0; η ≥ 0, η(r) → 0 (r → +0),(UCD)

‖u0‖Hs , ‖v0‖Hs ≤ R =⇒ the solutions u, v exist on [−T, T ] and

‖u− v‖C([−T,T ];Hs) ≤ η(‖u0 − v0‖Hs).

This formulation of the continuous dependence on initial data seems slightly too
strong, though the proof using the contraction argument often yields (UCD). In fact,
two of the authors, Takaoka and Tsutsumi [12] proved (LWP) in Hs for 1/2 > s >
3/8, though the dependence of solutions on initial data is not uniformly continuous.
A new ingredient of the proof in [12] is the use of the modified Fourier restriction
norm defined as follows. For b, s ∈ R, we put

‖v‖Zb,s
=

( +∞∑
k=−∞

∫ +∞

−∞
〈k〉2s〈τ − k3 − k|û0(k)|2〉2b|ṽ(τ, k)|2 dτ

)1/2
,

(1.5)

Zb,s = {v ∈ S ′(R×R); v(t, x + 2π) = v(t, x), ‖v‖Zb,s
< +∞},

where u0 is the initial data given in (1.2) and û denotes the Fourier transform of u
with respect to x only. The Zb,s norm takes into account the effect of the nonlinear
term. In the present note, we study the local solvability of (1.2)-(1.3) in yet lower
regularity sapces.

We have the following theorem.

Theorem 1.1. Assume that 3/8 ≥ s > 1/4. For any u0 ∈ Hs, there exists
T = T (‖u0‖Hs) > 0 such that (1.2)-(1.3) has a solution on [−T, T ] satisfying

u ∈ C([−T, T ];Hs),(1.6)

ϕ

∞∑
k=−∞

e
i(kx−k

∫ t

0
|û(τ,k)|2 dτ)

û(t, k) ∈ Y1/2,s,(1.7)

where ϕ is any cut-off function in C∞(R) with supp ϕ ⊂ [−T, T ]. Furthermore, if
s > 1/3 or if k|û0(k)|2 ∈ `∞, the uniqueness and the continuous dependence also
hold.
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Remark 1.1. (i) The property (1.7) is equivalent to the following:

(1.8) ϕ
∞∑

k=−∞

e
i(kx−k

∫ t

t0
|û(τ,k)|2 dτ)

û(t, k) ∈ Y1/2,s, t0 ∈ (−T, T ),

where ϕ is any cut-off function in C∞(R) with supp ϕ ⊂ [−T, T ].
(ii) In [6], Kappeler and Topalov showed by the inverse scattering method that

when s ≥ 0, the Cauchy problem of the mKdV equation on T is globally well-posed
in Hs. While their proof in [6] heavily depends on the complete integrability of the
mKdV equation, our proof is applicable to the equation with nonlinearity u2∂xu
replaced by (u + u2)∂xu.

§2. Sketch of Proof of Theorem 1.1
We first begin with the following observation. We take the Fourier coefficients

in the spatial varible of equation (1.3) to have

∂tû(t, k)− ik3û(t, k) = −i
∑

k1+k2+k3=k
k1+k2 6=0

û(k1)û(k2)k3û(k3)(2.1)

=− i
{ ∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1) 6=0

û(k1)û(k2)k3û(k3)

+
∑

k1+k2+k3=k
(k1+k2)(k3+k1) 6=0

k2+k3=0

û(k1)û(−k3)k3û(k3)

+
∑

k1+k2+k3=k
(k1+k2)(k2+k3) 6=0

k3+k1=0

û(−k3)û(k2)k3û(k3)

+
∑

k1+k2+k3=k
k1+k2 6=0

k2+k3=k3+k1=0

k3û(k3)û(−k3)2
}

=− i
k

3
{ ∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1) 6=0

û(k1)û(k2)û(k3)
}

+ ik|û(k)|2û(k).

At the last equality of (2.1), we have used the facts that v̂(−k) = v̂(k) for a real-
valued function v and so the second and the third terms vanish on the right hand
side of the second equlity of (2.1), since the summation is taken over all positive
and negative k3. The first term on the right hand side of (2.1) is a “good” term.
Actually, it can be estimated in Hs, s > 1/4, which is pointed out in [1, Remarks
(ii) (a) and (b) after Proposition 8.37 on page 228]. On the other hand, the second
term on the right hand side of (2.1) is the worst. It is clear what effect this term
has on the solution. This term gives rise to the rapid oscillation of solution, which
breaks (UCD) in Hs, s < 1/2. In fact, let us try the estimate of this worst term in
Hs. Then, we have

|k|s
∣∣k|û(k)|û(k)

∣∣ ≤ (|k|1/2|û(k)|)2|k|s|û(k)|

≤ C
(
|k|s|û(k)|

)3
, |k| � 1
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as long as s ≥ 1/2. The lower bound for Bourgain’s trilinear estimate comes from
this fact. If we consider, instead of the solution u(t) itself,

w(t, k) = e
i(kx+tk3+k

∫ t

0
|û(τ,k)|2 dτ)

û(t, k),

then we can formally eliminate the worst term to have

∂tw = − i

2π

∑
(k1+k2)(k2+k3)(k3+k1) 6=0

eiφw(t, k1)w(t, k2)k3w(t, k3),(2.2)

φ = t(k3−k3
1 − k3

2 − k2
3)− ik

∫ t

0

|û(τ, k)|2 dτ(2.3)

+ i

3∑
j=1

kj

∫ t

0

|û(τ, kj)|2 dτ.

Now the problem is how to control eiφ. This is quite non-obvious, because eiφ

depends on the solution which we have to estimate. The following lemma plays a
crucial role in the estimate of the right hand side of (2.2).

Lemma 2.1. Let φ ∈ C2(R) and let M be a sufficiently large positive constant.
Assume that

|φ′(t)| ≥ CM, |φ′′(t)| ≤ CM−1/2|φ′(t)|2, t ∈ R,

where C does not depend on M . Then, we have

∥∥eiφf1f2f3

∥∥
H
−1/2
t

≤ C0M
−1/2

3∏
j=1

‖fj‖H
1/2
t

,

where C0 is a positive constant independent of M and Hs
t denotes the Sobolev space

with respect to the time variable t.

Lemma 2.1 enables us to control eiφ, but it does not yield an estimate of the
difference of two solutions. If we wish to prove the uniqueness and the continuous
dependence of solution on initial data, we have to estimate the difference of two
solutions. It is possible to do so in some sense if we additionally assume that
s > 1/3 or k|û0(k)|2 ∈ `∞. To be more specific, when s > 1/3, the norm Zb,s

difined as in (1.5) helps us to derive a kind of smoothing property for the solution
(see, e.g., [12, Corollary 2.6 on page 3019]). When k|û0(k)|2 ∈ `∞, we can show
that k|û(t, k)|2 ∈ L∞(0, T ; `∞) in the same way as in the proof of Lemma 2.5 of
[12]. The details of the proof will appear elsewhere.
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