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Abstract

In this talk, we describe some recent results on the Lifshitz behavior
of the density of states for non monotonous random models. Non
monotonous means that the random operator is not a monotonous
function of the random variables. The models we consider will mainly
be of alloy type but in some cases we also can apply our methods to
random displacement models.

Résumé. Cet exposé décrit des résultats récents sur le comporte-
ment de Lifshitz de la densité d’états de certains modèles aléatoires
non monotones. Ici, non monotone signifie que l’opérateur aléatoire
n’est pas une fonction monotone des variables aléatoires. L’essentiel
des résultats sont obtenus pour des modèles d’Anderson continus ;
néanmoins, certains résultats s’appliquent aussi aux modèles de dépla-
cements aléatoires.

1 The basic model

Consider the continuous alloy type (or Anderson) random Schrödinger op-
erator:

Hω = −∆ + Vω where Vω(x) =
∑
γ∈Zd

ωγV (x− γ) (1.1)

on Rd, d ≥ 1, where V is the site potential, and (ωγ)γ∈Zd are the random
coupling constants. We assume

(H1) (1) V : Rd → R is continuous, non identically vanishing and sup-
ported in (−1/2, 1/2)d;
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(2) (ωγ)γ are independent identically distributed (i.i.d.) random vari-
ables distributed in [a, b] (a < b) with essential infimum a and
essential supremum b.

Let Σ be the almost sure spectrum of Hω and E− = inf Σ. When V has a
fixed sign, it is well-known that the E− = inf(σ(−∆ + Vb)) if V ≤ 0 and
E− = inf(σ(−∆+Va)) if V ≥ 0. Here, x is the constant vector x = (x)γ∈Zd .
Moreover, in this case, it is well-known that the integrated density of states
of the Hamiltonian (see (2.1)) admit a Lifshitz tail near E−, i.e., that the
integrated density of states at energy E decays exponentially fast as E goes
to E− from above. We refer to [9, 8, 16, 15, 7, 6, 11] for precise statements.

The case we address is is that of V assuming both signs, i.e., there may exist
x+ 6= x− such that

V (x−) · V (x+) < 0.

The basic difficulty this property introduces is that the variations of the
potential Vω as a function of the random variable ωγ is not monotonous. In
the monotonous case, to get the minimum, one can simply minimize with
respect to each of the random variables individually. In the non monotonous
case, this uncoupling between the different random variables may fail. We
obtain results for reflection symmetric potential since, as we will see, for
these potentials we also have analogous decoupling between the different
random variables. Thus we make the following symmetry assumption on V :

(H2) V is reflection symmetric i.e. for any σ = (σ1, . . . , σd) ∈ {0, 1}d and
any x = (x1, . . . , xd) ∈ Rd,

V (x1, . . . , xd) = V ((−1)σ1x1, . . . , (−1)σdxd).

We now consider the operator HN
λ = −∆+λV with Neumann boundary

conditions on the cube [−1/2, 1/2]d. Its spectrum is discrete, and we let
E−(λ) be its ground state energy. It is a simple eigenvalue and λ 7→ E−(λ)
is a real analytic concave function defined on R. We first observe:

Proposition 1.1 ([13]). Under the above assumptions (H1) and (H2), E− =
inf(E−(a), E−(b)).

For a and b sufficiently small, this result was proved in [14] without the as-

sumption (H2) but with an additional assumption on the sign of
∫

Rd

V (x)dx.

The method used by Najar relies on a small coupling constant expansion for
the infimum of Σ. These ideas were first used in [4] to treat other non
monotonous perturbations, in this case magnetic ones, of the Laplace oper-
ator. In [1], the authors study the minimum of the almost sure spectrum
for a random displacement model i.e. the random potential is defined as
Vω(x) =

∑
γ∈Zd V (x − γ − ξγ) where (ξγ)γ are i.i.d. random variables sup-

ported in a sufficiently small compact.

Frédéric Klopp and Shu Nakamura

XIV–2



2 Lifshitz tails

We now turn to the results on Lifshitz tails. We denote by N(E) the inte-
grated density of states of Hω, i.e., it is defined by the limit

N(E) = lim
L→+∞

#{eigenvalues of HN
ω,L ≤ E}

(2L)d
(2.1)

where HN
ω,L is the operator Hω restricted to the cube [−L − 1/2, L + 1/2]d

with Neumann boundary conditions. This quantity has been the source of
a lot of studies and we refer to [15, 17] for extensive review.
The behavior of the density of states will heavily depend on whether E−(a) =
E−(b) or not.

2.1 When E−(a) 6= E−(b)

This is the generic case i.e. it holds for generic V satisfying (H1) and (H2)
once a and b are fixed and for given V and a (or b) for all b (or a) except
one value. It is also the simplest case and the one when the results are the
most similar to those obtained in the monotonous case.
We prove

Theorem 2.1 ([13]). Suppose Assumptions (H1) and (H2) and E−(a) 6=
E−(b). Then

−d

2
− α− ≤ lim inf

E→E+
−

log | log N(E)|
log(E − E−)

≤ lim sup
E→E+

−

log | log N(E)|
log(E − E−)

≤ −d

2
− α+

where c = a if E−(a) < E−(b) and c = b if E−(a) > E−(b) and

α− = − lim inf
ε→0

log | log P({|c− ω0| ≤ ε})|
log ε

≥ 0,

α+ = −1
2

lim inf
ε→0

log | log P({|c− ω0| ≤ ε})|
log ε

≥ 0.

In particular if the tails of the random variables (ωγ)γ are not exponential
i.e. if α− = α+ = 0, we obtain standard Lifshitz tails.
Combining Theorem 2.1 with the Wegner estimates obtained in [10, 5] and
the multiscale analysis as developed in [3], we learn

Theorem 2.2. Assume (H1) and (H2) hold and that that the common dis-
tribution of the random variables admits an absolutely continuous density.
Then, the bottom edge of the spectrum of Hω exhibits complete localization
in the sense of [3].
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2.2 When E−(a) = E−(b)

In this case, the distribution of the random variables plays a crucial role
for the existence of Lifshitz tails. The condition E−(a) = E−(b) can be
interpreted as a resonance condition.

Theorem 2.3 ([12]). Suppose Assumptions (H1) and (H2) and E− :=
E−(a) = E−(b) . Then,

(1) If the random variables (ωγ)γ are not Bernoulli distributed i.e. if
P(ω0 = a) + P(ω0 = b) < 1 then

−d

2
−α− ≤ lim inf

E→E+
−

log | log N(E)|
log(E − E−)

≤ lim sup
E→E+

−

log | log N(E)|
log(E − E−)

≤ −1
2
−α+.

(2) If P(ω0 = a) + P(ω0 = b) = 1, there exists potentials V satisfying
assumption (H1) and (H2) such that E−(a) = E−(b) and, there exists
C > 0 such that, for E ≥ E−,

1
C

(E − E−)d/2 ≤ N(E) ≤ C(E − E−)d/2. (2.2)

So we see that, in some cases, when the random variables are Bernoulli
distributed, the integrated density of states exhibits van Hove singularities
at the bottom of the spectrum. On the other hand, when the distributions
is not Bernoulli, the density of states always exhibits Lifshitz tails but the
Lifshitz exponent may be 1/2 even in d dimensions (assume to simplify
α− = α+ = 0). Actually the exponent 1/2 is the best one can get in general
i.e. without further assumptions on V . One can indeed in some cases prove
a lower bound of the same type as the upper bound given in Theorem 2.3.

Whether this happens or not depends on a another resonance condition
which can be expressed as follows. Assume E−(a) = E−(b). Let ej be a
vector of the canonical basis of Rd. We say that HN

a and HN
b (see section 1)

match in the direction ej if E−(a) = E−(b) is also the ground state energy
of the operator −∆+aV (·)+ bV (·− ej) on the parallelepiped [−1/2, 1/2]d∪
(ej + [−1/2, 1/2]d) with Neumann boundary conditions.

One then can show that, if HN
a and HN

b match in all directions then one is in
case (2) of Theorem 2.3. If they don’t match at least in one direction, one is
in case (1). If they don’t match in exactly one direction, then one can show
that the Lifshitz exponent is 1/2 (under the assumption α− = α+ = 0).

In view of these results (and their proofs), it is natural to conjecture that,
for Hω defined by (1.1), if P(ω0 = a) + P(ω0 = b) 6= 1, then

lim sup
E→E+

−

log | log N(E)|
log(E − E−)

< 0

even without the assumptions (H1) or (H2).
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2.3 A random displacement model

These techniques also enable to treat a Bernoulli displacement model. Con-
sider

Hω = −∆ + Vω where Vω(x) =
∑
γ∈Zd

V (x− γ − ξγ). (2.3)

where

(H1’) • V : Rd → R is continuous, non identically vanishing and sup-
ported in (−r, r)d, 0 < r < 1/2 and satisfies (H2);

• (ξγ)γ are independent identically distributed (i.i.d.) random vari-
ables distributed in {−1/2+r, 1/2−r}d such that all these points
have a positive probability.

By [1], the configurations that minimize the ground

Figure 1: The mini-
mizing configuration
in dimension 2

state energy are given by a symmetric ”clusteriza-
tion”. For example, if one restricts Hω to a cube
[−L − 1/2, L + 1/2]d, a minimizer is then given by
(ξγ)j = (−1)γj (1/2−r) for γ ∈ [−L−1/2, L+1/2]d∩
Zd where (ξγ)j is the j-th component of the vector ξγ .
Moreover, this minimizing configuration is unique
up to the symmetries of the problem: if one con-
sider the global minimizer (ξγ)γ∈Zd defined above,
all other minimizers in the cube [−L−1/2, L+1/2]d

are obtained by translations of the global minimizer
restricted to the cube ([2]). On Fig 1, we represent
a few cells of the lattice Z2 with the location of the
support of the minimizing potential represented as
disks. Let us call E− the minimizing ground state energy.

Figure 2: The 4 configurations in dimension 2

For ξ ∈ {−1/2 + r, 1/2− r}d, define the operator

Hξ = −∆ + V (x− ξ)

acting on [−1/2, 1/2]d with Neumann boundary conditions. On Fig 2, we
show the 4 configuration for the supports of V obtained in dimension 2.
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Due to the symmetry assumption on V , all the Hξ have the same ground
state energy.

Theorem 2.4. Consider the model Hω defined by (2.3) and assume (H1’)
is satisfied. Let N(E) denote the integrated density of states of Hω and E−
be the infimum of the almost sure spectrum of Hω. Then,

(1) if, at least, two of the (Hξ)ξ∈{−1/2+r,1/2−r}d do not match in, at least,
one direction (for a definition of matching, see the comments following
Theorem 2.3). Then, one has

lim sup
E→E+

−

log | log N(E)|
log(E − E−)

≤ −1
2
. (2.4)

(2) if all the (Hξ)ξ∈{−1/2+r,1/2−r}d match in all directions, then

N(E) ≥ 1
C

(E − E−)d/2. (2.5)

Note that (2.5) may not always be optimal; in some cases, N(E) may be much
larger ([2]).
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