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(2) Université de Cergy-Pontoise, IHES and CNRS, Mathématiques
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In this talk, we are concerned with the generalized Korteweg-de Vries equations (gKdV)

∂tu + ∂x(∂2
xu + f(u)) = 0, t, x ∈ R. (1)

We call soliton a solution of (1) of the form u(t, x) = Qc(x− ct), for c > 0.

We study the following general questions about the collision of two solitons: let u(t) be a
solution of (1) such that

u(t, x)− [Qc1(x− c1t) + Qc2(x− c2t)] → 0 in H1(R) as t → −∞, (2)

where Qc1(x − c1t), Qc2(x − c2t) are two solitons (0 < c2 < c1). Formally, the two solitons
have to collide.

• What is the behavior of u(t) during and after the collision ?

• Do the two solitons survive the collision at the main orders ? In other words, for large
positive time, do we recover a two soliton structure

u(t, x)−
[
Qc+1

(x− c+
1 t− δ1) + Qc+2

(x− c+
2 t− δ2) + η(t, x)

]
→ 0 in H1(R) as t → +∞,

(3)
where 0 < c+

2 < c+
1 , δ1, δ2 ∈ R, and η(t) is a residue, small compared to Qc1 , Qc2 ?

• If the two soliton structure is preserved, are the velocities modified (i.e. c+
j 6= cj), and

the trajectories changed (nonzero shift δj 6= 0)?

• Is the collision elastic or inelastic ? We say that the collision is elastic if the residue is
zero, i.e. η(t) = 0 after the collision.

We recall some previous works concerning the collision of solitons for (1):

• Integrable case (f(u) = u2 or u3). In this case, there exist explicit multi-soliton solu-
tions describing the interaction of solitons. For these solutions, we have (2), (3) with
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cj = c+
j , η = 0 and the shifts δj are explicit, nonzero. In particular, the collision is

elastic in the integrable case.

See Fermi, Pasta and Ulam [5], Zabusky and Kruskal [24], Lax [8], Hirota [6], the survey
by Miura [19]. There are many other references concerning the integrable case, see for
example references in [19].

• Numerical predictions for nonintegrable models and experiments. In the case of non-
integrable models, from numerical studies, the collision seems inelastic but almost
elastic (small but nonzero dispersive residue η(t)).

Recall that a typical example of nonintegrable model similar to KdV is the BBM equa-
tion. See for example the following references on the BBM equation: Eilbeck and
McGuire [4], Bona et al. [2], [7]. See Shih [20] for some nonintegrable gKdV equations.

We also refer to Craig et al. [3] and references therein for a comparison between numerics
for Euler with free surface, explicit multi-solitons of KdV and experiments on water
tanks.

In this talk, I report on recent works in collaboration with Frank Merle ([13, 14, 15, 16])
describing the collision of two solitons Qc1 , Qc2 for nonintegrable gKdV equations (1), in the
case of two solitons of different scale, i.e. under the following assumption:

0 < c2 � c1.

Note that under standard assumptions, Qc1 is globally stable in H1 (see below) and thus it will
survive the collision, up to a perturbation of order ‖Qc2‖H1 . However, in the nonintegrable
situation, i.e. without exceptional algebraic structure, it is not clear whether the small soliton
Qc2 survives the collision. We introduce a new framework to understand this kind of questions.

1 General setting and previous stability results

First, we present the assumptions on f used throughout these notes.

Assumption on f . For p = 2, 3, 4

f(u) = up + f1(u), lim
u→0

∣∣∣∣f1(u)
up

∣∣∣∣ = 0.

This assumption means that the nonlinearity f is subcritical in a neighborhood of 0. Recall
that criticality means f(u) = u5, for which all solitons have the same L2 norm.

Second, we recall known results on existence and stability of solitons. From Berestycki
and Lions [1] and Weinstein [23], there exists c∗ > 0 such that for all c ∈ (0, c∗), there exists
a (even) solution Qc ∈ H1 of

Q′′c + f(Qc) = cQc

such that Rc(t, x) = Qc(x − ct) , which is a soliton of (1), is stable and asymptotically
stable in the energy space H1 in the following sense.

Orbital stability (Weinstein [23]). Let 0 < c < c∗. Let u(t) be a solution of (1).

‖u(0)−Qc‖H1 = α0 small ⇒ sup
t
‖u(t)−Qc(.− ρ(t))‖H1 ≤ Kα0,
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for some function ρ(t) such that |ρ′(t)− c| ≤ Kα0.

Recall that the proof of this result is based on the two conservation laws for (1)∫
u2(t) =

∫
u2(0), E(u(t)) =

1
2

∫
u2

x(t)−
∫

F (u(t)) = E(u(0)),

where F (u) =
∫ u
0 f(s)ds. Note that for f(u) = up, with p = 2, 3 or 4, we have c∗ = +∞.

Asymptotic stability (Martel and Merle [11, 12, 10, 13]). Under the same assumptions,
there exists c+ > 0 (|c+ − c| ≤ Kα0) such that

u(t)−Qc+(.− ρ(t)) → 0 in H1(x > c
10 t) and ρ′(t) → c+ as t → +∞.

This result means that the solution converges in the energy space to a limiting soliton
Qc+ of speed c+ close to c, locally around the center of mass ρ(t) of the soliton, and on the
right of it (see the original papers for more comments on this result).

In the rest of this paper, we consider 0 < c2 < c1 < c∗.

Existence of asymptotic multi-solitons (Martel [9]). There exists a unique H1 solution
U(t) of (1) such that

lim
t→−∞

∥∥U(t)− [Qc1(.− c1t) + Qc2(.− c2t)]
∥∥

H1 → 0.

From [9], the behavior of U(t) as t → +∞ is not known, except that if the soliton Qc2 is

small, then Qc1 is stable, up to a perturbation of order ‖Qc2‖H1 ∼ Kc
1

p−1
− 1

4

2 .

Stability of multi-solitons in H1 (Martel, Merle and Tsai [17]). Let u(t) be a solution of
(1). For α0 > 0 small, T > 0 large:∥∥u(T )− [Qc1(.− c1T ) + Qc2(.− c2T )]

∥∥
H1 ≤ α0 ⇒

sup
t≥T

∥∥u(t)− [Qc1(.− ρ1(t)) + Qc2(.− ρ2(t))]
∥∥

H1 ≤ K(α0 + e−γT ).

Moreover, there exists c1 close to c1, c+
2 close to c2 such that

u(t)−
[
Qc+1

(.− ρ1(t)) + Qc+2
(.− ρ2(t))

]
→ 0 in H1(x > c2

10 t) and ρj(t) → c+
j as t → +∞.

This result means that the two soliton structure is asymptotically stable when the two
solitons are sufficiently decoupled (T � 1). Note that this result implies the global in time
stability of the multi-soliton solutions in the integrable case (see Corollary 1 in [17]). See
references in [17] for previous results on this question.

We also refer to a recent article of Tao [22] where these results are reviewed in a larger
perspective.
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2 Stability of two soliton collision (general nonlinearity)

Our first main result concerns the case of a general nonlinearity.

Theorem 1 ([16]). Assume 0 < c2 < c0(c1) � c1 < c∗, where c0(c1) is small enough. Let
U(t) be the solution of (1) such that

lim
t→−∞

∥∥U(t)− [Qc1(.− c1t) + Qc2(.− c2t)]
∥∥

H1(R)
→ 0.

There exist c+
1 ∼

c2∼0
c1, c+

2 ∼
c2∼0

c2, such that

c+
1 ≥ c1, c+

2 ≤ c2,

w+(t, x) = U(t, x)−
[
Qc+1

(x− ρ1(t)) + Qc+2
(x− ρ2(t))

]
,

satisfies
lim

t→+∞
‖w+(t)‖H1(x≥ c2

10
t) = 0, sup

t∈R
‖w+(t)‖H1 ≤ Kc

1
p−1

2 .

Comments on Theorem 1.

1. The two solitons are preserved through the collision. Indeed, the size of the perturbative
term w+(t) satisfies

sup
t
‖w+(t)‖H1 ≤ Kc

1
p−1

2 whereas ‖Qc2‖H1 ∼ Kc
1

p−1
− 1

4

2 .

2. Speed change is related to a dispersive residue

‖w+(t)‖H1 6→ 0 as t → +∞ if and only if c+
1 > c1 and c+

2 < c2.

3. The behavior of U(t) is globally stable in time in H1 (see Theorem 3 in [16]). Presice
upper bounds on c+

1 −c1 and c2−c+
2 are available, see Theorem 1 in [16]. Nevertheless, under

general assumptions on f(u), we do not know whether the residue is zero (elastic or inelastic
collision).

3 Detailed description for the quartic KdV equation

In the case of the quartic gKdV equation

∂tu + ∂x(∂2
xu + u4) = 0 t, x ∈ R, (4)

which is nonintegrable, we refine the information given by Theorem 1. In particular, we prove
the residue is not zero, thus the collision is close to elastic but inelastic.

By the scaling invariance of the equation

if u(t, x) is solution then ∀λ > 0, λ
2
3 u(λ3t, λx) is solution,

we are reduced to the case

c1 = 1, Q = Q1, 0 < c2 = c � 1.
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Theorem 2 ([15]). Under the assumptions of Theorem 1, for equation (4),

c+
1 − 1 ≥ K c

17
6 , 1− c+

2

c
≥ K c

8
3 ,

0 < Kc
17
12 ≤ ‖w+

x (t)‖L2 + c
1
2 ‖w+(t)‖L2 ≤ K ′c

11
12 , for t large

Comments on Theorem 2.

1. Theorem 2 proves the nonexistence of a pure 2-soliton solution in this regime, since
lim inft→+∞ ‖w+(t)‖H1 > 0.

2. Theorem 2 is the first rigorous result describing an inelastic collision between two
nonlinear objects for the gKdV equations or similar models.

3. The collision is almost elastic. Indeed,

‖w+(t)‖L2 ≤ K‖Qc‖7L2 .

Finally, we state the existence of special symmetric solutions of (4) which give a precise
description of the collision of two solitons.

Theorem 3 ([15]). Assume 0 < c � 1. There exists a solution ϕ(t) of (4) such that

ϕ(−t,−x) = ϕ(t, x),

w−(t, x) = ϕ(t, x)−
[
Q(x− t + 1

2∆) + Qc(x− ct + 1
2∆c)

]
,

w+(t, x) = ϕ(t, x)−
[
Q(x− t− 1

2∆) + Qc(x− ct− 1
2∆c)

]
,

lim
−∞

‖w−(t)‖H1(x≤ 1
10

ct) = 0, lim
+∞

‖w+(t)‖H1(x≥ 1
10

ct) = 0,

K c
17
12 ≤ ‖w±x (t)‖L2 + c

1
2 ‖w±(t)‖L2 ≤ K ′c

17
12 , for ±t large,

∆ ∼ − K1

c1/6
< 0, ∆c ∼ −K2 < 0.

Comments on Theorem 3.

1. The solution ϕ(t) is a generalization of the notion of multi-solitons in the nonintegrable
situation. We can obtain ϕ(t) at any order of c.

2. We have constructed a solution with symmetry. The velocities at t = ±∞ are thus
identical. The quantities ∆, ∆c represent the shift on the trajectories of each soliton. Note
that the shift ∆ on Q becomes negative infinite as c → 0. The shift ∆c on Qc is negative and
of size 1.

3. Such a solution ϕ(t) is not unique but the lower bound on the defect is universal.
4. From critical Cauchy theory for (4) due to Tao [21], we conjecture that w+(t) disperses

at t → ±∞.
5. Theorem 3 extends to general nonlinearities f(u), except the lower bound on w+(t).

In general ∆ ∼ K1

∫
Qc, for some constant K1.
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4 Sketch of the proofs (quartic case)

The proofs are based both on algebraic computations (during the interaction) and on asymp-
totic analysis. These different arguments are structured as follows. Define Tc = c−

1
2
− 1

100 .

1. Asymptotic arguments for |t| > Tc. For |t| > Tc, we expect the solitons to be decoupled.
We apply refinements of previous stability and asymptotic stability arguments ([14]). The
arguments are based on monotonicity properties of localized L2 quantities and on Virial type
identities.

2. Construction of an explicit approximate solution. This is the main step of the
proof where we perform algebraic computations relevant in the collision region |t|<Tc.

3. Justification of the algebra on [−Tc, Tc]. We estimate the difference between approximate
and exact solutions by using long time stability arguments (note that Tc → +∞ as c → 0).
For this, we introduce a modified Hamiltonian structure (refinement of [23]).

In the rest of these notes, we concentrate first on the construction of an approximate solu-
tion (step 2 above) and then we sketch a proof of nonexistence (weak version of Theorem 2).

4.1 Approximate solution at all order for |t| < Tc

Let
yc = x + (1− c)t, y = x− α(yc),

v(t, x) = Q(y) + Qc(yc) + W (t, x),

α′(s) =
∑

1≤k≤k0
0≤`≤`0

ak,` c`Qk
c (s),

W (t, x) =
∑

1≤k≤k0
0≤`≤`0

c`
(
Qk

c (yc)Ak,`(y) + (Qk
c )
′(yc)Bk,`(y)

)
,

where (ak,`, Ak,`, Bk,`) are to be determined so that

‖∂tv + ∂x(∂2
xv − v − v4)‖L2 ≤ KcN(k0,`0),

and N(k0, `0) → +∞ as k0, `0 → +∞. Note that the introduction of parameters (ak,`) is
related to the shift of Q.

For each (k, `), we obtain the following typical system

(Ωk,`)
{

(LAk,`)′ + ak,`(3Q− 2Q4)′ = Fk,`

(LBk,`)′ + ak,`(3Q′′)− 3A′′k,` − 4Q3Ak,` = Gk,`

where Fk,` and Gk,` are given in terms of (ak′,`′ , Ak′,`′ , Bk′,`′), for k′ ≤ k, `′ ≤ `, with either
k′ < k or `′ < ` and where LA = −A′′ + A− 4Q3A is the linearized operator around Q.

The system (Ωk,`) can be solved when Fk,` and Gk,` have certain parity properties (there
is no uniqueness, two free parameters appear). Note that the parameter ak,` is necessary in
solving the system.

For all k, `, we obtain functions Ak,`, Bk,` with the following structure: localized functions
(L2) plus a polynomial function (with an explicit control on the degrees of the polynomial).

Yvan Martel and Frank Merle

XII–6



Then, the next step is the recomposition of the approximate solution at t = ±Tc and the
identification of a nonzero defect.

Formally, we find the defect at the rank k = 2, ` = 0. Indeed, if we concentrate on the
main terms (k = 1, 2 and ` = 0), we obtain the following properties

A1,0, A2,0 ∈ L2,

B1,0(x) = −b1,0
Q′(x)
Q(x)

+ B̃1,0(x), B̃1,0 ∈ L2, b1,0 6= 0,

B2,0(x) = −b2,0
Q′(x)
Q(x)

+ B̃2,0(x), B̃2,0 ∈ L2, b2,0 6= 0.

Observe that Q′

Q is a bounded function such that lim±+∞−Q′

Q = ±1. Moreover, A1,0, A2,0,

B̃1,0 and B̃2,0 have exponential decay properties.
For t = +Tc, we have yc << y which means that the two solitons are decoupled so that

the two terms (Qk
c )
′(yc)B̃k,0(y) for k = 1, 2 in the definition of v are negligeable. Thus,

v(Tc, x) ∼ Q(y) + Qc(yc)− b1,0Q
′
c(yc)− b2,0(Q2

c)
′(yc) + . . .

∼ Q(y) + Qc(yc−b1,0)− b2,0(Q2
c)
′(yc−b1,0) + . . .

The term −b1,0Q
′
c(yc) is interpreted as a translation of the soliton Qc. In contrast, the term

−b2,0(Q2
c)
′ is a defect of size ‖(Q2

c)
′‖L2 = Kc

11
12 , in the sense that it cannot be combined

with Qc to form a pure soliton.
Thus, we cannot recompose v(Tc, x) as the sum of two solitons at this order, with a defect

of order c
11
12 .

4.2 Nonexistence of a pure 2-soliton (quartic case)

We combine the approximate solution constructed above with some analysis arguments.

• From the algebra, there exists a nonsymmetric approximate solution ṽ of (4) such that∥∥ṽ(−Tc)−Q(.+1
2∆)−Qc(.−(1−c)Tc+1

2∆c)
∥∥

H1 ≤ Kc,∥∥ṽ(Tc)−Q(.−1
2∆)−Qc(.+(1−c)Tc−1

2∆c) + 2b2,0(Q2
c)′

∥∥
H1 ≤ Kc.

This approximate solution is constructed with the structure described in section 4.1. Note
that at the main orders, ∆ and ∆c are explicit (see Theorem 3).

• By contradiction, assume that there exists a pure 2-soliton U(t):∥∥U(t)−Q(.−t−x1,±)−Qc(.−ct−x2,±)
∥∥

H1 → 0 as t → ±∞.

By stability, after time and space translations, there exist T+ > Tc, δ+, such that

‖U(−Tc, .−Tc)−Q(.+1
2∆)−Qc(.−(1−c)Tc+1

2∆c)‖H1 ≤ Kc,

‖U(T+, .−δ+)−Q(.−1
2∆)−Qc(.+(1−c)Tc−1

2∆c)‖H1 ≤ Kc.

A priori there is no relation between T+ and Tc.
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By stability analysis on [−Tc, Tc] applied to ṽ and U(t), there exists δ such that∥∥U(Tc)− ṽ(Tc, .− δ)
∥∥

H1 ≤ Kc.

• We have T+ ∼ Tc by using the large time stability of the two soliton structure. Indeed,
‖(Q2

c)
′‖H1 ∼ Kc

11
12 and∥∥U(Tc)−Q(.− ρ1)−Qc(.− ρ2)

∥∥
H1 ≤ Kc

11
12 , ρ1 − ρ2 ∼ Tc,

⇒ ∀t > Tc,
∥∥U(t)−Q(.− ρ1(t))−Qc(.− ρ2(t))

∥∥
H1 ≤ Kc

5
12 ,

with ρ1(t)− ρ2(t) ∼ (1− c)t.

• A contradiction then follows from

‖U(Tc)−Q(.− ρ̃1)−Qc(.− ρ̃2)‖H1 ≤ Kc,∥∥U(Tc)−Q(.− ρ1)−Qc(.− ρ2) + 2b2,0(Q2
c)′(.− ρ2)

∥∥
H1 ≤ Kc

since ‖(Q2
c)
′‖H1 ∼ Kc

11
12 .

We refer to the original paper [15] for a qualitative proof, with precise lower and upper
bound estimates on the residue as t → +∞.

5 Case of the BBM equation

For the BBM equation, we study the collision of a soliton of speed c0 > 1 with a small soliton
of speed c > 1 close to 1. This is a joint work with T. Mizumachi [18].

After renormalization, it is equivalent to study the collision of Q by a small soliton Rσ ∼
Qσ, σ = c− 1 > 0 small, for the equation

(1− λ∂2
x)∂tu + ∂x(∂2

xu− u + u2) = 0, λ = c0−1
c0

∈ (0, 1).

A similar analysis proves the existence of a small but nonzero residue (the collision is inelastic
but almost elastic), confirming various numerical predictions on the collision of solitons of the
BBM equation.
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