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Abstract

Corresponding to the wellposedness result [2] for the classical 3-D Navier-Stokes equa-
3

. . C e . . . . -1+
tions (N.S,) with initial data in the scaling invariant Besov space, Bp oo ©, here we con-
sider a similar problem for the 3-D anisotropic Navier-Stokes equations (ANS, ), where

the vertical viscosity is zero. In order to do so, we first introduce the Besov-Sobolev type
11 11 i
spaces, B, 2’ and B, >’ (T'). Then with initial data in the scaling invariant space B, >’?,
we prove the global wellposedness for (ANS,) provided the norm of initial data is small
enough compared to the horizontal viscosity. In particular, this result implies the global

wellposedness of (ANS,) with high oscillatory initial data (1.2).

1 Introduction

1.1 Introduction to the anisotropic Navier-Stokes equations

Let us first recall the classical (isotropic) Navier-Stokes system for incompressible fluids in
the whole space:
Ou+u-Vu —vAu = —Vp,
(NS,) divu = 0,
ult=o = uo,

where u(t, z) denote the velocity, p(t, z) the pressure and & = (, x3) a point of R? = R? x R..
In this text, we are going to study a version of the system (IN.S,) where the usual Laplacian
is substituted by the Laplacian in the horizontal variables, namely

oy +u - Vu — vApu = —Vp,
(ANS,) divu =0,

u‘t:() = Uup.
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Systems of this type appear in geophysical fluids (see for instance [5]). It has been studied
first by J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier in [6] and D. Iftimie in [10]
where it is proved that (ANS,) is locally wellposed for initial data in the anisotropic space

O e RY /ull [ 6l (6 &) P < oo},
R3
for some € > 0. Moreover, it is also proved that small enough data ug is in the sense that
1—
luollz2luoll’ oy . < cv (1.1)

for some sufficiently small constant ¢, then we have a global wellposedness result. Let us
notice that the space in which uniqueness is proved is the space of continuous functions with
value in H%27 and the horizontal gradient of which belongs to L2([0,77; HO’%“).

Let us observe that, as classical Navier-Stokes system, the system (ANS,) has a scaling.
Indeed, if u is a solution of (ANS,) on a time interval [0,7] with initial data ug, then the

vector field uy defined by uy(t, x) def AMu(A2t, \x) is also a solution of (ANS,) on the time
interval [0, \"2T] with the initial data Aug(Az). The smallness condition (1.1) is of course
scaling invariant. But the norm || - ||H07 i+c is not and this norm determines the level of
regularity required to have wellposedness.

For classical Navier-Stokes system a lot of results of global wellposedness in scaling in-
variant space are available. The first one is the theorem of Fujita-Kato (see [9]) in which it
is proved that the system (NS),) is globally wellposed for small initial data in the Sobolev

space H > which is the space of tempered distributions u such that

def

lul,y [ el a©Rds < oc.

M. Paicu proved in [12] a theorem of the same type for the system (ANS,) in the case when
the initial data ug belongs to the scaling invariant space B2 (see Definition 1.2 below).

On the other hand, the classical isotropic system (IN.S,), is globally wellposed for small
initial data in Besov norms of negative index. Let us first recall the definition of the Besov
norms of negative index.

Definition 1.1 Let f be in S'(R?). Then we state, for positive s, and for (p,q) in [1, oc]?,
def

.- -

dt
Lq(R+7T)

[

In [2], M. Cannone, Y. Meyer and F. Planchon proved that, if the initial data satisfies,
for some p greater than 3, |luo|l _, s < cv for some constant ¢ small enough, then the

incompressible Navier-Stokes systefﬁwis globally wellposed. Let us mention that H. Koch and
D. Tataru generalized this theorem to the 9BMO norm (see [11]).
In particular, this theorem implies that, for any function ¢ in the Schwartz space S(R?),
if we consider the family of initial data ug defined by
uf(x) = sin( ) (0,056, 029,) (1:2)
the system (N S,) is globally wellposed for such initial data when ¢ is small enough. The goal
here is to prove the same for the anisotropic Navier-Stokes system (ANS,).

VIII-2



1.2 Statement of the results

Let us begin by the definition of the spaces we are going to work with. It requires an
anisotropic version of dyadic decomposition of the Fourier space, let us first recall the following
operators of localization in Fourier space, for (k, /) € Z2,

Afa=F e " En))a), and  Afa=F"(p(27"I&])a),
Sta = Z Ala, and SPa= Z Aja, (1.3)
K <k—1 r<i—1

—~ : . 38
where Fa and @ denote the Fourier transform of a, and ¢ a function in D([Zag}) such that
V1 >0, ng(2_j7') =1
JEZ
Before we plresent the space we are going to work with, let us first recall the Besov-Sobolev

type space B%2 defined by M. Paicu in [12].

Definition 1.2 We denote by B%2 the space of a in S(R?) such that
def

~ £
a e Llloc and ||aHBO,% = 222 ||A2)a||L2(R3) < 0.
LeZ

In [12], M. Paicu proved the global wellposedness of (ANS,) for small initial data in B%3 .
In order to state Paicu’s Theorem, let us introduce the following space.

Definition 1.3 We denote by B%2 (T') the space of a in C*°([0,T], B2 such that
lall o3 oy 2 D27 (107l + 03| Vadial ) <o
B3 (T) CHILE (L2 (R)) hZeILE (L2 (R?)) ’
LeZ
Now let us recall M. Paicu’s theorem.

Theorem 1.1 Ifug € BO’%, then a positive time T exists such that the system (ANS,) has
a unique solution w in BO’%(T). Moreover, a constant c exists such that

HUOHBO’% <cw =T = +o0.

Let us note that uf defined in (1.2) is not small in this space B2 no matter how small the
parameter € is. Our motivation to introduce the following spaces is to find a scaling invariant
space such that in particular ug is small in this space for ¢ sufficient small.

11
Definition 1.4 We denote by B, 2’2 the space of a in S'(R?) such that

-

o0 =
—~ def £ _ 2 i
Q€ Ljy, and al| 34 = 222( Y2 k\AZAz’a\im) + 22|k AYal| 2 ey
4 LEZ k=0—1 JEZ
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L
27

11
Definition 1.5 We denote by B, *'*(T') the space of a in C([0,T),B, *'?) such that

df
bty 2 (32 okttt i)
4

LeZ

1
2

1

1 2

k=0—1
J h 1 h
+) 20 (||5j,1A§aHL5.9(L2(R3)) + vz thsj,lAga||L2T(L2(R3))).
JEZ
In the followmg section, we shall use Littlewood-Paley theory to study the inner relations
between B, 2’2( ) and 30’2( ). Now, we present the main results of this paper.

11
Theorem 1.2 A constant c exists such that, if ug € B, *’* and |lug|| _1 1 < cv, then, with
B

(00).

4
This theorem can be applied to initial data given by (1.2) thanks to the following proposition,
proved in section 2.

=

1
3

initial data ug, the system (ANS,) has a unique global solution u in B,

def

Proposition 1.1 Let ¢ € S(R?). If ¢.(z) € €*1/°¢(x), then qung{ = 0(5%).
4

11
2°2

Classically, a global wellposedness theorem with small data in a space where smooth functions
are dense corresponds to a version concerning local wellposedness for large data.

11
Theorem 1.3 Ifug belongs to B, *'*, then a positive T' exists such that the system (ANS,)
11

has a unique solution in the space B, 2’2(T).

1.3 Structure of the text

This text does not contain all the details of the proofs and we refer to [7] for complete proofs.
The purpose of the second section is to state some results about anisotropic Littlewood-Paley
theory which will be of a constant use in what follows.

The third section will be devoted to the proof of the existence of a solution of (ANS,).
In order to do it, we shall search for a solution of the form

u=upr+w with up d:efe”mhuhh, Uhh def Z AlMAYuy  and wEBO’%(oo). (1.4)

k>0—1
In the last section, we shall prove the uniqueness in the following way. First, we shall
establish a regularlty theorem claiming that if u € B, *’ (T) is a solution of (ANS,) with
initial data in B, 73 ,then w =u—up € 80’2( ). Therefore, looking at the equation of w,

we shall prove the uniqueness of the solution u in the space up + BO’%(T). Let us point out

that the uniqueness result we prove is surprinsingly not a stability result. We should mention

that the method introduced by M. Paicu in [12] will play a crucial role in our proof here.
We present only the sketch of the proof and refer to [7] for the details.
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Notations: Let A, B be two operators, we denote [A; B] = AB — BA, the commutator
between A and B, a < b, we means that there is a uniform constant C, which may be
different on different lines, such that ¢ < Cb. Finally, we denote L’.(L}(L%)) the space
L"([0,T]; LP(Ray X Ray; LY (Rayy))).-

2 Some properties of anisotropic Littlewood-Paley theory

As we shall constantly use the anisotropic Littlewood-Paley theory, and in particular aniso-
tropic Bernstein inequalities. We list them as the following:

Lemma 2.1 Let By, (resp. B,) a ball of R} (resp. R,), and C;, (resp. C,) a ring of R3
(resp. Ry); let 1 < ps < p; < oo and 1< gs < q; < oo. Then there holds:

If the support of @ is included in 2¥By,, then

S (4255 57)) llallr2 pary-

10, all o (pary
If the support of @ is included in 2°B,,, then

e
105all o1 oy < 27T w0 al| )

If the support of @ is included in 2¥Cy,, then

lall g1 gy S 27 |S\u€v R all s oy
al=

If the support of @ is included in 2*C,, then
—kN || aN
HCLHL?(LZl) S2 105 a||LZ1(L31)-
Let us state two corollaries of this lemma, the proof of which are obvious and thus omitted.

1 f—

11 11
Corollary 2.1 The space B2 is included in B, *'? and so is BO’%(T) in B, ?'*(T) for any
positive T'. Moreover, the space BO’%(T) is included in L (L% (L)).

11

Corollary 2.2 If a belongs to B, >'%(T), then we have

1
¢ B ; 1
324 (X 2 H AL Aa(O)Ey gz ) S 0@y and

LeZ keZ By *°
1
L —k| AR 2 N 2 :
D2 <Z (2 Ik Al g rzy) + 72 ||AkA5“‘L2T<Li<L3»)> Sllally-3.3
LeZ keZ 4
Proposition 1.1 tells us how large is the difference between the norms || - HBO’% and || - HB_%’%'

4
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Proof of Proposition 1.1 By definition of the norm || - HB*%’%’ we have, as the || - |2 norm
4

is less than or equal to the || - ||,;1 norm,
4
lgell 11 < oY) with
84 22 —
7j=1
1) def k=t p
e =Y 2T || ARAL L 12):
e2F>1
k>0-1
2) def _k—¢ h
<I>§) = Z 272 ||AkAZ¢sHL;1L(Lg)7
e2k<1
k>0—1
def J
o = > 228" AV ||;2 and
€2i>1
4) def I ah
o) =Y 2385 AT e
€2i<1

In order to estimate <1>§1), let us notice that

_k £ 1 £
o < (30 278) o 25 sup ARAT el up) < 22 D0 28 sup | ALATG 1 12):
cok>1 ez keZ ez keZ

Using Lemma 2.1, we have, by definition of ¢.,
Sup IARA bell s (12) S Ibellrsz2) S N0l z2)- and

—¢ —¢
i‘ellé HAQA?%HL%(L% S 271050l s r2y S 277 (1030 13 (12)-
Thus, taking the sum over £ < N and ¢ > N and choosing the best N gives

O < b 5728 sup |ALALG. |t 1) < 231612, ) 105012
= vy | CRoeOelnir) = NN 1) 19y oz
eZ

The estimate of <I’£2) uses the oscillations. We have AﬁAZqﬁe = ¢,1€’§ + ¢i’2 with

) def ésAZA}’(eiy?l@laﬁ) and

1,
qﬁk;(l‘
g2o(x) L —ic2kg2e(z)  with

Fo(x) L ghot / () (2" — 1) R(2 (5 — )™ (),

where (7,h) € S(R?) x S(R) such that Fg(&) = @(|¢n]) and Fh(&s) = $(&3). Using

Lemma 2.1, we get

_k L1, h ;YL k
277 Y 221651114 12y S esup [|AFAT ("= 019) |1 (12) < €2211019]l 12(m3)-
0<k+1 tez
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Moreover, we have

_k t o k ¢,
272 Y 22 6pille 2y < €22 D22 (165l L 12)-

1<k+1 leZ

Using Lemma 2.1, we get

~27 ~27 7[
ool 22y S Illcacay and Nogolloeeay S 27 1050l s L2y

Again taking the sum over £ < N and £ > N and choosing the best N, we get

£ ~2’ 1 1
222 ||¢k,2HLﬁ(L3) S ||¢HE§L(L%)||83¢Hzﬁ(L§)'

leZ

We get that <I>£2) < Cye Z 2§ < C¢€%. The estimates on <I>§3) and <I>£4) are analogous. W
g2k <1

Notations In that follows, we make the convention that (c)irez (resp. (dj);jcz) denotes a
generic element of the sphere of £2(Z) (resp. ¢*(Z)). Moreover, (Ck,e) (k,0)ez2 denotes a generic
element of the sphere of (*(Z*) and (dy¢) x ¢ez> denotes a generic sequence indexed by Z

1
such that Z(Z di,ﬁ) ® = 1. Let us notice that we shall often use the following property,

(€7 keZ
the easy proof of which is omitted.

Lemma 2.2 Let a be a positive real number and Ny an integer. Then we have

> 270 dy e, S dj.

(k,0)eZ?
£>35—No

The following lemma will be of a frequent use in this work.
_11
Lemma 2.3 For any a € B, 2'*(T), one has

h 1 h E__ ¢t
||SkA3a||L%°(L;§(Lg)) tuv2 ||VhSkAza||L2T(L;§(Lg)) S dye2227 2 || and

11

By 2"3(T)

|Skal +v7|[VaStal < ex2?al
ke AILge (L, (Lg°)) hok UL (LG, (L)) ~ k BZ%%(T)'

With Lemma 2.3, we are going to state a result which is very close to Sobolev embedding

and will be of a constant use in the existence proof of Theorem 1.2.

1

11
Lemma 2.4 The space B, 2'2(T) is included in L}(L}(LS)). More precisely, let a be a

11
function in B, *’*(T'), then we have

. 1
I1AFallLg ez S -T2 2”“”3—%%@) and lelieieen = 0r

el
V4 4 va

l,l .
B, 22(T)

VIII-7



Proof of Lemma 2.4 Let us first notice that HA;')CLHi“T(L;‘L(L%)) = H(A;-’a)QHL%(L%(L%)). Then
using Bony’s decomposition in the horizontal variables, we write
(A%a)® =" Sp  AVaAjAYa+ > Sp,AvaAlAYa
kez keZ

These two terms are estimated exactly in the same way. Applying Holder inequality, we get
h h —kah k h
1Sk 185aALATallr2 (2 (ryy) < 27 2 1Sk 1 Afall peora (2222 [ Ak Afall 12 (13 (22))-

Using the first inequality of Lemma 2.3 and Corollary 2.2, we infer
dz .
Sk AYaAPAYal| ;2 2 < 22970 ||a)? .
IStaAjeatAals azpy £ 220N 4y
Taking the sum over k£ and using Lemma 2.2, we deduce
2

||(A})a)2HL%(Li(L},)) S =277 al?_

i1 )
V2 842 Q(T)

which is exactly the first inequality of the lemma. Now, using Lemma 2.1, we have

v l v
[1AGall Lo s ey S 221 ATallLa (pa (22))-

This proves the whole lemma. ]

Now let us use Lemma 2.1 to study the free evolution ur to the high horizontal fre-
quency part of the initial data ug, as defined in (1.4). In order to do so, let us first recall a
lemma from [3] or [4], which describes the action of the semi-group of the heat equation on
distributions, the Fourier transform of which are supported in a fixed ring.

11

Lemma 2.5 Let uy € B, >'? and up be as in (1.4), a € N3,1 < p < oo. Then, there holds

d k(Li-2) ¢
Bt g (32) 24 o

h 11, for k>/0-1
AR A urll e a2y S 4 v B, 22 7
0, otherwise.
11
Moreover, up belongs to B, *'*(c0), and we have |lup| 31  <lluoll 13-
B, 27%(c0)

4

Proof of Lemma 2.5 The relations (4) and (5) of the proof of Lemma 2.1 of [3] tell us that
. —cvt22k
ARAYup(t) = 2%k g(t, 28 ) « ARAYuy  with  ||g(t, Mgz < Ce™® 2 (2.1)
Here the convolution must be understood as the convolution on R?. Thus
IALA ur (2, ) 2 < 2%|g(t,25)] * | AR AT uo () 22
Using (2.1) and again Lemma 2.1, we get

h —cvt2?% || AR —cvt22k byt
IARA ur ()]l 22y S € 1A A uoll 1 r2) S €™ dpg2227 2 HUOHBQ%*%'
By integration, the lemma follows. ]

Lemma 2.6 Under the assumptions of Lemma 2.5, one has

v J o1 1
[AFurllL2r+poe(r2)) S ﬁ2 2 HUOHBZ%,% and ||lupl|p2g+; 0o m3)) S WHUOHBZ%,%-
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3 The proof of an existence theorem

The purpose of this section is to prove the following existence theorem.

Theorem 3.1 A sufficiently small constant ¢ exists which satisfies the following property:

11
, and ||u0H37; 1 < cv, then the system (AN S,) has a global solution in the

2°2
202
4

space up + B (00) where up is defined in (1.4).

if ug is in B;

Proof of Theorem 3.1 As announced in the introduction, we shall look for a solution of the
form u = up + w. Let us first establish the equation satisfied by w. Actually by substituting
the above formula to (ANS,), we obtain

ow+w-Vw — vApw+w-Vup + up - Vw = —up - Vup — Vp,
(ml/) divw = 0,
def
Wlt=0 = Ugp = Uy — Upp.
Notice that by (1.4), we have ug, = Z Sj}?_lAyuo. Moreover, there holds
JEZ

AVug, = > ShAYAYug  and thus [ ASugllpz S ) S0 Aol 2.

~

li—3"I<1 li—3'I<1

_11
This implies that, if ug belongs to B, *'?, then uy, belongs to B%3 and

lwenll go,1 < Huoll&l_%,%- (3.1)

We shall use the classical Friedrichs’ regularization method to construct the approximate
solutions to (ANS,). For simplicity, we just outline it here (for the details in this context,

see [12] or [4]). Let us define the sequence (P,)nen by Pra def FH(1po,ma) and
Oywy, — vApwy, + Py (wy, - Vwy,) + Pp(wy, - Vupy,) + Po(upy, - Vwy,)
— = —P,(upn-Vup,) +P,VA~19:0 (uj + wl) (uk +wa)
(ANS,.) (ur, Fin) ' 0k  (uge (U, )
' divw, =0,
def
Wnli=o = Po(en) = Po(uo — unp).

where up, def (Id —S;, )up with j, ~ —log, n and where A=19;y is defined precisely by

_ def ~_ _ ~
AT10;0a = FH(IEI T2 6a).

Because of properties of L? and il\l/functions the Fourier transform of which are supported
in the ball B(0,n), the system (ANS, ) appears to be an ordinary differential equation in

2 & {a € L*(R®) /Supp @ C B(o,n)}.

This ordinary differential equation is globally wellposed because

d
—llwn )72 < Collupn @)l lwnll7> + Collwra(®)l7s 12 lwn ()]l 2
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and up,, belongs to L*(R*; L% N L}(L2)). We refer to [4] and [12] for the details. Now,
the proof of Theorem 3.1 reduces to the following three propositions, which we admit for the
time being.

11
Proposition 3.1 Let ug bein B, *'?, and a in BO’%(T). With up is defined in (1.4), we have

2

def T dz . 9
(A} (up - Vup)|Afa) | dt S 227 |Juol” _y + [lal|
0 v 34 2'2

VjeZ, I;(T) < 2y

Proposition 3.2 Let a be a divergence free vector in BO’%(T), and b in BO’%(T). Then
2

T d: .
| st Tur)iam) e < o lal gy g ool g4 160,

viez, J;Tr) %

11
Proposition 3.3 Let a be a divergence free vector in B, *’*(T'), and b € BO’%(T). Then
2

T d2
I v < 9= 2
/0 (A5G- TRIAT)| dt S 22 0alyy 0

Vjez, Fyr) %

Conclusion of the proof of Theorem 3.1 Notice from (my,n) that P,w, = w,, we

apply the operator A;? to (m vn) and take the L? inner product of the resulting equation
with Afw, to get

d v v v v
LA (D12 + 20 A (D2 = ~2(AY (- V) A,
= 2(AY(upn - Vwn)|Afwn) — 2(A% (wn, - Vupn)|Afwn) — 2(A7 (upy, - Vup,)|Alwy).

By integration the above equation over [0,7], we get
2 | A2 1) + 2 Va2 ) < D[ AT (0)[ + 23 WET)  (32)
k=1
with

T
WHT) 2 [y 0) - (0] w0,
0

[\
S

WHT) 2 [ ura®) - T )|A wn (0)]
0

T

W) 2 [0 Vur ) 1a5w, 0]
T

wir) € o /0 (A (g () - g (£)) | AYwn (1)) |dt.

Proposition 3.3 applied with a = b = w,, together with Corollary 2.1 gives

(3.3)

Wl T < d? 3
j( ) S 7||wnHBo,%

(1)
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Thanks to Lemma 2.5, Proposition 3.3 applied with a = ug,, and b = w,,, then Proposition 3.2
applied with a = b = w,, and finally Proposition 3.1limplies in particular that

W2(T) < d?M‘w ||2

J ~ v ™go3 (1)
HUOHB_%%

wWHT) < & V4 Hwn”zo,%m and (3.4)
Juoll® 1 4

WAT) § d——t— ]|

~ J

Plugging estimates (3.3) and (3.4) into (3.2) gives
. 2
27 (1A wn| o z2) + VIVIIVRA 0 12 (12))

; C
< D183 O3 + S (anly g g+ Bl 3 ) Bl

) B42’§

Using (3.1), we get, by definition of BO’%(T),

c :
il gy < 26000l g3+ (Il g + ol g ) Hnlly o 59

Let us define

def

T,, = sup {T > O/HwnHBO’%( < 400”@60”371 1 } .
4

2°2

T)

The fact that w,, is continuous with value in HV for any integer N implies that T, is positive.
Then, Inequality (3.5) implies that, for any n and for any 7' < T,,, we have

2C(4CH + 1)/ Cy 3
lwonll go.3 oy < 200||UOHB4_%,% + 7 ||U0HB4,%,%-

Then, if ||ug|| _ 1118 small enough with respect to v, we get, for any n and for any T < T},
B, %

2:3°
4

<
)=

N | Ot

Jt0nllgo 3 gy < 5Coluoll__y
Thus T}, = 400 for any n. Then, the existence follows from classical compactness methods,
the details of which are omitted (see [12] or [4]). Then, Theorem 3.1 is proved, provided of
course that we have proved the three propositions 3.1-3.3. |

In the proof of the above three propooitions, things are different for terms involving
horizontal derivative and for terms involving vertical derivatives. Let us only prove Proposi-
titon 3.1 just to give a idea of the methods. It relies on the following lemma.

11

11 2
Lemma 3.1 Let (a,b) be in <B4 2’Q(T)) . We have

v dj 51
1A (ab)l 2.2y S —+27 2 lall 3.3 )Ilbll 1L

1 , ~11
V2 B, 2 2(T B, 2'2(T)
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Proof of Lemma 3.1 Let us write

AY(ab) = > AY(SHaAlb) + AY(SY, bAYa) .
l7"=5—No

Using Holder inequality and Lemma 2.4, we get

25)|AY N (S5 alib)lrz 22y S 1Sjalla s ey llAG0l s a2y
Jj'>j—No

s (X Fa )il g Wy
84 (T) B, 273(T)

j'’>7—N1
The lemma, is proved. n

Proof of Proposition 3.1 Thanks to the fact that up is divergence free, we have,
T
I;(T) = / ‘(A;’(UF -Vurp)|Ala) |dt < I;Z(T) + I7(T), with
. 0
I]}»Z(T) d:ef/o ‘(A“(uF ®UF)|AvVha)‘dt and [7(T) def/o ’(OgAg(u%UF)‘A;’a)’dt.

Using Lemmas 2.5 and 3.1, we get

2
h h | 6—j
L(T) < A7 (uiwr)l g o) AT (Vaa)ll Lz 2y S 272 jlonHz_%,%HGIIBO,%(T)-
4
For the term with the vertical derivative, let us write, using Lemma 2.1,

I}(T) £ 27| AY (upur)ll Ly (22) 1 A7b] g (£2)-

Using again Bony’s decomposition, we infer

AV(upup) = Y AN ubAbup)+ > AYALuESY yup) and
7" —31<5 J'>j—No
Sh jupAlup = Sk_1Sh (R AR A up + ARSY ub Sy oA
j’—luF j/uF = k—1R i —1Up A j/uF k 1UF k+2 /UF
k>j'—No

The two terms of the above sum are estimated exacty along the same lines. As in the proof of
Lemma 2.6, we use the smoothing effect on ur on the highest possible horizontal frequencies.
Using Holder inequality, this gives

||52715§/—1U%AZA§/UFHL}(L?) 2- 2HS]€ 15— 1UF||Loo (LA(Lg)) 22HA1< 'UFHLl (LA(L2))

Lemma 2.5 and Lemma 2.3 give

./

J A
22||Ak /UFHLI (L4(L2)) S ;dk7j2 29 kHUOHB_%,% and
4

_k . ah
272 |[SE 1Sy qurll e o gy S CkHUOHB—%,%
4
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Then, using, it turns out that

1 _
1S5 jurAbuplp ey S =Y ekdi2 )2 Zlluoll”_y 4
k> 1 4
d-/ 37
< Dol .
4 2
We deduce that
2 3G'=4) 77)
27 A i)l S ol _yy S dy
B4 />] N1
This concludes the proof of Proposition 3.1. |

4 The proof of the uniqueness

The first step in order to prove the uniqueness part of Theorems 1.2 and 1.3 is the proof of
the following regularity theorem.

11

Theorem 4.1 Let u € B, >'?(T) be a solution of (ANS,) with initial data ug in B,
Then, if up is defined by (1.4), we have w = u — up € BO’%( T).

l\.’)lbi
l\.’)lbi

11
The above theorem implies that, if u; are two solutions of (ANS,) in B, *'*(T') associated

with the same initial data, then § def ug — uy belongs to BO’%(T ). Moreover, it satisfies the
following system
06 —vARd=L5—Vp
(ANS)) divé =0
5|t=0 — O

where L is the following linear operator Ld def —0Vu1 —ugV4. In order to prove uniqueness,
we have to prove that § = 0. Because the existence of solution to (ANS,) is not proved
by using Picard’s fixed point method the uniqueness can not be given by a contraction

in the space B%: or even B, > 2. As pointed out first by D. Iftimie in [10], the system
(ANS,) is hyperbolic in the vertical direction. Roughly speaking, for hyperbolic system, the
contraction argument can be realized with one less derivative than the existence space. Here
of course, the derivative is lost in the vertical direction. The first idea is the introduction of
the homogenenous norm, given in the following definition.

Definition 4.1 Let s € R, let us define the following semi norm

def ;
lall 0 % (Zﬂsmyam)

D=

JEZ
Remark It is obvious that
2 2 < 2
Jall2_ o, + 12, oy S a2y (@)
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The norm || - HHO’* 3 1s not very convenient to work with. In particular, it carries on infor-
mations about low frequencies which is not necesseraly relevant in the proof of an uniqueness
theorem which is by definition a local result. Moreover, there is no evidence that § belongs
to such a space. We bypass this problem by the introduction of the inhomogenenous version
of the above norm. In order to do it, let us introduce the following notations:

AV =AY, SP =87 if j>0 and AV =5%,=0 if j<-2
This leads to the following definition of the norm, which we use for a contraction argument.
Definition 4.2 Let us denote by ‘H the space of tempered distribution such that
lallf " 27| AY |72 < oo.
JEZ
Now the key point is the estimate of (Ld|d)y. We follovvl r{lainly [12] up to the fact that the

solutions u; and wuy are not in BO’%(T ) but only in B, 2’2(T). This leads to the following
definition.

Definition 4.3 Let us denote by B, the following (semi) norm

o def i—kil AR 2
b1, S 5 FARAYR,

kEZ
JEN
Remark We obviously have
Il Z2e (5, + ¥ IVRDIT2 5, < IIbIIQ,_ . (4.2)

(1)

Let us state and admit (see [7] for the details) the following variation of Lemma 3.2 of [12].

Lemma 4.1 Let a and b be divergence free vector fields such that a and Vja are in Ho%> NH,
bisin B, N L}(LL) with Vb € B,. Let us assume also that ||al|3, <2716, Then we have

1%
(b~ Vala)y| + |(a- Vbla)y| < EIIW@II% +C(a,b)u(llall3,)

with pu(r) d:efr(l —logy ) logy (1 — logy ) and

def C ||b||L4(Loo
Cla,b) 202 ey (14 — )

C 9 b HB 2 2 2 2
+ = (U ollg,) (1 ) (161, IVabIE, + llal 4 IV aall, ) -

Conclusion of the proof of Theorem 1.3 We postpone the proof of the fact that
§€L¥(H) and V,é € L3(H) (4.3)
which is a low vertical frequency information on §. Lemma 4.1 implies that, for any ¢ € [0, T,

def

6117 < /f p(l6E)IF)de with  f(t) = Clur(t), (1) + Clua(t), 8(t)).
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Lemma 2.4 and assertions (4.1) and (4.2) imply that f € L'([0,7T]). Thus Theorems 1.2
and 1.3 are proved, provided of course that we prove Assertion (4.3). [ |

Proof of Assertion (4.3) Let us write that S§é is a solution (with initial value 0) of

0S50 —vARSGS = g1+ 92+ g3 with
def
g =) SE0s(anby)
AEA
g LS SEo(er(1d-SE)5)  and
AEA
def v v
g3 =S80 > drSyo
AEA

_11
where A is a finite set of indices and ay, by, ¢y and dy belong to B, *'* (7). Using Lemmas 2.1

and 3.1, we get that

15005 (axba)llzz,r2) < Z2j||A§’(a,\b,\)||L2T(L2)

j<—1
< 2 |axll [0A]l
—|la .
S e ) T s
Thus we have that
lg1ll 2.2y < —11 C3H(T) with Ciao(T) %' |y | can Al i (4.4)
10~ CRRIG 5,2 (1)

We estimate go using Lemma 2.4. It claims in particular that

v 1 —4
1 —5§)8ll 2 12 12, 5—%(22 llell sy

1
11 Sl
7>0 84 (T v

Lemma 2.4 also claims that ||c,\||L4T(L;11(L30)) 11

< Llexll -1 1 . Then we have
v B, (1)

lex(@d =56)dllzz.r2) < lleallps s ooy 1Ad —=S6)6l 2 (s (12

1
< —leall _yy 191 _yy
vz By 27(T) B, (T)
This gives that
.o~ . ~ 1
g2 =divy g2 with HgQHL%(Lz)S—Cﬁ(T). (4.5)

1
V2

The term g3 must be treated with a commutator argument based on the following lemma.

Lemma 4.2 Let y be a function of S(R). A constant C' exists such that, for any function a
in L2(LS®), we have

1
Ix(exs); Solallr> < Cez|lallp2 (1)
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Proof of Lemma 4.2 Taylor’s formula at order one gives

Ce(a)(@n,zs) 2 [x(eas); Sla(wn, x3)

= 5/ h(zs — y3)X' (e((1 = 7)23 + Tys)) a(zn, ys)dysdr.
R x[0,1]
Cauchy-Schwarz inequality for the measure |h(x3 — y3)|dz3dysdr on R? x[0, 1] gives

IC(a)(@n MZs < latan Mie  sup (/R 2\h<x3—y3>|so2<x3>dx3dy3><ﬂf+H5>

H‘P”L2(R)§1

< Cealwn, )|lige (Hi + H5) with

. def
Hj < / (X’)2 (e((1 = 1)xs + Ty3)) |h(23 — y3)|drsdysdr and
R? x[0,3]

£ d f
H; = / ()2 (e((1 = 7)z3 + Ty3)) |h(23 — y3)|dr3dysdr.
R? x[3,1]
Changing variables

vr = (1-T)as+ 7y in H¢ and Tr = 73 in HE
Yyr = U3 ! yr = Tys+(1—7)x3 2

gives

1
Hi = / ()2 (exy)
RQX[O,%}

1—17

h(”’” - yT) ‘d:dedeT and

1—171

1
H; = / Loy (eun)
RZx[1 1] T

We immediately infer that ||C(a)(zp, )|z < Ces |la(zp, -)||Lee and the lemma is proved. W

h(@) ‘deddeT.

Now let us choose x € D(R) with value 1 near 0 and let us state Sg .a def x(e:)Sga. The

classical L? energy estimate gives

t t
158 8|2 + v /0 IV 4S80 e’ < 2 /0 lgn ()22 158 8¢ |

1 t _ t
by [ 1B + 2 [ (ot S8t
0 0
By definition of g3, the integrand in the last term of the above equality is a finite sum of

terms of the type

def v
Dy = (x(£)S§(drS§6), 0S5 6)

)

[SIES
[SIES

with dy € B, 2’?(T). Writing that Dy = D} + D% with

def v v v def [ v v
D} = ([x(e); S§1(drS8)5, 0pS5.0) and D3 = (S§(drS{.6), OnSG..0).
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Lemmas 2.4 and 4.2 imply that

t
/ummw
0

Then let us write that

N

1
520122(t)th50,65||L§(L2)

IN

v C
ViS00l 22y + ;50112(75)-

1 3
ldx(®)l L2 (£2) 190,072 VRS0 (8] 2

4 v C v
EIVRSE O + a0 1) 155 DI

IDX()]

N

IN

Using (4.4) we get

Q

v t t
500l + 5 [ VS80It < e+ DCHT) +C [ )]s

w0 [ (14 55 (Ionltyam + ol o) ) 1S800) 13t
Gronwall lemma together with (4.4) gives

v v [t v c
L%ﬂm@+§AH%@mWW§W<—@+M%@)

xexpC/ < Hul||L4(Loo —|—\uQ||L4(LOO))>dt’

and thus by Lemma 2.4

. v [! " C 1
IS50(0l3e + 5 [ 19500 fad’ < Sle + DCHT)exp € (14 5Ch(T)).

Passing to the limit when € tends to 0 allows to conclude the proof of Assertion (4.3). |
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