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Fast rotating Bose-Einstein condensates and Bargmann transform

X. Blanc
Université Pierre et Marie Curie (Paris 6),

UMR 7598, Laboratoire Jacques-Louis Lions,
Paris, F-75005.

Abstract

When a Bose-Einstein condensate (BEC) is rotated sufficiently fast, it nucleates vortices. The
system is only stable if the rotational velocity Ω is lower than a critical value Ωc. Experiments
show that as Ω approaches Ωc, the condensate nucleates more and more vortices, which become
periodically arranged. We present here a mathematical study of this limit. Using Bargmann
transform and an analogy with semi-classical analysis in second quantization, we prove that
the system necessarily has an infinite number of vortices and provide an ansatz for the solution.
This summarizes two joint works, with A. Aftalion (LJLL, Univ. Paris 6) and J. Dalibard (LKB,
Ecole Normale Supérieure), on the one hand, and with A. Aftalion and F. Nier (IRMAR, Univ.
Rennes I) on the other hand.

1 Introduction

The existence of Bose-Einstein condensates (BEC for short) was first predicted in 1925 by Einstein
on the ground of Bose’s work on quantum gases. He proved the following fact: for an non-interacting
quantum gas, if the temperature T is lower than some critical temperature Tc, then a macroscopic
fraction of the gas collapses in the ground state. At that time, there was no experimental evidence
of this fact.

It is only in 1995 that the first Bose-Einstein condensate is achieved [7] by the Jila group
(University of Colorado). In the following years, several research teams in the world succeeded
in making condensates. Therefore, theoretical as well as experimental study of these quantum
macroscopic objects was renewed, as is testified by the great amount of literature on the subject
(see for instance [3, 34, 35] and the references therein). In relation with this recent scientific interest,
the Noble prize was awarded in 2001 to Cornell, Wiemann and Ketterle [17].

One of the special features of BEC is its superfluidity. This implies in particular the existence
of quantized vortices. This is the case for instance when a BEC is rotated: should it be a classical
fluid, its velocity field would be governed by solid body rotation, i.e the velocity field would be

v =
−→
Ω × x, (1.1)

where
−→
Ω is the rotation vector. On the contrary, for a quantum fluid, the velocity field is the gradient

of the phase of the wave function, and thus cannot match (1.1) unless it has some singularities around
which we have a circulation of the phase. These singularities are the vortices. The wave function
being in H1, it must cancel at these points. This is why the wave function of a rotated BEC cancels
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Figure 1: Nucleation of vortices in a rotated condensate

at some points, which are the vortices. They have been observed experimentally [1, 11, 30, 32], as
is shown in figure 1: if the rotation speed is sufficiently small, then no vortices are observed. When
the rotation velocity grows, the number of vortices increases, and for very high velocities they seem
to arrange themselves in a lattice [1, 16, 36].

The present work is concerned with the mathematical justification of this lattice of vortices.
It has been extensively studied by physicists, starting with the seminal paper of Ho [21] and very
recently of Fischer and Baym [18], Baym and Pethick [10], Cooper, Komineas and Read [14], Watan-
abe, Baym and Pethick [42], Sheehy and Radzihovsky [38].

The article is organized as follows: Section 2 describes the mathematical model associated
with rotating Bose-Einstein condensates, and explains how it reduces to the minimization problem
(2.22)-(2.23), which we recall here for the convenience of the reader:

inf

{

Gh(f), f is entire, f(z)e−
|z|2

h ∈ L2(C),

∫

C

|f(z)|2e−
|z|2

h = 1

}

,

where

Gh(f) =

∫

C

|z|2|f(z)|2e−
|z|2

h +
gΩ2

2
|f(z)|4e−

2|z|2
h ,

and Ω =
√

1 − h2 is the rotational velocity. The positive real number h is thus a small parameter as
Ω reaches the (renormalized) critical value Ωc = 1 (recall that the system is stable only if Ω < Ωc).

Then, we show in Section 3 that this minimization problem is related to the semi-classical
analysis of a one dimensional harmonic oscillator in the second quantization framework. Section 4
is devoted to the mathematical results on this problem. The proofs are omitted, since they may
be found in [6]. The last section accounts for some related open problem which seem of interest.
Note that for the convenience of the reader, there is no need of reading Section 2 before going to
the remaining parts of the paper, which are more concerned with mathematical results, but are
self-contained.
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2 Quantum N-body problem and Gross-Pitaevskii energy

2.1 Quantum N-body problem

A Bose-Einstein condensate is a quantum object with many particles. It is therefore described by
a wave function

Ψ ∈ L2
s(R

3N ), (2.1)

where N is the number of particles, and the subscript s stands for the symmetry assumption: since
we deal with bosons, Ψ(x1, . . . , xN ) must be unchanged when two variables xi and xj are exchanged.
Moreover, we assume that the condensate is rotated along the vector e3, which is the third vector

of the canonical basis of R
3, with a rotational velocity Ω > 0 : the rotation vector is

−→
Ω = Ωe3.

On the space defined by (2.1), we therefore define the N -body hamiltonian:

HN
Ω = −1

2

N
∑

j=1

∆j +
1

2

N
∑

j=1

V (xj) − i

N
∑

j=1

−→
Ω(xj ×∇j) +

∑

1≤j<k≤N

vN (xj − xk), (2.2)

where V is the confining potential: in the present case, we will consider the harmonic potential
V (x) = |x|2, x ∈ R

3, but other cases are possible [40]. Moreover, the function vN is the interaction
potential, which depends on N but is not explicitly given by physics. However, its "scattering
length" aN (see for instance [27]) is given, and it is sufficient for modelling the case we have in
mind. We are interested in the ground state of the system, that is,

EQ,Ω
N = inf

{

〈

HN
Ω Ψ|Ψ

〉

, Ψ ∈ H1
s (R3N ),

N
∑

i=1

|xi|2|Ψ|2 ∈ L1(R3N ),

∫

R3N

|Ψ|2 = 1

}

, (2.3)

where H1
s is the subspace of H1 consisting of symmetric functions. This value, and the minimizing

wave function Ψ, are rather difficult to compute. In addition, the number N is large (typically of
the order of 107), hence it is a natural approximation to look for the limit of (2.3), together with
the limit of its minimizer, as N goes to infinity.

2.2 The Gross-Pitaevskii energy

It is actually proved in [26] (see also [27, 28] for the simpler case Ω = 0) that if vN depends
in a suitable way on N , the energy per particle EQ,Ω

N /N converges as N tends to infinity to the
Gross-Pitaevskii energy:

lim
N→∞

EQ,Ω
N

N
= eGP ,

where

eGP = inf

{

EGP (φ), φ ∈ H1(R3), xφ ∈ L2(R3),

∫

R3

|φ|2 = 1

}

, (2.4)

and the energy EGP is given by

EGP (φ) =

∫

R3

1

2
|∇φ|2 +

1

2
|x|2|φ|2 − iΩ [e3(x×∇)φ]φ+

1

2
g|φ|4. (2.5)
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Here, the parameter g is related to the interaction potential v, and is defined by g = 8π lim
N→∞

(aNN).

More precisely, it is assumed in [26] that

v(x) =

(

N

8πg

)2

v1

(

Nx

8πg

)

, (2.6)

where v1 is any fixed smooth potential decaying sufficiently fast at infinity, which has a scattering
length equal to 1.

Moreover, it may be proved (here again, we refer to [26] for the details) that the minimizer ΨN

of (2.3) is well approximated in the limit N −→ ∞ by the N -tensor product of the minimizer of
(2.4):

ΨN (x1, . . . xN ) ≈
N
∏

j=1

φ(xj).

This result is made precise in [26] by the convergence of the density matrix of ΨN .
Note that the problem is now considerably simpler since the dimension fell from 3N to 3.

However, the problem is now nonlinear, since the energy (2.5) is no more quadratic, due to the last
term.

2.3 Reduction to a 2-dimensional model

Another simplification is the reduction from a 3D model to a 2D one. This is heuristically justified
by the fact that we are interested in the rapid rotation regime, in which the centrifugal force grows
stronger and stronger, and thus makes the condensate expand in the plane {x3 = 0} perpendicular

to the rotation vector
−→
Ω . This is not proved rigourously for now, except in the special case of an

anisotropic trap with a very large confinment in the x3 direction with no rotation [37].
Such a two-dimensional model then reads:

eGP
2D = inf

{

EGP
2D (φ), φ ∈ H1(R2), xφ ∈ L2(R2),

∫

R2

|φ|2 = 1

}

, (2.7)

EGP
2D (φ) =

∫

R2

1

2
|∇φ|2 +

1

2
|x|2|φ|2 − iΩx(∇⊥φ)φ+

1

2
g|φ|4, (2.8)

where for any y = (y1, y2) ∈ R
2, y⊥ denotes the vector y⊥ = (y2,−y1).

2.4 Lowest Landau level approximation

The first terms of (2.8) may be seen as the beginning of a perfect square, so that EGP
2D also reads

EGP
2D (φ) =

∫

R2

1

2
|∇φ− iΩx⊥φ|2 +

1

2
(1 − Ω2)|x|2|φ|2 +

1

2
g|φ|4, (2.9)

In order for the energy to be bounded below, we need to have Ω < 1, which means that the trapping
potential remains stronger than the rotating force. As Ω < 1 approaches one, the extension of the
condensate increases.
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The first term in the energy (2.9) is identical to the energy of a particle placed in a uniform
magnetic field 2Ω. It is also reminiscent of type II superconductors near the second critical field
Hc2. The minimizers for

∫

R2

1

2
|∇φ− iΩx⊥φ|2 under

∫

R2

|φ|2 = 1 (2.10)

are well known [24, 29] through the study of the eigenvalues of the operator −(∇ − iΩx⊥)2. The
minimum is Ω and it is achieved in a space of infinite dimension called the lowest Landau level
(LLL). This space is the closure for the L2 norm of the space spanned by

φ(x1, x2) = P (z)e−Ω|z|2/2 with z = x1 + ix2 (2.11)

where P varies in the space of polynomials. The other eigenvalues are (2k + 1)Ω, k ∈ N.
We will see that as Ω approaches 1, the second and third term in the energy (2.9) produce

a contribution of order
√

1 − Ω, which is much smaller than the gap between two eigenvalues of
−(∇− iΩx⊥)2, namely 2Ω. Thus, it is natural, as a first step, to restrict to the minimizers of (2.10)
and minimize the energy (2.9) in this reduced infinite dimensional space. Since we want to keep the
same space as Ω varies, we will use the rescaled wave function

ψ(x) =
1√
Ω
φ

(

x√
Ω

)

, (2.12)

which satisfies the condition
∫

|ψ|2 = 1. Therefore, the energy (2.9) provides E(φ) = Ẽ(ψ) with

Ẽ(ψ) =

∫

R2

1

2
|∇ψ − ix⊥ψ|2 +

1 − Ω2

2Ω
|x|2|ψ|2 +

1

2
gΩ|ψ|4, (2.13)

and the condition (2.11) becomes

ψ(x) = P (z)e−|z|2/2 with P (z) = A

n
∏

i=1

(z − zi) and z = x1 + ix2. (2.14)

For such a ψ, the first term of the energy is equal to Ω. Hence, we find that the energy Ẽ(ψ) is
equal to

Ẽ(ψ) = Ω +

∫

R2

1 − Ω2

2Ω
|x|2|ψ|2 +

gΩ

2
|ψ|4 := ELLL(ψ). (2.15)

In [8], we have performed numerical computations, fixing an upper bound on the number of
zeroes and using a conjugate gradient on the zi to find a minimizer of the energy. This provides
the pattern for vortices illustrated in Figure 2. On the left, we have plotted the zi and on the right
|ψ| where ψ is related to the zi through (2.14): in a central region, vortices are located on a regular
triangular lattice, while the lattice is distorted towards the edges. The density plot of |ψ| shows
that the only visible vortices are the central ones in the regular lattice part, the outer ones being
in a region of very low density.

In [4], we have constructed a wave function corresponding to the intuition given by the above
remark on numerics. This wave function has zeroes on a lattice which is distorted towards the edges
of the condensates. Computing the energy in the limit of an infinite number of zeroes (together with
Ω → 1) gives an energy depending on the distortion. Minimizing it gives the expected distortion,
and the upper bound for the energy (4.4). This method is more explicit, but provides no information
on the minimizer, unlike for instance Theorem 4.3 below.
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Figure 2: An example of (left): a configuration of zi minimizing the energy for Ω = 0.999, g = 3
and n = 58. (right): density plot of |ψ|

2.5 Bargmann space

The last step of the present discussion about modelling is to rescale once more the wave function:
as pointed out in [4, 8], the wave function ψ has a support of the order of (1 − Ω)−1/4, which goes
to infinity as Ω tends to 1, therefore making ψ wide-spread in the limit. Hence, in order to keep a
non-vanishing wave function, we need to rescale it, defining

u(x) =
1

(1 − Ω2)
1
4

ψ

(

x

(1 − Ω2)
1
4

)

. (2.16)

Then, setting

h =
√

1 − Ω2, (2.17)

the ansatz (2.14) is equivalent to

u(z) = f(z)e−
|z|2
2h , f is a polynomial. (2.18)

In addition, we find for (2.15) the following expression:

ELLL(ψ) =
h

Ω

∫

C

(

|z|2|u|2 +
gΩ2

2
|u|4
)

L(dz), (2.19)

where L(dz) denotes the Lebesgue measure L(dz) = dx1dx2 with z = x1 + ix2, and u is related to
ψ by (2.16). Hence, introducing the Fock-Bargmann space

Fh =

{

f ∈ L2(C, e−
|z|2

h L(dz)), s.t f entire

}

(2.20)

with ‖f‖2
Fh

=

∫

C

|f(z)|2e−
|z|2

h L(dz), (2.21)
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we can rephrase the problem of minimizing (2.15) over the set (2.14) as follows: find the minimizer(s)
of

inf
{

Gh(f), f ∈ Fh, ‖f‖Fh
= 1
}

, (2.22)

where

Gh(f) =

∫

C

|z|2|f(z)|2e−
|z|2

h +
gΩ2

h

2
|f(z)|4e−

2|z|2
h , (2.23)

and Ωh =
√

1 − h2.

3 Bargmann transform and semi-classical analysis

We present in this section some simple properties of the Fock-Bargmann space (2.20), and its link
with semi-classical analysis. For this purpose, we first define the Bargmann transform [9]:

[Bhϕ](z) =
1

(πh)3/4
e

z2

2h

∫

R

e−
(
√

2z−y)2

2h ϕ(y) dy ,

with z = x−iξ√
2

∈ C and ϕ ∈ S ′(R). Other normalizations are possible:

• In [31], the standard semiclassical FBI transform is defined as:

[Thϕ](x, ξ) =
1

21/2(πh)3/4
e−ξ2/2h

∫

R

e−
(x−iξ−y)2

2h ϕ(y) dy.

Other normalizations or extensions can be found in [15, 39].

• In [19], the Bargmann transform is defined as

[Bϕ](z) = 21/4

∫

R

e2πzy−πy2−(π/2)z2
ϕ(y) dy.

Elementary calculations lead to :

[Bhϕ](z) = 21/2e
x2+ξ2

4h e−i xξ
2h [Thϕ](z) = 21/2e|z|

2/2he−i xξ
2h [Thϕ](z)

and [Bhϕ](z) =
1

(πh)1/4
[B(2πh)1/4ϕ((2πh)1/2 .)]

(

z

(πh)1/2

)

.

We mainly refer to the presentation of Martinez which already contains the small parameter
h > 0, but the reader can make the relationship with other results by applying the previous change
of variables. We simply list the classical properties of the Bargmann transform and the Fock-
Bargmann space and refer to [9, 15, 19, 31, 39] for proofs.

3.1 Isometry property

For any h > 0, the transform Th defines an isometry between L2(R, dy) into L2(C, dxdξ) and onto
the space L2(C, dxdξ) ∩ e−ξ2/2hH(C) where H(C) denotes the space of entire functions. Here the
holomorphy of Bhϕ directly comes from its definition. Moreover, Bh defines a unitary transform
from L2(R, dy) onto Fh (note that our normalization gives L(dz) = dxdξ

2 ).
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Moreover, the product B∗
hBh is the identity on L2(R, dy) while BhB

∗
h = Πh is the orthogonal

projection from L2(C, e−|z|2/hL(dz)) onto Fh. The adjoint of Bh is given by

[B∗
hf ](y) =

1

(πh)3/4

∫

C

e
z′2
2h e

−(y−21/2z′)2
2h e−

|z′|2
h f(z′) L(dz′) .

A simple gaussian integration w.r.t. y ∈ R yields

[Πhf ](z) = [BhB
∗
hf ](z) =

1

πh

∫

C

e
zz′
h e−

|z′|2
h f(z′) L(dz′)

for all f ∈ L2(C, e−|z|2/hL(dz)).

3.2 Coherent states

The phase space R
2
x,ξ is endowed with the symplectic form

σ((x1, ξ1), (x2, ξ2)) = ξ1x2 − x1ξ2,

The associated unitary phase translations on L2(R, dy) are given by

[τh
(x,ξ)u](y) = ei

ξ(2y−x)
2h u(y − x), τh

(x,ξ) = ei
ξy−x(hDy)

h

and satisfy the Weyl relation

τh
X1

◦ τh
X2

= ei
σ(X1,X2)

h τh
X1+X2

, Xk = (xk, ξk) .

The coherent states are the normalized L2(R, dy) functions given by:

Φh
0(y) =

1

(πh)1/4
e−

y2

2h

and Φh
(x,ξ)(y) = [τh

(x,ξ)Φ0](y) =
1

(πh)1/4
ei

ξ(2y−x)
2h e−

(y−x)2

2h .

By recalling z = x−iξ√
2

we get

[Bhϕ](z) =
1

(πh)3/4
e

(x−iξ)2

4h

∫

R

e−
(y−x+iξ)2

2h ϕ(y) dy =
1

(πh)1/2
e

|z|2
2h

∫

R

Φh
x,ξ(y)ϕ(y) dy,

hence

[Bhϕ](z) =
1

(πh)1/2
e

|z|2
2h 〈Φh

(x,ξ) |ϕ〉 . (3.1)

The identity B∗
hBh = Id becomes the standard identity resolution on L2(R, dy)

∫

R2

|Φh
x,ξ〉〈Φh

x,ξ|
dxdξ

(2πh)
.
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>From the previous relation, we conjugate the action of τh
(x0,ξ0)

via Bh:

[Bhτ
h
(x0,ξ0)

ϕ](z) =
e

|z|2
2h

(πh)1/2
〈Φh

(x,ξ) | τh
(x0,ξ0)

ϕ〉

=
e

|z|2
2h

(πh)1/2
〈τh

−(x0,ξ0)τ
h
(x,ξ)Φ

h
0 |ϕ〉

=
e

|z|2
2h

(πh)1/2
e−i

σ((−x0,−ξ0),(x,ξ))
2h 〈Φh

(x−x0,ξ−ξ0)
|ϕ〉

= e
|z|2
2h e

2i(ξ0x−x0ξ)
4h e−

|z−z0|2
2h [Bhϕ](z − z0) = e

z0(2z−z0)
2h [Bhϕ](z − z0) ,

with z = x−iξ√
2

and z0 = x0−iξ0√
2

. With our normalization, the Bargmann transform of the function

Φh
0 is the constant function (πh)−1/2 and we get more generally

[BhΦh
(x0,ξ0)](z) = (πh)−1/2e

z0(2z−z0)
2h .

Hence the relation
h∂z [BhΦh

(x0,ξ0)
] = z0[BhΦh

(x0,ξ0)] ,

holds for all z0 = x0−iξ0√
2

∈ C.

3.3 Harmonic oscillator

The harmonic oscillator (or number operator in the Fock representation) is the self adjoint operator
on L2(R, dy) given by:

Ñh =
1

2
(−h2∂2

y + y2 − h) = a∗hah

D(Ñh) =
{

u ∈ L2(R, dy), yαDβ
yu ∈ L2(R, dy), α+ β ≤ 2

}

,

where the annihilation and creation operators, ah = 1√
2
(h∂y + y) and a∗h = 1√

2
(−h∂y + y), satisfy

the CCR [ah, a
∗
h] = h. The normalized Hermite functions are then given by

Hh
0 (y) =

1

(πh)1/4
e−

y2

h Hh
n =

1

hn/2
√
n!

(a∗h)nH0 for n ∈ N , (3.2)

and form an orthonormal basis of eigenfunctions with

ÑhH
h
n = nhHh

n .

An integration by parts shows

[Bhh∂yϕ](z) = [Bhyϕ](z) −
√

2z[Bhϕ](z)

which yields

zBh = Bh ◦ (
−h∂y + y√

2
) = Bh ◦ a∗h . (3.3)

V–9



We then differentiate Bhϕ with respect to z, and we obtain

h∂z[Bhϕ](z) = −z[Bhϕ](z) +
√

2[Bhyϕ](z)

which leads to

(h∂z) ◦Bh = Bh ◦ (
h∂y + y√

2
) = Bh ◦ ah . (3.4)

>From this we recover

ahΦh
(x0,ξ0)

= z0Φ
h
(x0,ξ0) with z0 =

x0 − iξ0√
2

, (3.5)

while (3.3) and (3.2) imply

Bh[Hh
n ] =

1

(πh)1/2hn/2
√
n!
zn ,

Ñh = B∗
h[z(h∂z)]Bh .

Thus, we set
Nh = BhÑhB

∗
h = z(h∂z) .

Using (3.4), (3.5) and (3.1), we see that any element f = Bhϕ of Fh satisfies

h∂zf = h∂z(Πhf) = Πh(zf) .

We also note
z(h∂z)f = h∂z(zf) − hf = h∂zΠh(zf) − hf = Πh(|z|2 − h)Πhf.

Since Bh = ΠhBh, this provides another useful writing of the operator Ñh:

Ñh = B∗
h[|z|2 − h]Bh , Nh = Πh(|z|2 − h)Πh .

3.4 h-Pseudo-differential operators

We simply recall the link with the Anti-Wick quantization1. The Anti-Wick quantization of a
symbol b(x, ξ) can be defined as

bA−Wick(y, hDy) =

∫

R2

b(x, ξ)|Φh
(x,ξ)〉〈Φh

(x,ξ)|
dxdξ

2πh
.

It is a positive quantization in the sense that

(b ≥ 0) ⇒ (bA−Wick(y, hDy) ≥ 0)

and this implies
∥

∥

∥
bA−Wick(y, hDy)

∥

∥

∥
≤ ‖b‖L∞ .

Another simple consequence of its definition

∥

∥

∥
bA−Wick(y, hDy)

∥

∥

∥

L1
≤ 1

2πh
‖b‖L1

1The “Anti-Wick” name corresponds to the fact that the quantized symbol |z|2 = zz = zz equals aha
∗
h.
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where L1(L2(R, dy)) denotes the space of trace-class operators.
The Anti-Wick quantization is close to the Weyl quantization due to the relation

bA−Wick(y, hDy) = (
e−|z|2/h

πh
∗ b)W (y, hDy)

For symbols in S(1, dx2 + dξ2) this leads to

∥

∥

∥
bA−Wick(y, hDy) − bW (y, hDy)

∥

∥

∥
= O(h)

which allows to write in this class of symbols

bA−Wick
1 (y, hDy) ◦ bA−Wick

2 (y, hDy) = (b1b2)(y, hDy) +OL(L2)(h)

i

h
[bA−Wick

1 (y, hDy), b2(y, hDy)] = {b1, b2}A−Wick (y, hDy) +OL(L2)(h) .

Such results can be extended to some Hörmander classes (see [31, Chap XVIII] or [22]) or even to
symbols with low regularity (see [25]). We note also the estimates

∥

∥

∥
bA−Wick(y, hDy)

∥

∥

∥
≤ ‖b(y, hDy)‖L2 ≤ (2πh)−1/2 ‖b‖L2

deduced from the relation with the Weyl quantization.
Finally we translate the action of bA−Wick(y, hDy) on the Fock space Fh. From the relationship
between the Bargmann transform and the coherent states, we get the relations

bA−Wick(y, hDy) = B∗
h ◦ b(x, ξ) ◦Bh

and Bhb
A−Wick(y, hDy)B

∗
h = Πh ◦ b(x, ξ) ◦ Πh

where b(x, ξ) simply denotes the multiplication by the function b(x, ξ) in L2(C, e−|z|2/h L(dz)).
Hence bA−Wick(y, hDy) acts on Fh as a Toeplitz operator.

It is also possible to introduce an analytic pseudodifferential calculus. For this aspect, we refer
the reader to [15, 31, 39].

4 Mathematical results

This section presents the results detailed in [6]. We give them here without proofs, refering the
interested reader to [6].

4.1 Existence of a minimizer

First of all, let us define the spaces

Fs
h =

{

f entire, s.t.

∫

C

〈z〉2s|f(z)|2e−
|z|2

h L(dz) <∞
}

, (4.1)

where 〈z〉 =
√

1 + |z|2. The fact that F1
h is compactly imbedded into Fh allows to prove the

following:
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Theorem 4.1 For fixed h > 0, the minimization problem (2.22) admits a solution in F1
h . Any

minimizer is a solution of the Euler-Lagrange equation

Πh

[(

|z|2 + gΩ2
he

− |z|2
h |f |2 − λ

)

f

]

= 0 (4.2)

where λ ∈ R is the Lagrange multiplier and is bounded independently of h. The Euler-Lagrange
equation can also be written as

zh∂zf +
gΩ2

h

2
f̄(h∂z)[f

2(2−1.)] − (λ− h)f = 0, in F−1
h (4.3)

the operator f̄(h∂z) being defined as the limit limK→∞
∑K

k=0 ak(h∂z)
k if f(z) =

∑∞
k=0 akz

k.

The compactness property allows to pass to the limit in the constraint for any minimizing
sequence (passing to the limit in the energy is not a problem since it is convex). Moreover, in
order to write down the Euler-Lagrange equation (4.2), one needs to check that the energy is
sufficiently regular. The first term is a continuous bilinear form in F1

h , which causes no problem.
However, proving that the second term is differentiable is not that obvious. It is done in [6] using a
hypercontractivity property of the semi-group associated to the operator Nh = zh∂z . The proof of
this hypercontractivity property may be found in [12, 20]

Concerning the energy, we have the following result:

Theorem 4.2 The minimum

ehLLL = inf
{

Gh (f) , f ∈ Fh, ‖f‖Fh
= 1
}

satisfies

2Ωh

3

√

2g

π
< ehLLL ≤ 2Ωh

3

√

2gb

π
+ oG(h0) (4.4)

where the parameter b describes the contribution of the vortex lattice and is related to a minimization
problem in Theorem 4.4 below. Moreover, the Lagrange multiplier λ satisfies the uniform estimates
ehLLL ≤ λ ≤ 2ehLLL.

In order to prove the lower bound in (4.4), one minimizes the energy (2.23) over L2

(

C, e−
|z|2
2h L(dz)

)

,

which contains Fh. Then it is easily seen that the minimizer is the inverted parabola

|umin|2 (z) =
2

πR2
h

(

1 − |z|2
R2

h

)

1{|z|≤Rh}, Rh =
√
λ =

(

2gΩ2
h

π

)1/4

. (4.5)

The first point is that this explicit minimizer gives the expected lower bound, and the second point
is that umin satisfying (4.5) cannot be in Fh since it has compact support. This explains why the
left-hand side inequality is strict in (4.4).

Concerning the upper bound in (4.4), it is related to choosing a good test function f . We will
see below that it is related to Jacobi’s Θ function.

Using the Euler-Lagrange equation, we are able to prove the following result:
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Theorem 4.3 Let f be a minimizer of (2.22). If h is sufficiently small, then f has an infinite
number of zeroes.

Actually, the term "sufficiently small" is made precise in [6]. It is explicit in the sense that if
one has an estimate on λ (which is numerically tractable through an estimate on ehLLL), then the
condition amounts to h < h0, where h0 depends explicitly on g and λ.

Theorem 4.3 implies in particular that the minimizer cannot be a polynomial. However, we have
also proved in [6] that, for h fixed, the minimizer of Gh over the subspace of polynomials of degree
lower than K converges, as K goes to infinity, to a minimizer of problem (2.22).

4.2 Theta function

We consider in this section the question of choosing a good test function f in order to find the upper
bound announced in (4.4). As indicated by the numerical simulations (and by the experiments), it
is likely that a good approximation of the minimizer is given by a vortex configuration consisting
of a lattice. We therefore introduce the following notation for a lattice:

L =
1

ν
(Z ⊕ τZ) , ν ∈ R

∗
+, τ = τR + iτI , τI > 0, |τ | ≥ 1, −1

2
≤ τR <

1

2
. (4.6)

This provides a description for all lattices with smallest period 1/ν.
As is stated in Theorem 4.4 below, if we want the function f to be holomorphic, have simple

zeroes and vanish on each site of a given lattice L, it is necessarily related to Jacobi’s theta function,
which is defined as follows (see for instance [13]):

Θ(v, τ) =
1

i

+∞
∑

n=−∞
(−1)neiπτ(n+1/2)2e(2n+1)πiv , v ∈ C . (4.7)

Such an ansatz was introduced by Abrikosov (see for example [2, 41]) in the context of supercon-
ductors modelling. Before stating the corresponding theorem, we recall the definition of the average
of a periodic function (here, Q is any cell of the lattice):

−
∫

|u|n =

∫

Q |u|n(z) L(dz)
∫

Q L(dz)
= lim

R→∞

∫

|z|≤R |u|n L(dz)
∫

|z|≤R L(dz)
.

Theorem 4.4 Let L be a lattice given by (4.6). If the function f is entire, if its zeroes are exactly

the points of L and are simple, and if

∣

∣

∣

∣

e−
|z|2

h f(z)

∣

∣

∣

∣

is L-periodic, then the lattice parameter ν and

the function f satisfy

ν =

√

τI
πh

and f(z) = cfτ (z), c ∈ C
∗

with fτ (z) = e
z2

2h Θ

( √
τI√
πh
z, τ

)

. (4.8)

The function fτ (z) solves the equation

Πh

(

e−
|z|2

h |fτ |2fτ

)

= λτfτ , in Fs
h , s < −1 , (4.9)

with λτ =
−
∫

|uτ |4
(

−
∫

|uτ |2
) =

1√
2τI

∑

k∈Z

∑

`∈Z

e
− π

τI
|kτ−`|2

(4.10)
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where uτ (z) = e−
|z|2
2h fτ (z). Moreover, for the quantity γ(τ) defined by

γ(τ) =
−
∫

|uτ |4
(

−
∫

|uτ |2
)2 , (4.11)

we have

γ(τ) =
∑

k∈Z

∑

`∈Z

e
− π

τI
|kτ−`|2

. (4.12)

Note that equation (4.9) may be seen as equation (4.2) without the confining term Πh|z|2Πhf =
zh∂zf + hf.

In [33], the following result is proved:

Theorem 4.5 (Optimal lattice, [33]) The complex number τ = j = e
2iπ
3 , corresponding to the

hexagonal lattice, is the unique minimizer of γ(τ) in the fundamental domain
{

τ = τR + iτI ∈ C, τI > 0, |τ | ≥ 1, −1

2
≤ τR <

1

2

}

and b = γ(j) ∼ 1.15959.

The problem of minimizing the quantity γ(τ) with respect to τ was already addressed in [23].
One can find there some numerical evidence of the fact that τ = j is the minimizer. The authors of
[33] prove that τ = j, i.e the hexagonal lattice, is indeed the unique minimizer.

4.3 Limit as h −→ 0

Despite the preceding results, the ansatz (4.8) is not sufficient to obtain the upper bound in (4.4):
we need to take into account the fact that the solution should in some sense "look like" the inverted
parabola (4.5). Actually, we expect that when h is sufficiently small, any minimizer of (2.22) is
close in some sense to fτ (z)α(z), where fτ is the function described in Theorem 4.4 which varies
on a characteristic size

√
h, and α is a slow varying profile which optimizes the energy. We are not

able to prove such a result but the converse: fτ (z)α(z) can be approximated, as h tends to 0, by
the element Πh(αfτ ) of Fh, which is almost a solution of (4.2):

Theorem 4.6 Let τ ∈ C \ R, let α ∈ C0, 1
2 (C; C) be such that supp(α) ⊂ K for some compact set

K and
∫

|α|2 = 1. For fτ defined by (4.8), we set

gh
α,τ = ‖Πh(αfτ )‖−1

Fh
Πh(αfτ ), and vh

α,τ (z) = gh
α,τ (z)e

− |z|2
2h . (4.13)

Then we have

Gh
(

gh
α,τ

)

=

∫

C

(

|z|2|α(z)|2 +
Naγ(τ)

2
|α(z)|4

)

L(dz) +O(h1/4) (4.14)

where γ(τ) is given by (4.11) and O(h1/4) depends only on ‖α‖C0,1/2 , τ , λ and K. Moreover, for
any λ ∈ C,

Πh

((

|z|2 − λ+NaΩ2
h

∣

∣

∣
vh
α,τ

∣

∣

∣

2
)

gh
α,τ

)

= Πh

(

(

|z|2 − λ+Naγ(τ)|α|2
)

gh
α,τ

)

+OFh
(h1/4) , (4.15)

where OFh
(h1/4) depends only on ‖α‖C0,1/2 , τ , λ and K.

V–14



In order to approximate a minimizer of (2.22), we need to pick the optimal function α. Minimizing
the right-hand side of (4.14) with respect to τ and α under the constraint

∫

|α|2 = 1 yields

τ = j and |α(z)|2 =
1

Naγ(τ)

(
√

2Naγ(τ)

π
− |z|2

)

+

, (4.16)

where the first equality is a consequence of Theorem 4.5. This provides in particular a test function
for the upper bound of the energy, and makes precise the remainder estimate in the upper bound
of (4.4), which is an improvement of the results of [4].

With this choice of α and τ , and if in addition λ in (4.15) is such that λ =
√

2Naγ(τ)/π, (4.15)
implies that

Πh

((

|z|2 − λ+NaΩ2
h

∣

∣

∣
vh
α,τ

∣

∣

∣

2
)

gh
α,τ

)

= O
(

h1/4
)

in Fh. (4.17)

In other words, gh
α,τ is a solution of (4.2) up to an error term of order h1/4. Furthermore, it is

proved in [6] that, as h tends to 0, gh
α,τ is very close to fτ (z)α(z). This implies that the zeroes of

gh
α,τ are located on an almost regular triangular lattice in the support of α. We do not have much

information though, on the zeroes located outside the support of α, the "invisible vortices".

5 Perspectives

We have presented here a brief account of the work [6]. Note that further results may be found there.
Among other things, we provide an error analysis of the numerical results displayed in Figure 2. We
also derive a dynamical version of the above static picture. However, some open questions remain.

First, we have an upper bound in (4.4) which does not mach the lower bound. Should it be the
case, we would probably be able to prove a convergence result on the minimizer. The commonly
accepted conjecture is that the lower bound should contain the parameter b and thus be equal to
the upper bound we already prove. Showing this more or less amounts to prove that a minimizer
exhibits a lattice of zeroes. This intuition is corroborated by numerical simulations, but proving it
seems far from being easy.

Another problem concerns modelling rather than the semi-classical analysis we have done here:
we have approximated the original problem (2.7) by (up to rescaling) the LLL problem (2.22), but
we have no rigourous justification of this fact. In particular, it would be of interest to prove that
any solution of (2.7) is close to a minimizer of (2.22) after proper rescaling.

One last problem is to derive more precise estimates on the solutions of (2.22) as h→ 0. All we

know about it for now is that it is bounded in F1
h and that the corresponding u(z) = f(z)e−

|z|2
2h is

bounded in L4(C). For instance it is a natural thing to look for a bound in L∞(C), but we are not
able to prove it for now.

Finally, let us mention the main drawback of the present work: we are only able to prove that
the ansatz (4.13) with α and τ given by (4.16) is almost a solution of the equation in the sense of
(4.17). A natural question is, can we prove that it is close (in some sense) to a solution, or even
close to a local minimizer?
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