Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 2, 12 p.
Bony, Jean-François 1 ; Petkov, Vesselin 1

1 Département de Mathématiques Appliquées, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France
@article{SEDP_2005-2006____A2_0,
     author = {Bony, Jean-Fran\c{c}ois and Petkov, Vesselin},
     title = {Estimates for the cut-off resolvent of the {Laplacian} for trapping obstacles},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
     note = {talk:2},
     pages = {1--12},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2005-2006},
     mrnumber = {2276068},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_2005-2006____A2_0/}
}
TY  - JOUR
AU  - Bony, Jean-François
AU  - Petkov, Vesselin
TI  - Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
JO  - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
N1  - talk:2
PY  - 2005-2006
SP  - 1
EP  - 12
PB  - Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/item/SEDP_2005-2006____A2_0/
LA  - en
ID  - SEDP_2005-2006____A2_0
ER  - 
%0 Journal Article
%A Bony, Jean-François
%A Petkov, Vesselin
%T Estimates for the cut-off resolvent of the Laplacian for trapping obstacles
%J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz"
%Z talk:2
%D 2005-2006
%P 1-12
%I Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/item/SEDP_2005-2006____A2_0/
%G en
%F SEDP_2005-2006____A2_0
Bony, Jean-François; Petkov, Vesselin. Estimates for the cut-off resolvent of the Laplacian for trapping obstacles. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2005-2006), Exposé no. 2, 12 p. http://www.numdam.org/item/SEDP_2005-2006____A2_0/

[1] J.-F. Bony, Résonances dans des domaines de taille h, Inter. Math. Res. Notes, 16 (2001), 817-847. | MR | Zbl

[2] J.-F. Bony and L. Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude Comm. Math. Phys. 246 (2004), no. 2, 375–402. | MR | Zbl

[3] J.-F. Bony and V. Petkov, Resonances for non-trapping time-periodic perturbations, J. Phys. A: Math. Gen. 37 (2004), 9439-9449. | MR | Zbl

[4] J.-F. Bony and V. Petkov, Resolvent estimates and local energy decay of hyperbolic equations, Around Hyberbolic Systems, Conference to the memory of Stefano Benvenutti, Ferrara 2005, to appear. | MR

[5] N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonances au voisinage du réel, Acta Math. 180 (1998), 1-29. | Zbl

[6] N. Burq, Semi-classical estimates for the resolvent in non-trapping geometries, Inter. Math. Res. Notes, 5 (2002), 221-241. | MR | Zbl

[7] N. Burq, Global Strichartz estimates for nontrapping geometries: About an article by H. Smith and C. Sogge, Comm. Partial Differential Equations, 28 (2003), no. 9-10, 1675–1683. | MR | Zbl

[8] N. Burq, Smoothing effect for Schrödinger boundary value problems, Duke Math. J. 123 (2004), no. 2, 403–427. | MR | Zbl

[9] M. Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, 38 (1989), 113-146. | Numdam | MR | Zbl

[10] C. Gérard, Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes, Bulletin de SMF, Mémoire no. 31, 116(1), (1988). | Numdam | MR | Zbl

[11] I. Herbst, Contraction semigroups and the spectrum of A 1 I+IA 2 , J. Oper. Theory, 7 (1982), 61-78. | MR | Zbl

[12] R. Melrose and J. Sjöstrand, Singularities of boundary value problems, Comm. Pure Appl. Math. I, 31 (1978), 593-617, II, 35 (1982), 129-168. | Zbl

[13] C. Morawetz, Decay estimates of the exterior problem for the wave equation, Comm. Appl. Math. 28 (1975), 229-264. | MR | Zbl

[14] P. D. Lax and R.S. Phillips, Scattering Theory, Academic Press, 2nd Edition, 1989. | MR | Zbl

[15] V. Petkov and L. Stoyanov, Trapping obstacles and singularities of the scattering kernel, Colloque Franco-Tunisien d’EDP, Hammamet, 2003, Séminaires et Congrès, SMF, to appear.

[16] V. Petkov, Global Strichartz estimates for the wave equation with time-periodic potentials, J. Funct. Anal., to appear. | MR | Zbl

[17] G. Popov and G. Vodev, Distribution of the resonances and local energy decay in the transmission problem, Asymptotic Analysis, 19 (1999), 253-265. | MR | Zbl

[18] J. Ralston, Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807–823. | MR | Zbl

[19] J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. | MR | Zbl

[20] J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal Analysis and spectral theory, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 490 (1997), 377-437. | MR | Zbl

[21] J. Sjöstrand, Resonances for bottles and related trace formulae, Math. Nachr. 221 (2001), 95-149. | MR | Zbl

[22] S. H. Tang and M. Zworski, Resonances expansions of scattered waves, Comm. Pure Appl. Math. 53 (2000), 1305-1334. | MR | Zbl

[23] G. Vodev, On the uniform decay of the local energy, Serdica Math. J. 25 (1999), 191–206. | MR | Zbl