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Blow up of the critical norm for some radial L
2 super critical

non linear Schrödinger equations

Pierre Raphaël

1 Introduction

The aim of this note is to present a joint work in collaboration with Frank Merle concerning
the blow up of the critical Sobolev norm for the nonlinear Schrödinger equation

(NLS)

{

iut = −∆u− |u|p−1u, (t, x) ∈ [0, T ) × RN

u(0, x) = u0(x), u0 : RN → C
(1.1)

in dimension N ≥ 3 with

1 < p <
N + 2

N − 2
.

From a result of Ginibre and Velo [4], (1.1) is locally well-posed in H1 = H1(RN ) and thus,
for u0 ∈ H1, there exists 0 < T ≤ +∞ and a unique solution u(t) ∈ C([0, T ),H1) to (1.1)
and either T = +∞, we say the solution is global, or T < +∞ and then limt↑T |∇u(t)|L2 =
+∞, we say the solution blows up in finite time.
(1.1) admits the following conservation laws in the energy space H1:

L2 − norm :
∫

|u(t, x)|2 =
∫

|u0(x)|2;
Energy : E(u(t, x)) = 1

2

∫

|∇u(t, x)|2 − 1
p+1

∫

|u(t, x)|p+1 = E(u0).

The scaling symmetry λ
2

p−1u(λ2t, λx) leaves the homogeneous Sobolev space Ḣsc invariant
with

sc =
N

2
− 2

p− 1
. (1.2)

It is classical from the conservation of the energy and the L2 norm that for sc < 0, the equa-
tion is subcritical and all H1 solutions are global and bounded in H1. The smallest power
for which blow up may occur is p = 1 + 4

N
which corresponds to sc = 0 and is referred to

as the L2 critical case. The case 0 < sc < 1 is the L2 super critical and H1 subcritical case.

We focus from now on onto the case 0 ≤ sc < 1. The existence of finite time blow
up solutions is a consequence of the virial identity, [14]: let an initial condition u0 ∈ Σ =
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H1 ∩ {xu ∈ L2} with E(u0) < 0, then the corresponding solution u(t) to (1.1) satisfies
u(t) ∈ Σ with:

d2

dt2

∫

|x|2|u(t, x)|2 = 4N(p− 1)E(u0) −
16sc

N − 2sc

∫

|∇u|2 ≤ 16E(u0) (1.3)

and thus the positive quantity
∫

|x|2|u(t, x)|2 cannot exist for whole times and u blows up
in finite time.

Recall now from Cazenave and Weissler [2] that given u0 ∈ Ḣsc , there exists a max-
imum time T (u0) > 0 and a unique maximal solution u(t) ∈ C([0, T (u0)), Ḣ

sc) to (1.1).
More generally and following the same procedure, given sc < s ≤ 1 and u0 ∈ Ḣs,
there exists T (s, u0) > 0 and a unique maximal solution u(t) ∈ C([0, T (s, u0)), Ḣ

sc)
to (1.1), and as the problem is now subcritical with respect to Ḣs, T (s, u0) < +∞ iff
limt→T (s,u0) |u(t)|Ḣs = +∞.

Let now u0 ∈ Ḣsc ∩ Ḣ1, then there exists a maximum time T > 0 and a unique
maximal solution u(t) ∈ C([0, T ), Ḣsc) to (1.1). Indeed, the life times given by the local
Cauchy theory in Ḣsc and Ḣsc ∩ Ḣ1 are the same from a standard argument. Moreover,
if u(t) blows up in finite time 0 < T < +∞, then there holds the scaling lower bound:

∀sc < s ≤ 1, |u(t)|Ḣs ≥ C(N, p, s)

(T − t)
s−sc

2

. (1.4)

Indeed, let sc < s ≤ 1, t ∈ [0, T ) and consider vt(τ, x) = λ
2

p−1 (t)u(t + λ2(t)τ, λ(t)x)
with λs−sc(t)|u(t)|Ḣs = 1 so that |vt(0)|Ḣs = 1, then from the local Cauchy theory in Ḣs

which is subcritical, there exists τ0(s) > 0 such that v is defined on [0, τ0(s)] from which
t+ λ2(t)τ0(s) < T , this is (1.4).

Let us remark that this argument does not apply for the critical Ḣsc norm. Numerics
suggest at least in the radial case that finite time blow implies:

lim
t→T

|u(t)|Ḣsc
= +∞. (1.5)

We conjecture that given u0 ∈ Ḣsc, 0 < sc < 1, if the corresponding solution to (1.1)
blows up in finite time, then (1.5) holds true. Note that this is in sharp contrast to the
L2 critical case where the L2 norm is conserved and thus (1.5) breaks down.

Note that such kind of critical problems and behavior of the critical norms have been
adressed in other settings, see for example [3] for the 3D Navier-Stockes problem.
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1.1 A general strategy: reduction to a Liouville theorem

Let us present a general and robust strategy to attack the proof of (1.5) which is inspired
form the works in Martel, Merle [8] and Merle, Raphaël [9]. This idea is to first argue
by contradiction and use compactness arguments to extract from a renormalized version
of the solution an asymptotic object which generates a global in time nonpositive energy
solution to (1.1). Here the arguments are quite general and could be extended to a wider
class of solutions and problems. In a second step, one concludes using a Liouville type
blow up result for nonpositive energy solutions.

More precisely, let u0 ∈ Ḣsc ∩ Ḣ1 with radial symmetry and assume that the corre-
sponding solution u(t) to (1.1) blows up in finite time 0 < T < ∞ or equivalently from
[2]:

lim
t→T

|∇u(t)|L2 < +∞.

Let a sequence tn → T such that

lim
tn→T

|∇u(tn)|L2 = +∞

and
∀n ≥ 1, ∀t ∈ [0, tn], |∇u(t)|L2 ≤ C|∇u(tn)|L2 (1.6)

for some universal constant C > 0. We now assume that:

∀n ≥ 1, |u(tn)|Ḣsc
< +∞ (1.7)

and look for a contradiction.
Let the sequence of rescaled initial data

un(0, x) = λu(tn)
2

p−1u(tn, λu(tn)x)

with

λu(t) =

(

1

|∇u(t)|L2

)
1

1−sc

so that |∇un(0)|L2 = 1. (1.8)

From the scaling invariance, (1.7) and the conservation of the energy, we have:

|un(0)|Ḣsc
= |u(tn)|Ḣsc

≤ C and E(un(0)) = λu(tn)
2(1−sc)E(u0) → 0 (1.9)

as n→ +∞ and in particular

un(0) ⇀ v(0) in Ḣsc ∩ Ḣ1 as n→ +∞ (1.10)

up to a subsequence. From the compact radial embedding Ḣsc ∩ Ḣ1 ↪→ Lp+1, we have up
to a subsequence

un(0) → v(0) in Lp+1 as n→ +∞
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and thus
E(v(0)) ≤ 0.

Observe now that the solution un(τ) to (1.1) with initial data un(0) is explicitly

un(τ, x) = λu(tn)
2

p−1u(tn + λu(tn)
2τ, λu(tn)x), (1.11)

and thus (1.6) and (1.8) imply:

∀τ ∈ (− tn

λ2
u(tn)

, 0], |∇un(τ)|L2 =
|∇u(tn + λu(tn)

2τ)|L2

|∇u(tn)|L2

≤ C. (1.12)

Let now v(t) be the solution to (1.1) with initial data v(0) and (−Tv, 0] its maximum time
interval existence on the left in time in Ḣsc ∩ Ḣ1, then one may adapt the Lemma of
stability of weak convergence in H1, see Glangetas, Merle [5] and also Lemma 3 in [9], to
conclude:

∀τ ≤ 0, un(τ) ⇀ v(τ) in Ḣsc ∩ Ḣ1 as n→ +∞
and thus from (1.12):

|∇v(τ)|L2 ≤ C and − Tv = −∞.

In other words, (1.7) implies the existence of a global in time radially symmetric nonpos-
itive energy solution to (1.1) in Ḣsc ∩ Ḣ1.

Our main result is that the existence of such an object may be ruled out in some cases
from the following Liouville type result:

Theorem 1 (Finite time blow up for non positive energy solutions in Ḣsc ∩ Ḣ1)
Assume

N ≥ 3 and
1

2
≤ sc < 1.

Let u0 ∈ Ḣsc ∩ Ḣ1 with radial symmetry and

E(u0) ≤ 0,

then the corresponding solution u(t) to (1.1) blows up in finite time 0 < T < +∞.

Comments on Theorem 1

1. On the assumption u0 ∈ Ḣsc∩Ḣ1: Let u0 ∈ Σ with E0 < 0, then finite time blow up
follows from the virial identity (1.3). If u0 ∈ H1 radial with E0 < 0, a simple localization
argument allows one to conclude also, see Ogawa, Tsutsumi [12]. Now if u0 ∈ H1 radial
with E0 = 0, then finite time blow up also follows. The key here is first the conservation
of the energy and a Gagliardo-Nirenberg inequality:

|∇u(t)|2L2 =
2

p+ 1
|u|p+1

Lp+1 ≤ C|∇u(t)|2+sc(p−1)
L2 |u(t)|(1−sc)(p−1)

L2
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which implies from the conservation of the L2 norm the uniform lower bound:

|∇u(t)|L2 ≥ C

|u0|
1−sc

sc

L2

.

This together with a space localization of the virial identity (1.3) yields the claim.
Let us insist onto the fact that our need to work with low regularity u0 ∈ Ḣsc ∩ Ḣ1 comes
from the renormalization procedure before the extraction of the asymptotic object and
a major difficulty is thus that we may no longer used the L2 conservation law. Arguing
by contradiction, we in fact need to rule out the possibility of a non linear self similar
vanishing |∇u(t)|L2 → 0 as t → +∞ in the case when E0 = 0. This difficulty already
occured in [9], [10]. Our main tool is that for radial functions and sc ≥ 1

2 , we may replace
the role of the L2 norm by a suitable scaling invariant Morrey-Campanatto norm, see the
definition (2.16), for which uniform bounds in time are derived which somehow mimic the
L2 conservation law. The key here is a new kind of monotonicity statement based on a
localized virial identity. Here the techniques are thus restricted to radial solutions. The
assumption sc ≥ 1

2 arises to control some momentum terms in the time integration of the
virial identity, see in particular (2.19).

2. On the sharpness of the result: We expect the assumptions on the initial data to
be sharp in the following sense. One may obtain exact self similar blow up solutions by
looking for solutions of the form

u(t, x) =
1

λ(t)
2

p−1

P

(

x

λ(t)

)

eilog(T−t) with λ(t) =
√

2b(T − t)

for some parameter b > 0 and some stationary profile P satisfying the non linear elliptic
equation:

∆P − P + ib

(

2

p− 1
P + y · ∇P

)

+ P |P |p−1 = 0. (1.13)

Rigorous existence results of finite energy radially symmetric solutions to (1.13) are known
only for p close to the L2 critical value, see Kopell and Landman [6]. The obtained pro-
files are in Ḣ1 and have zero energy but always miss Ḣsc due to a logarithmic growth at
infinity. Such solutions, when they exist, thus provide explicit examples of zero energy
solutions which blow up on the right in time but are global on the left.

3. On the range of parameters: The proof of Theorem 1 is complete only for N ≥ 3
and 1

2 ≤ sc < 1. This covers in particular the physically relevant case N = 3, p = 3 which

is Ḣ
1
2 critical. We expect the result to in fact hold true in the whole super critical range

0 < sc < 1. Here we encounter a technical difficulaty related to the estimate of some
localized momentum terms, see (2.19). For N = 1, 2, another difficulty would arise for
p ≥ 5 -while p < 5 is implied by the assumptions of Theorem 1-. Indeed, the proof of
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Theorem 1 in particular requires that the singularity formation takes place at the origin
for the radial solution. This can be proved to be necessary for p < 5 -because p = 5 is
the one dimensional L2 critical exponent-, but one can construct for p = 5, N = 2, a
radial finite time blow up solution blowing up on a sphere, see Raphaël [13]. The intuition
developped for the proof of Theorem 1 would not be well adapted for such an object.

The reduction procedure together with the Liouville Theorem 1 thus imply the follow-
ing blow up result of the critical norm:

Theorem 2 (Blow up of the critical Sobolev norm) Assume

N ≥ 3 and
1

2
≤ sc < 1.

Let u0 ∈ Ḣsc ∩ Ḣ1 with radial symmetry and assume that the corresponding solution to
(1.1) blows up in finite or infinite time 0 < T ≤ +∞, then

lim sup
t→T

|u(t)|Ḣsc
= +∞. (1.14)

In fact, by pushing further the arguments developped here and in particular for the
proof of Theorem 1, one can obtain a much sharper understanding of the structure in space
of the rescaled sequence un(τ) given by (1.11) which eventually implies a logarithmic lower
bound on the blow up rate of the critical norm -which is optimal in some sense-, see Merle,
Raphaël [11]:

Theorem 3 (Lower bound for the critical Sobolev norm) Assume

N ≥ 3 and
1

2
≤ sc < 1.

There exists a constant γ = γ(N, p) > 0 such that the following holds true. Let u0 ∈
Ḣsc ∩ Ḣ1 with radial symmetry and assume that the corresponding solution to (1.1) blows
up in finite time 0 < T < +∞, then

|u(t)|Ḣsc
≥ |log(T − t)|γ (1.15)

for t close enough to T .

2 Proof of the Liouville Theorem 1

Our aim for the rest of this note is to present a mostly self contained presentation of the
Liouville Theorem 1.
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2.1 Some technical tools

Before detailing the proof of the Liouville Theorem 1, we recall two technical tools which
proofs are standard. We refer to [11] for the details.

Let the scaling invariant Morrey-Campanatto norm

ρ(u,R) = sup
R′≥R

1

(R′)2sc

∫

R′≤|x|≤2R′

|u|2. (2.16)

We claim the following elementary estimates.

Lemma 1 There exists a universal constant C > 0 such that for all u ∈ Ḣsc,

∀R > 0, ρ(u,R) ≤ C|u|2
Ḣsc

(2.17)

and

lim
R→+∞

1

R2sc

∫

|x|≤R
|u|2 → 0 as R→ +∞. (2.18)

Moreover, let ψ be a smooth radially symmetric cut-off function supported in |x| ≤ 2, then
there exists a constant Cψ > 0 such that for all u ∈ Ḣsc:

∣

∣

∣

∣

(
∫

∇ψ(
x

R
) · ∇uu

)
∣

∣

∣

∣

≤ Cψ|u|2Ḣsc
R2sc−1. (2.19)

Note that (2.19) relies on our assumption 1
2 ≤ sc ≤ 1.

Next, recall the standard Gagliardo-Nirenberg inequality :

∫

|u|p+1 ≤ C|u|p−1

Ḣsc

(
∫

|∇u|2
)

.

For radially symmetric distributions, we may sharpen this inequality by using the fact
that for N ≥ 3,

p <
N + 2

N − 2
< 5,

and thus the nonlinearity is L2 subcritical away from zero. We claim:

Proposition 1 (Radial Gagliardo-Nirenberg inequality) For all η > 0, there exists
a constant Cη > 0 such that for all u ∈ Ḣsc with radial symmetry, for all R > 0,

∫

|x|≥R
|u|p+1 ≤ η|∇u|2L2(|x|≥R) +

Cη

R2(1−sc)

[

(ρ(u,R))
2(p+3)
5−p + (ρ(u,R))

p+1
2

]

. (2.20)
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2.2 Proof of the Liouville Theorem 1

We now prove the Liouville Theorem 1.

Proof of Theorem 1.

Let u0 ∈ Ḣsc ∩ Ḣ1 with radial symmetry and E(u0) ≤ 0, we argue by contradiction
and assume that the corresponding solution u(t) to (1.1) is globally defined on [0,+∞) in
Ḣsc ∩ Ḣ1.

step 1 Localized virial control.

Let a smooth radially symmetric cut-off function ψ with ψ(r) = r2

2 for r ≤ 2, ψ′′(r) ≤ 1
and ψ(r) = 0 for r ≥ 3. For a given R > 0, let

ψR(r) = R2ψR(r).

We claim the following localized virial control:

Lemma 2 (Localized virial estimate) There holds for some constant C = C(N, p, ψ):
∀R > 0, ∀t ≥ 0,

∫

|∇u|2 ≤ C

[

− d

dt
Im (∇ψR · ∇uu) +

∫

|x|≥R
|u|p+1 +

1

R2

∫

2R≤|x|≤3R
|u|2

]

. (2.21)

Proof of Lemma 2

Let χ be a smooth radially symmetric compactly supported cut-off function. We
recall the following standard localized virial identities which up to standard regularization
arguments are obtained by integration by parts on (1.1):

1

2

d

dt

∫

χ|u|2 = Im (∇χ · ∇uu) , (2.22)

1

2

d

dt
Im (∇χ · ∇uu) =

∫

χ′′|∇u|2 − 1

4

∫

∆2χ|u|2 −
(

1

2
− 1

p+ 1

)
∫

∆χ|u|p+1. (2.23)

Note that we used here that u has radial symmetry. Applying (2.23) with χ = ψR, we get:

1

2

d

dt
Im (∇ψR · ∇uu)

=

∫

ψ′′(
x

R
)|∇u|2 − 1

4R2

∫

∆2ψ(
x

R
)|u|2 −

(

1

2
− 1

p+ 1

)
∫

∆ψ(
x

R
)|u|p+1

≤
∫

|∇u|2 +
C

R2

∫

2R≤|x|≤3R
|u|2 −N

(

1

2
− 1

p+ 1

)
∫

|u|p+1 + C

∫

|x|≥R
|u|p+1.
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Now from the conservation of the energy:

∫

|u|p+1 =
p+ 1

2

∫

|∇u|2 − (p+ 1)E0

from which
∫

|∇u|2 −N

(

1

2
− 1

p+ 1

)
∫

|u|p+1 =
N(p− 1)

2
E0 −

2sc
N − 2sc

∫

|∇u|2.

(2.21) follows from 0 < sc < 1 and E0 ≤ 0. This concludes the proof of Lemma 2.

step 2 A monotonicity statement.

We now come to the crux of the proof which is a monotonicity type of result derived
from (2.21). The outcome is a uniform control of the scaling invariant Morrey-Campanatto
norm ρ.
Consider ε > 0 small to be fixed later. From (2.18), there exists A(ε) such that:

∀A ≥ A(ε),
1

A2sc

∫

|x|≤3A
|u(0)|2 < ε

10
. (2.24)

We claim:

Lemma 3 (Uniform control of the scaling invariant ρ norm) There exists B(ε) >
A(ε) such that

∀t ≥ 0, ρ(u(t), B(ε)
√

1 + t) < ε. (2.25)

Moreover, we have the dispersive estimate:

∀t ≥ 0,

∫ t

0
τ |∇u(τ)|L2dτ ≤ C(1 + t)1+sc (2.26)

for some constant C = C(u0, N, p) > 0.

Proof of Lemma 3

Proof of (2.25): From u ∈ C([0,+∞), Ḣsc ∩ Ḣ1), there exists a time t1(ε) > 0 such
that

∀t ∈ [0, t1(ε)], ∀A ≥ A(ε), ρ(u(t), A
√

1 + t) < 10ε. (2.27)

We claim that there exists B(ε) > A(ε) large enough such that:

∀t ∈ [0, t1(ε)], ρ(u(t), A(ε)
√

1 + t) <
ε

2
(2.28)
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what proves (2.25).
Proof of (2.28): Let t0 ∈ [0, t1(ε)], A ≥ B(ε) to be chosen and set

R = R(A, t0) = A
√

1 + t0. (2.29)

We claim that:
1

R2sc

∫

R≤|x|≤2R
|u(t0)|2 <

ε

10
+
C(1 + |u0|2Ḣsc

)

B2(ε)
. (2.30)

This estimate being uniform with respect to A ≥ B(ε) and t0 ∈ [0, t1(ε)], (2.28) follows
for B(ε) large enough.
To prove (2.30), consider the localization (2.21) for R given by (2.29) and estimate the
terms of the right hand side. First observe from the monotonicity of ρ and (2.27) that:

∀t ∈ [0, t0], ρ(u(t), R) ≤ ρ(u(t), B(ε)
√

1 + t) ≤ 10ε. (2.31)

Thus:
1

R2

∫

2R≤|x|≤3R
|u(t)|2 ≤ 1

R2(1−sc)
ρ(u(t), R) ≤ 1

R2(1−sc)
. (2.32)

The non linear term in (2.21) is estimated from the refined Gagliardo-Nirenberg estimate
(2.20) provided η > 0 has been chosen small enough and (2.31): ∀t ∈ [0, t0],

C

∫

|x|≥R
|u|p+1 ≤ 1

2

∫

|∇u(t)|2 +
C

R2(1−sc)

[

(ρ(u(t), R))
2(p+3)
5−p + (ρ(u(t), R))

p+1
2

]

≤ 1

2

∫

|∇u(t)|2 +
1

R2(1−sc)
(2.33)

provided ε > 0 is small enough. We now inject (2.32) and (2.33) into (2.21) and integrate
in time, we get: ∀t ∈ [0, t0],

CIm

(
∫

∇ψR · ∇u(t)u(t)
)

+

∫ t

0
|∇u(τ)|2L2dτ ≤ CIm

(
∫

∇ψR · ∇u(0)u(0)
)

+
Ct0

R2(1−sc)

≤ C|u0|2Ḣsc
R2sc +

Ct0

R2(1−sc)

where we used (2.19). We integrate once more in time from (2.22) and get:

∫

ψR|u(t0)|2 +

∫ t0

0
t|∇u(t)|2L2dt ≤ C

∫

ψR|u(0)|2 (2.34)

+ C|u0|2Ḣsc
t0R

2sc +
Ct20

R2(1−sc)
.

Now observe from the definition of ψ that

∫

ψR|u(t0)|2 ≥ R2

2

∫

R≤|x|≤2R
|u(t0)|2.
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We thus divide (2.34) by R2(1+sc) and get : ∀t0 ∈ [0, t0],

1

R2sc

∫

R≤|x|≤2R
|u(t0)|2 ≤ 1

R2sc

∫

|x|≤3R
|u(0)|2 + C|u0|2Ḣsc

t0

R2
+
Ct20
R4

≤ ε

10
+
C(1 + |u0|2Ḣsc

)

B2(ε)

where we used (2.24) and (2.29) in the last step. This is (2.30).
Proof of (2.26): We come back to (2.34) with ε > 0 fixed and A = B(ε) which implies:
∀t0 ≥ 0,

∫ t0

0
t|∇u(t)|2L2dt ≤ C(u0, N, p)

[

t0R
2sc(t0) +

t20
R2(1−sc)(t0)

]

≤ C(u0, N, p)(1 + t0)
1+sc

from (2.29). This concludes the proof of (2.26) and Lemma 3.

step 3 Control of the local L2 norm.

Let

λ(t) =

(

1

|∇u(t)|L2

)
1

1−sc

, (2.35)

then from (2.26), there exists a sequence tn → +∞ such that:

∀n ≥ 0, |∇u(tn)|L2 ≤ C

(1 + tn)
1−sc

2

or equivalently
1 + tn

λ2(tn)
≤ C (2.36)

for some constant C = C(u0, N, p) > 0. We now claim a scaling invariant control of the
local L2 norm of u on the sequence tn:

Lemma 4 (Scaling invariant control of the local L2 norm of u(tn)) There exists B0 ≥
1 large enough such that: ∀B ≥ B0, ∀n ≥ 0,

1

λ2sc(tn)

∫

|x|≤Bλ(tn)
|u(tn)|2 ≤ 1

λ2sc(tn)

∫

|x|≤2Bλ(tn)
|u(0)|2 +

C

B2(1−sc)
(2.37)

for some constant C = C(u0, N, p).

Proof of Lemma 4

Let n ≥ 0, D ≥ D0 large enough and set

Rn = Dλ(tn). (2.38)
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Fix ε > 0 and B(ε) such that (2.25) holds true. Observe from (2.36) that:

∀t ∈ [0, tn], Rn = Dλ(tn) ≥
D0

C

√
1 + tn ≥ B(ε)

√
1 + t

for D0 large enough. We conclude from (2.25):

∀n ≥ 0, ∀t ∈ [0, tn], ρ(u(t), Rn) ≤ ρ(u(t), B(ε)
√

1 + t) < ε. (2.39)

We now apply (2.22) and (2.23) for some smooth nonnegative radially symmetric cut-off
function χRn

(r) = χ( x
Rn

) where χ(r) = 1 for r ≤ 1 and χ(r) = 0 for r ≥ 2. We first get
from (2.23): ∀t ∈ [0, tn],

∣

∣

∣

∣

d

dt
Im (∇χRn

· ∇uu)
∣

∣

∣

∣

≤ C

R2
n

[

∫

|∇u(t)|2 +
1

R2
n

∫

Rn≤|x|≤2Rn

|u(t)|2 +

∫

|x|≥Rn

|u(t)|p+1

]

≤ C

R2
n

[

∫

|∇u(t)|2 +
1

R
2(1−sc)
n

]

where we used (2.20) and (2.39). Integrating twice in time from (2.22) and using (2.19),
(2.26) and (2.38), we estimate:

∫

χRn
|u(tn)|2 ≤

∫

χRn
|u(0)|2 + Ctn

∣

∣

∣
Im

(

∇χRn
· ∇u(0)u(0)

)
∣

∣

∣
+

C

R2
n

∫ tn

0
t|∇u(t)|2L2

+
Ct2n

R
2(1−sc)+2
n

≤
∫

|x|≤2Rn

|u(0)|2 +
C|u0|2Ḣsc

tn

R
2(1−sc)
n

+
C(1 + tn)

1+sc

R2
n

+
Ct2n

R
2(1−sc)+2
n

≤
∫

|x|≤2Rn

|u(0)|2 + C(u0, N, p)

[

tn

D2(1−sc)λ2(1−sc)(tn)
+

(1 + tn)
1+sc

D2λ2(tn)
+

t2n
D4−2scλ4−2sc(tn)

]

.

We divide by λ2sc(tn) and have from the choice of χ:

1

λ2sc(tn)

∫

|x|≤Rn

|u(tn)|2 ≤ 1

λ2sc(tn)

∫

χRn
|u(tn)|2

≤ 1

λ2sc(tn)

∫

|x|≤2Rn

|u(0)|2 +
C(u0, N, p)

D2(1−sc)

[

1 + tn

λ2(tn)
+

(

1 + tn

λ2(tn)

)1+sc

+

(

1 + tn

λ2(tn)

)2
]

≤ 1

λ2sc(tn)

∫

|x|≤2Rn

|u(0)|2 +
C(u0, N, p)

D2(1−sc)

from (2.36). This concludes the proof of (2.37) and Lemma 4.

step 4 Contradiction from the conservation of the energy.
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We now are in position to obtain a contradiction to the global existence of u(t) which
is based on (2.37).
Let

vn(y) = λ
2

p−1 (tn)u(tnλ(tn)y),

then from (2.35) and the conservation of the energy:

E(vn) = λ2(1−sc)(tn)E(u(tn)) = λ2(1−sc)(tn)E(u0) ≤ 0, and |∇vn|L2 = 1 (2.40)

and thus
∫

|vn|p+1 ≥ p+ 1

2
. (2.41)

Pick an ε > 0 to be fixed later. We claim on the one hand that there exists D0(ε) large
enough such that for all D ≥ D0(ε), ∀n ≥ 0,

∫

|y|≥D
|vn|p+1 ≤ 2ε (2.42)

Indeed, from (2.39):
ρ(vn,D0) = ρ(u(tn), λ(tn)D0) < ε

and thus using (2.20) and (2.40):
∫

|y|≥D
|vn|p+1 ≤ ε+

C(ε)

D2(1−sc)
< 2ε

for D ≥ D0(ε) large enough, this is (2.42).
On the other hand, from the localization of the L2 mass of vn, we claim that there exists
D1(ε) such that for all D ≥ D1(ε), there exists N(ε) such that:

∀n ≥ N(ε),

∫

|y|≤D
|vn|p+1 ≤ Cε(p−1)(1−sc). (2.43)

Taking ε > 0 small enough and n large enough, (2.42) and (2.43) now contradict (2.41)
and conclude the proof of Theorem 1.
Proof of (2.43): We have from (2.37):
∫

|y|≤2D
|vn|2 =

1

λ2sc(tn)

∫

|x|≤2Dλ(tn)
|u(tn)|2 ≤ 1

λ2sc(tn)

∫

|x|≤4Dλ(tn)
|u(0)|2 +

C

D2(1−sc)

≤ 1

λ2sc(tn)

∫

|x|≤4Dλ(tn)
|u(0)|2 + ε

for D ≥ D1(ε) large enough. Next λ(tn) → +∞ as n → ∞ from (2.36) and we thus
conclude from (2.18):

∫

|y|≤2D
|vn|2 ≤ 2ε for n ≥ N(ε) large enough. (2.44)

XVIII–13



Recall now the Gagliardo-Nirenberg inequality
∫

|w|p+1 ≤ C|w|(p−1)(1−sc)
L2 |∇w|2+(p−1)sc

L2

which we may localize to get:
∫

|y|≤D
|vn|p+1 ≤ C|wn|(p−1)(1−sc)

L2(|y|≤2D)
|∇wn|2+(p−1)sc

L2 + C|wn|p+1
L2(|y|≤2D)

≤ Cε(p−1)(1−sc)

from (2.44) and (2.40). This is (2.43).

This concludes the proof of the Liouville Theorem 1.
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