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ON THE BLOWUP THEORY FOR THE CRITICAL NONLINEAR

SCHRÖDINGER EQUATIONS

SAHBI KERAANI

1. Introduction

In this talk we prove a refined version of compactness lemma adapted to the blowup
analysis and we use it to give direct and simple proofs to some classical results of blowup
theory for critical nonlinear Schrödinger equations. It’s based on a joint work with T.
Hmidi.
We consider the L2-critical nonlinear Schrödinger equation (NLS):

(1)

{

i∂tu+ ∆u+ |u| 4du = 0, x ∈ R
d, t > 0,

u(0, x) = u0(x).

Here, ∆ =
∑d

i=1 ∂
2
xi

is the Laplace operator on R
d and u0 : R

d −→ C. It is well known
from the result by Ginibre and Velo [5] (see [3] for a review) that Cauchy problem (1) is
locally well-posed in H1: there exists T ∈ (0,+∞] and a solution u ∈ C([0, T ),H1), with
the following blowup alternative: either T = ∞ (the solution is global) or T < +∞ (the
solution blows up in finite time) and

lim
t↑T

‖∇u(t, ·)‖L2 = +∞.

The unique solution has the following quantities conserved as t varies

N (t) =

∫

Rd

|u(t, x)|2dx,

E(t) =
1

2

∫

|∇u|2dx− d

4 + 2d

∫

|u| 4d+2dx

Also, if u0 ∈ Σ := {f ∈ H1, xf ∈ L2}, then the solution satisfies the Virial identity (see
[6])

(2)
d2

dt

∫

|x|2|u(t, x)|2dx = 16E(0).

Obviously, if E(0) < 0 then the solution cannot exist globally and blows up in finite time.
This was the starting point of the blowup theory of Schrödinger equations which has been
developed in the two last decays (see [3], [14], [12] and the references therein). This theory
is mainly connected to the notion of ground state: the unique positive radial solution of
the elliptic problem

∆Q−Q+ |Q| 4dQ = 0.

In [16], M. I. Weinstein exhibited the following refined Gagliardo-Nirenberg inequality

(3) ‖ψ‖
4

d
+2

L
4
d

+2
≤ Cd‖ψ‖

4

d

L2‖∇ψ‖2
L2 ∀ψ ∈ H1,
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with Cd = d+2
d ‖Q‖−

4

d

L2 . Combined with the conservation of energy, the inequality above
implies that ‖Q‖L2 is the critical mass for the formation of singularities, that is if

‖u0‖L2 < ‖Q‖L2

then the corresponding solution is global. Also, this bound is optimal since by using the
conformal invariance one constructs

u(t, x) = (T − t)−d/2e[(i/(T−t))+(−i|x|2/T−t)]Q(
x

T − t
)

a singular solution of (1) with ‖u‖L2 = ‖Q‖L2 that blows up in a finite time T . There is
an abundant literature devoted to the study of the blowup mechanism (see [3] and [14]
for a review). In this talk we prove a compactness lemma adapted to the analysis of the
blowup phenomenon of the nonlinear Schroödinger equation and use it to give elementary
proofs to some classical results in the field.

2. Compactness lemma

The main result of this section is

Theorem 1. Let {vn}∞n=1 be a bounded family of H1(Rd), such that

(4) lim sup
n→∞

‖∇vn‖L2 ≤M and lim sup
n→∞

‖vn‖
L

4
d

+2 ≥ m.

Then, there exists {xn}∞n=1 ⊂ R
d such that, up to a subsequence,

vn(· + xn) ⇀ V weakly,

with ‖V ‖L2 ≥ ( d
d+2 )d/4 m

d
2
+1

Md/2 ‖Q‖L2 .

Remark 2. The lower-bound on the L2 norm of V is optimal. In fact, if we take vn = Q

then we get equality.

Proof. In the sequel we put 2∗ = ∞ if d = 1, 2, and 2∗ = 2d
d−2 if d ≥ 3. Theorem 1 is a

consequence of a profile decomposition of the bounded sequences in H1 following the work
by P. Gérard [4] (see also [1] and [7]). More precisely, we have the following1

Proposition 3. Let v = {vn}∞n=1 be a bounded sequence in H1(Rd). Then, there exist a

subsequence of {vn}∞n=1 (still denoted {vn}∞n=1), a family {xj}∞j=1 of sequences in R
d and

a sequence {V j}∞j=1 of H1 functions, such that

i) for every k 6= j, |xk
n − x

j
n| −→

n→∞
+∞;

ii) for every ` ≥ 1 and every x ∈ R
d, we have

vn(x) =
∑̀

j=1

V j(x− xj
n) + v`

n(x),

with

(5) lim sup
n→∞

‖v`
n‖Lp(Rd) −→

`→∞
0

for every p ∈]2, 2∗[.

1The proof of this proposition is similar to the proof of Proposition 2.6 in [7].
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Moreover, we have, as n→ +∞,

‖vn‖2
L2 =

∑̀

j=1

‖V j‖2
L2 + ‖v`

n‖2
L2 + o(1),(6)

and

‖∇vn‖2
L2 =

∑̀

j=1

‖∇V j‖2
L2 + ‖∇v`

n‖2
L2 + o(1).(7)

Let us finish the proof of Theorem 1. By extracting a subsequence we may replace lim sup
in the assumptions (4) by lim. According to Proposition 3, the sequence {vn}∞n=1 can be
written, up to a subsequence, as

vn(x) =
∑̀

j=1

V j(x− xj
n) + v`

n(x)

such that (5) and (6) hold. This implies, in particular,

m
4

d
+2 ≤ lim sup

n→∞
‖vn‖

4

d
+2

L
4
d

+2
= lim sup

n→∞
‖

∞
∑

j=1

V j(· − xj
n)‖

4

d
+2

L
4
d

+2
.

The elementary inequality

||
l

∑

j=1

aj|4/d+2 −
l

∑

j=1

|aj |4/d+2| ≤ C
∑

j 6=k

|aj ||ak|4/d+1.

and the pairwise orthogonality of the family {xj}∞j=1 leads the mixed terms in the sum
above to vanish and we get

m
4

d
+2 ≤

∞
∑

j=1

‖V j‖
4

d
+2

L
4
d

+2
.

On the one hand, in view of Gagliardo-Nirenberg inequality (3), we have

∞
∑

j=1

‖V j‖
4

d
+2

L
4
d

+2
≤ Cd sup{‖V j‖4/d

L2 , j ≥ 1}
∞
∑

j=1

‖∇V j‖2
L2 .

On the other hand, from (5), we get

∞
∑

j=1

‖∇V j‖2
L2 ≤ lim sup

n→∞
‖∇vn‖2

L2 ≤M2.

Therefore,

sup
j≥1

‖V j‖4/d
L2 ≥ m

4

d
+2

(M2Cd)d/4
.

Since the series
∑ ‖V j‖2

L2 converges then the supremum above is attained. In particular,
there exists j0, such that

‖V j0‖L2 ≥ m
d
2
+1

(CdM2)d/4
= (

d

d+ 2
)d/4m

d
2
+1

Md/2
‖Q‖L2 .
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On the other hand, a change of variables gives

vn(x+ xj0
n ) = V j0(x) +

∑

1 ≤ j ≤ `

j 6= j0

V j(x+ xj0
n − xj

n) + ṽ`
n(x),

where v`
n(x) = ṽ`

n(x+ x
j0
n ). The pairwise orthogonality of the family {xj}∞j=1 implies

V j(· + xj0
n − xj

n) ⇀ 0 weakly,

for every j 6= j0. Hence, we get

vn(· + xj0
n ) ⇀ V j0 + ṽ`,

where ṽ` denote the weak limit of {ṽ`
n}∞n=1. However, we have

‖ṽ`‖
L

4
d

+2 ≤ lim sup
n→∞

‖ṽ`
n‖L

4
d

+2 = lim sup
n→∞

‖v`
n‖L

4
d

+2 −→
l→∞

0.

Thereby, by uniqueness of weak limit, we get

ṽ` = 0

for every ` ≥ j0. So that

vn(· + xj0
n ) ⇀ V j0.

The sequence {xj0
n }∞n=1 and the function V j0 fulfill the conditions of Theorem 1.

�

3. blowup theory revisited

3.1. Concentration. For d ≥ 2 and spherically symmetric blowup solutions, it has been
shown that there is a minimal amount of concentration of the L2 norm at the origin (see
[13],[15], [18] and [3]) . Below we give a direct proof for the general case.

Theorem 4. Let u be a solution of (1) which blows up at finite time T > 0, and λ(t) > 0
any function, such that ‖∇u(t)‖L2λ(t) −→ +∞ as t ↑ T . Then, there exists x(t) ∈ R

d,

such that

lim inf
t↑T

∫

|x−x(t)|≤λ(t)
|u(t, x)|2dx ≥

∫

Q2.

Remark 5. A well known scaling argument yields the following lower bound on the blowup

rate

‖∇u(tn, ·)‖L2 ≥ C√
T − t

.

Thus, any function λ(t) > 0, such that
√

T−t
λ(t) −→ 0 as t ↑ T , fulfills the conditions of this

theorem.

Proof. In the sequel we will use the following notations:

ρ(t) =
‖∇Q‖L2

‖∇u(t, ·)‖L2

and v(t, x) = ρd/2u(t, ρ(t)x).

Let {tn}∞n=1 be an arbitrary sequence such that tn ↑ T . We set ρn = ρ(tn) and vn = v(tn, ·).
Since u conserves its mass, the sequence {vn}∞n=1 satisfies

‖vn‖L2 = ‖u0‖L2 and ‖∇vn‖L2 = ‖∇Q‖L2 .

Furthermore, by conservation of the energy and blowup criteria, it ensues that

E(vn) = ρ2
nE(0) −→ 0, as n→ ∞,
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which yields, in particular,

‖vn‖
4

d
+2

L
4
d

+2
−→ d+ 2

d
‖∇Q‖2

L2 , as n→ ∞.

The family {vn}∞n=1 satisfies the conditions of Theorem 1 above with

m
4

d
+2 =

d+ 2

d
‖∇Q‖2

L2 and M2 = ‖∇Q‖2
L2 .

Thus, there exists {xn}∞n=1 ⊂ R
d such that, up to a subsequence,

ρd/2
n u(tn, ρn · +xn) ⇀ V ∈ H1 weakly

with ‖V ‖L2 ≥ ‖Q‖L2 .2 From this, it follows that

lim inf
n→+∞

∫

|x|≤A
ρd

n|u(tn, ρnx+ xn)|2dx ≥
∫

|x|≤A
|V |2dx,

for every A > 0. Thus,

lim inf
n→+∞

sup
y∈Rd

∫

|x−y|≤Aρn

|u(tn, x)|2dx ≥
∫

|x|≤A
|V |2dx.

Since ρn

λ(tn) −→ 0, it ensues that

lim inf
n→+∞

sup
y∈Rd

∫

|x−y|≤λ(tn)
|u(tn, x)|2dx ≥

∫

|x|≤A
|V |2dx

for every A, which means that

lim inf
n→+∞

sup
y∈Rd

∫

{|x−y|≤λ(tn)}
|u(tn, x)|2dx ≥

∫

Rd

|V |2dx ≥
∫

Q2.

Since the sequence {tn} is arbitrary we get finally

lim inf
t→T

sup
y∈Rd

∫

{|x−y|≤λ(t)}
|u(t, x)|2dx ≥

∫

Q2.

Since, for every t, the function y 7−→
∫

{|x−y|≤λ(t)} |u(t, x)|2dx is continuous and goes to 0

at infinity, then there exists a family x(t) such that

sup
y∈Rd

∫

{|x−y|≤λ(t)}
|u(t, x)|2dx =

∫

{|x−x(t)|≤λ(t)}
|u(t, x)|2dx,

which concludes the proof of Theorem 4. �

3.2. Universality of the profile with critical mass. If, in the context of the proof of
Theorem 4 we assume also that ‖u0‖L2 = ‖Q‖L2 , we get

‖V ‖L2 = ‖Q‖L2 .

Thus, ‖vn‖L2 = ‖V ‖L2 , which means

vn(· + xn) → V strongly in L2.

Also, since it’s bounded in H1, we have

vn(· + xn) → V strongly in L
4

d
+2.

2Note that this asymptotic is proved by Weinstein [17] via Concentration-Compactness Lemma by Lions
[9].
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In view of Gagliardo-Nirenberg inequality, this leads to

‖∇V ‖L2 ≥ ‖∇Q‖L2 .

Since ‖∇V ‖L2 ≤ lim sup ‖∇vn‖L2 = ‖∇Q‖L2 , then

‖∇vn‖L2 −→ ‖∇V ‖L2 .

This means that the strong convergence holds in H1 and E(V ) = 0. Let us summarize the
properties of the profile V :

V ∈ H1, ‖V ‖L2 = ‖Q‖L2 , ‖∇V ‖L2 = ‖∇Q‖L2 and E(V ) = 0.

The variational characterization of the ground state implies that

V (x) = eiθQ(x+ x0),

for some θ ∈ [0, 2π[ and x0 ∈ R
d. This result, which is due to Weinstein [17] and Kwong

[8], can be rewritten as follows: if u is a singular solution with critical mass then there

exist x(t) and θ(t), such that

(8) (ρ(t))d/2eiθ(t)u(t, ρ(t)x + x(t)) −→ Q, as t→ T,

strongly in H1.

3.3. Determination of the singular solutions with minimal mass. In the sequel
we need the following notation:

A = {ρd/2eiθQ(ρx+ y), y ∈ R
d, ρ ∈ R

+
∗ , θ ∈ [0, 2π[}.

The characterization of the singular solutions with minimal mass is due to F. Merle [10].
Below we give a direct and short proof to this fundamental result.

Theorem 6. Let u be a blowing up solution of (1) at finite time T > 0 such that ‖u0‖L2 =

‖Q‖L2 . Then there exists x0 ∈ R
d such that ei

|x−x0|
2

4T u0 ∈ A.

Proof. Let tn → T be an arbitrary sequence. It is clear that (8) implies

|u(tn, x)|2dx− ‖Q‖2
L2δx=xn ⇀ 0.

Up to extract a subsequence and translation, one assumes xn → x0 ∈ {0,∞}. Let φ be a
nonnegative radial C∞

0 (Rd) function, such that

φ(x) = |x|2, if |x| < 1 and |∇φ(x)|2 ≤ Cφ(x).

For every p ∈ N
∗ one defines

φp(x) = p2φ(
x

p
) and gp(t) =

∫

φp(x)|u(t, x)|2dx.

Using the Cauchy-Schwartz estimates by V. Banica [2]3, we get

|ġp(t)| = |2=
∫

ū(x)∇u(x)∇φp(x)dx| ≤
(

8E(u0)

∫

|u|2|∇φp|2dx
)1/2

≤ C0

√

gp(t),

3The argument of Banica is as follows: since u has critical mass and φp is a real valued function then
E(eisφpu) ≥ 0, for every s ∈ R. The Cauchy-Schwartz estimates is the non positivity of the discriminant
of the polynomial s 7→ E(eisφpu).
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for every t ∈ [0, T [. In the last line we have used the inequality |∇φp|2 ≤ Cφp. By
integration we obtain, for every t ∈ [0, T [,

|
√

gp(t) −
√

gp(tn)| ≤ C0|tn − t|.
We let n go to infinity; and we get (since φp(x0) = 0 for both finite and infinite case)

gp(t) ≤ C0(T − t)2.

We fix t ∈ [0;T [ and let p go to infinity4 to obtain

(9) 8t2E(ei
|x|2

4t u0) =

∫

|x|2|u(t, x)|2dx ≤ C(u0)(T − t)2.

The first identity is just another way of writting the Virial identity (2). The uniform
bound (9) implies that lim xn 6= ∞ and then equal, up to a translation, to 0. Now, we let
t go to T and get

E(ei
|x|2

4T u0) = 0.

Since ‖ei |x|
2

4T u0‖L2 = ‖u0‖L2 = ‖Q‖L2 , then the variational characterization of Q implies

that ei
|x|2

4T u0 ∈ A. This ends the proof of this theorem. �
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