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D é r i v é e s
Pa r t i e l l e s

2004-2005

András Vasy
Propagation of singularities for the wave equation on manifolds with corners
Séminaire É. D. P. (2004-2005), Exposé no XX, 16 p.

<http://sedp.cedram.org/item?id=SEDP_2004-2005____A20_0>

U.M.R. 7640 du C.N.R.S.
F-91128 PALAISEAU CEDEX

Fax : 33 (0)1 69 33 49 49
Tél : 33 (0)1 69 33 49 99

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://sedp.cedram.org/item?id=SEDP_2004-2005____A20_0
http://www.cedram.org/
http://www.cedram.org/


PROPAGATION OF SINGULARITIES FOR THE WAVE

EQUATION ON MANIFOLDS WITH CORNERS

ANDRÁS VASY

Abstract. In this talk we describe the propagation of C∞ and Sobolev sin-
gularities for the wave equation on C∞ manifolds with corners M equipped
with a Riemannian metric g. That is, for X = M × Rt, P = D2

t
− ∆M , and

u ∈ H1

loc
(X) solving Pu = 0 with homogeneous Dirichlet or Neumann bound-

ary conditions, we show that WFb(u) is a union of maximally extended gen-
eralized broken bicharacteristics. This result is a C∞ counterpart of Lebeau’s
results for the propagation of analytic singularities on real analytic manifolds
with appropriately stratified boundary, [7]. Our methods rely on b-microlocal
positive commutator estimates, thus providing a new proof for the propagation
of singularities at hyperbolic points even if M has a smooth boundary (and no
corners).

These notes are a summary of [17], where the detailed proofs appear.

1. Introduction

In this talk we describe the propagation of singularities for the wave equation on
manifolds with corners. Physically, this relates geometric optics, namely that light
moves along geodesics, or straight lines in vacuum, reflecting/refracting at surfaces
so that the tangential component of the momentum and the kinetic energy are
conserved, and the singularities of solutions of the wave equation D2

t u = ∆u (with
appropriate boundary conditions), the electromagnetic field being one example of
this. Due to its relevance, this problem has a long history, and has been studied
extensively by Keller in the 1940s and 1950s in various special settings. Our main
results, stated below, have been obtained by Lebeau in the real analytic setting, for
the analytic wave front set [7]. Our result is thus a C∞ and Sobolev counterpart of
Lebeau’s theorem.

This problem is closely related to N -body scattering, and indeed the approach
is motivated by my previous work in that setting. In spite of the similarities, due
to which I have stated in lectures on N -body scattering a number of years ago that
it should be possible to prove the result presented here, there are many differences.
The main complication in the N -body setting is that there are ’bound states in sub-
systems’, which have no analogue for the wave equation. Their presence complicates
the geometry of phase space significantly, in particular the bicharacteristics have to
be defined rather differently from the approach taken by Lebeau [7] as there are no
’hyperbolic’ or ’glancing’ points (there is mixed behavior). On the other hand, for
the wave equation in domain with corners, as explained below, there are two phase
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spaces one needs to consider: T ∗X and bT ∗X . This causes numerous technical
complications.

First, recall the form of the propagation results if X is a manifold without
boundary, e.g. X = M × Rt where M is a manifold without boundary, and P
is a differential or pseudodifferential operator on X of order m: P ∈ Ψm(X).
The standard setting for microlocal analysis is then T ∗X . For any coordinate
system zj on X , we write canonical coordinates on T ∗X as (zj , ζj). Now, T ∗X ,
as a vector bundle, is equipped with an R

+-action given by dilations in the fibers:
R

+
s × T ∗X 3 (s, z, ζ) 7→ (z, sζ). It is also a symplectic manifold, equipped with a

canonical symplectic form ω, ω =
∑

dζj ∧ dzj in local coordinates.
If P ∈ Ψm(X), then its principal symbol p = σm(P ) is a C∞ homogeneous

degree m function on T ∗X \ o, o denoting the zero section. The symplectic form
also associates a vector field to it, namely its Hamilton vector field, defined by
ω(V, Hp) = V p for all vector fields V on T ∗X \ o. This is homogeneous of degree
m − 1 with respect to the R

+-action. Bicharacteristics are then integral curves of
Hp inside the characteristic set Σ = p−1({0}).

Finally, recall that for distributions u ∈ C−∞(X), their wave front set WF(u)
is a conic (i.e. invariant under the R

+-action) subset of T ∗X \ o. A convenient
definition, which generalizes immediately to the corners setting, is that q /∈ WF(u)
if there is A ∈ Ψ0(X) of compact support such that σ0(A)(q) 6= 0 (i.e. A is elliptic
at q) and Au ∈ C∞(X), or equivalently LAu ∈ L2

loc(X) for all L ∈ Diff(X).
The main facts about the analysis of P , in this form due to Duistermaat and

Hörmander [5, 2], are:

(i) Microlocal elliptic regularity. Let Σ(P ) = p−1({0}) be the characteristic
set of P . If u ∈ C−∞(X) then WF(u) ⊂ WF(Pu) ∪ Σ(P ). In particular, if
Pu ∈ C∞(X) then WF(u) ⊂ Σ(P ).

(ii) Propagation of singularities. Suppose that p is real, Pu ∈ C∞(X). Then
WF(u) is a union of maximally extended bicharacteristics in Σ(P ). That is,
if q ∈ WF(u) (hence in Σ(P )) then so is the whole bicharacteristic through
q.

Note that (ii) may be vacuous; indeed, if Hp is radial, i.e. tangent to the orbits
of the R

+-action, then it does not give any information on WF(u), as the latter
is already known to be conic. Such points are called radial points, and in recent
work with Hassell and Melrose [3], they have been extensively analyzed under non-
degeneracy assumptions. If P is the wave operator, there are no radial points in
Σ = Σ(P ), but such points are very important in scattering theory (where the R

+-
action, or its remnants, are in the base variables z) – indeed, this was the subject

of a seminar here at École Polytechnique a few years ago [4].
If P = D2

t − ∆ is the wave operator on X = M × R, then the projection of the
bicharacteristics to M are geodesics (or, projected to M × R, time parameterized
geodesics), and (ii) is a precise version of the relationship between geometric optics
(light rays) and solutions of the wave equation (electromagnetic field).

We can now turn to boundaries and corners. So suppose X is a manifold
with corners. Locally this means that X is diffeomorphic to an open subset of
[0,∞)k × R

n−k; we denote the corresponding coordinates by (x, y). Note that this
is a restriction as compared to what one might want when considering domains in
Euclidean space (or manifolds without boundary), for it implies that all corners
are ’interior’, i.e. have angles ≤ π, so the domain is ‘almost convex’ in the sense of
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[14]1. Also, note that planar domains with angles > π at a corner contain open line
segments through the corner, not tangent to either side; but there can be no such
curve segments in a manifold with corners under our definition.) Nonetheless, it is
fully expected that the propagation theorems are valid in this more general setting.
The reason for the more restrictive definition is that it is in this setting that totally
characteristic, or b-, pseudodifferential operators have been defined (and indeed are
well-behaved). The best way to approach the more general setting is to generalize it
further by blowing up the corners, effectively introducing polar coordinates around
them, and using b-ps.d.o’s on this new space. This aspect is already present in an
ongoing project with Melrose and Wunsch [10].

Roughly, in this corner setting, the results have the same form as in the bound-
aryless case, but the definitions of wave front set and the bicharacteristics change
significantly. In particular, the relevant wave front set is WFb(u), introduced by
Melrose. Both WFb(u) and the image of the (generalized broken) bicharacteristics
are subsets of the b-cotangent bundle bT ∗X .

The reason for this is that one cannot microlocalize in T ∗X (naively defined
ps.d.o’s do not act on functions on X in general, and even when they do, they do
not preserve boundary conditions – see the discussion in [6, Section 18.2-3]). In fact,
this is exactly the origin of the algebra of totally characteristic pseudodifferential
operators, denoted by Ψb(X), in the C∞ boundary setting [12]. The presence
of two phase spaces causes technical complications, for we are interested in the
wave operator, P = D2

t − ∆, whose principal symbol is a C∞ function on T ∗X ,
not on bT ∗X where we microlocalize. Indeed, from a PDE point of view, this
discrepancy is what causes the diffractive phenomena. The interaction of these two
algebras, Diff(X) and Ψb(X), also explains why we prove even microlocal elliptic
regularity via the quadratic form of P (the Dirichlet form), rather than by standard
arguments, valid if one studies microlocal elliptic regularity for an element of an
algebra (such as Ψb(X)) with respect to the same algebra. It is worth remarking
that while bT ∗X , or at least the image of T ∗X in it under the natural map π
described below, as a topological space, has been used to study the propagation
of singularities, see the work of Melrose and Sjöstrand in the setting of smooth
boundaries [8, 9], and Lebeau’s paper [7] for corners, the proof presented here is
the first occasion when it is fully used for this purpose as the space carrying symbols
of ps.d.o’s (in the same sense that T ∗X◦ is used for standard microlocal analysis).

We can now define our new phase space, bT ∗X . First, we let V(X) be the Lie
algebra of C∞ vector fields on X , and Vb(X) be the Lie algebra of C∞ vector fields
on X tangent to every boundary face of X . Thus, in local coordinates as above,
such vector fields have the form

∑

aj(x, y)xj∂xj
+

∑

j

bj(x, y)∂yj

wit aj, bj smooth. Correspondingly, Vb(X) is the set of all C∞ sections of a vector
bundle bTX over X : locally xj∂xj

and ∂yj
generate Vb(X) (over C∞(X)), and thus

(x, y, a, b) are local coordinates on bTX . The dual bundle of bTX is bT ∗X ; this is

1Roughly, almost convexity means that approximating the domain from inside by smooth
domains, the second fundamental form of the boundaries of the approximations is uniformly
bounded below; if it were non-negative, the domain would be convex.
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the phase space in our setting. Sections of these have the form

(1.1)
∑

σj(x, y)
dxj

xj
+

∑

j

ζj(x, y) dyj ,

and correspondingly (x, y, σ, ζ) are local coordinates on it. Again, bT ∗X \ o is
equipped with an R

+-action (fiberwise multiplication) which has no fixed points.
It is often natural to take the quotient with the R

+-action, and work on the b-
cosphere bundle, bS∗X .

We still need to relate the two bundles T ∗X and bT ∗X . There is a natural
map π : T ∗X → bT ∗X , induced by identifying bTX with TX in the interior
of X , where the condition on tangency to boundary faces is vacuous. In view
of (1.1), in the canonical local coordinates (x, y, ξ, ζ) on T ∗X (so one forms are
∑

ξj dxj +
∑

ζj dyj), π takes the form

π(x, y, ξ, ζ) = (x, y, xξ, ζ), with xξ = (x1ξ1, . . . , xkξk).

Thus, π is a C∞ map, but at ∂X , it is not a diffeomorphism. In fact, if Fi are the
closed boundary faces of X , and Fi,reg is the interior (’regular part’) of Fi, then
at Fi,reg the kernel of π is N∗Fi,reg, and the range is T ∗Fi,reg, the latter being a
well-defined subset of bT ∗X .

The differential operator algebra generated by Vb(X) is denoted by Diffb(X), and
its microlocalization is Ψb(X), the algebra of b-, or totally characteristic, pseudodif-
ferential operators. For A ∈ Ψm

b (X), σb,m(A) is a homogeneous degree m function
on bT ∗X \ o. Since X is not compact, even if M is, we always understand that
Ψm

b (X) stands for properly supported ps.d.o’s, so its elements define continuous

maps Ċ∞(X) → Ċ∞(X) as well as C−∞(X) → C−∞(X).
We are now ready to define the wave front set WFb(u) for u ∈ H1

loc(X). The
standard wave front set measures whether distributions are microlocally smooth,
i.e. C∞. On manifolds with corners, C∞(X) is too small a space. Indeed, even
solutions of elliptic equations need not be smooth up to the corners. An example
is eigenfunctions of the flat Laplacian in a planar sector with Dirichlet boundary
conditions, whose asymptotics at the corner given by non-integral powers of the
the distance from the corner for most values of the angle at the corner. Thus, we
replace C∞ by a larger space: our space of ’very nice’ (or ’trivial’) functions consists
of functions that are conormal to all boundary faces. In view of our methods, we
consider L2-based conormal spaces, and the relevant class of conormal functions
then consists of u ∈ L2

loc(X) such that Lu ∈ L2
loc(X) for all L ∈ Diffb(X) (of any

order).
It is now straightforward to microlocalize: for u ∈ L2(X), q ∈ bT ∗X \ o, we say

that q /∈ WFb(u) if there is A ∈ Ψ0
b(X) such that σb,0(A)(q) 6= 0 and LAu ∈ L2(X)

for all L ∈ Diffb(X). Then WFb(u) is a conic subset of bT ∗X \o; hence it is natural
to identify it with a subset of bS∗X . Over X◦, bT ∗X and T ∗X are naturally
identified via π, and

WFb(u) ∩ bT ∗
X◦X = π(WF(u) ∩ T ∗

X◦X).

Thus, in the interior of X , WFb(u) measures if u is microlocally in C∞, and near
the boundary, it measures if u is microlocally conormal.

In fact, in the proofs we also need spaces of functions possessing finite regularity,
and will need to measure regularity relative to H1(X), but this makes no difference
for the statement of the theorem below (see Lemma 2.5). Nevertheless, we indicate
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the flavor of this by noting that if ∆ is the Laplacian of a smooth metric on X ,
and u ∈ H1

0 (X) solves (∆ − λ)u = 0 for some real λ, then Lu ∈ H1
loc(X) for all

L ∈ Diffb(X). In other words, u has one full derivative (corresponding to H1)
and infinitely many b-derivatives (or tangential derivatives, corresponding to L) in
L2

loc(X).
If P ∈ Diffm(X), then p = σm(P ) is a homogenous degree m function on T ∗X\o,

the characteristic set Σ(P ) = p−1({0}) is a subset of T ∗X \ o, while its Hamilton

vector field Hp is a vector field on T ∗X . Let Σ̇ = π(Σ(P )) ⊂ bT ∗X , equipped
with the subspace topology. Indeed, if P is non-characteristic for any boundary
face F , e.g. is the wave operator, then Σ̇ ⊂ bT ∗X \ o since at Freg the kernel of
π is N∗Freg, and P non-characteristic means that p does not vanish on this (away

from o). Generalized broken bicharacteristics are curves inside Σ̇, namely they are

continuous maps γ : I → Σ̇, where I is an interval, satisfying a Hamilton vector field
condition, given below in (i), which is the minimal requirement one would want any
notion of bicharacteristic to satisfy. Note that we need to use π to relate γ (which
is a curve in bT ∗X) and Hp (which is a vector field on T ∗X). More precisely, we
make the following definition.

Definition 1.1. A generalized broken bicharacteristic of P is a continuous map
γ : I → Σ̇, where I ⊂ R is an interval, satisfying the following requirements:

(i)

lim inf
s→s0

(f ◦ γ)(s) − (f ◦ γ)(s0)

s − s0

≥ inf{Hp(π
∗f)(q) : q ∈ π−1(γ(s0)) ∩ Σ(P )}

for all real-valued f ∈ C∞(bT ∗X).
(ii) If q0 = γ(t0) ∈ T ∗Fi,reg, and Fi is a boundary hypersurface (i.e. has codi-

mension 1), then in a neighborhood of t0, γ is a generalized broken bicharac-
teristic in the sense of Melrose-Sjöstrand [8], see also [6, Definition 24.3.7].

Some comments are in order about this definition. First, in the interior of X ,
where bT ∗X can be identified with T ∗X via π, the inf is taken over a single point,
namely at γ(s0) (we are using the identification), and using (i) for both f and −f
gives that f ◦ γ is differetiable at s0, with derivative given by Hpf(γ(s0)), which is
the standard definition of a bicharacteristic.

At ∂X , we need to apply Hp to π∗f . As π is not one-to-one, there are several
points where this could be evaluated, which is the reason for the inf in (i). We thus

define the glancing set G as the set of points in Σ̇ whose preimage under π̂ = π|Σ
consists of a single point, and define the hyperbolic set H as its complement in
Σ̇. Then for γ(s0) ∈ G one concludes, as above, that f ◦ γ is differentiable, with
derivative given by Hpπ

∗f(q0), q0 being the unique point in the preimage of γ(s0)
under π̂. Indeed, this is the route that Lebeau takes in his definition [7], and was
also the route taken in [17]. Moreover, for the wave operator, at H∩Fi,reg in local
coordinates (x, y) in which Fi,reg is given by x = 0 and the metric is in a model form
discussed below around (2.3) with C|x=0 = 0, taking f =

∑

j σj (in terms of the

coordinates induced by (1.1)) we see that π∗f =
∑

j xjξj in canonical coordinates

on T ∗X . A simple calculation, see (2.7), shows that this is positive (bounded below
by a positive constant) at all points in π̂−1(γ(s0)) if γ(s0) ∈ H, which implies that
π∗f is nonzero for s near s0 but s 6= s0, and in particular, in a neighborhood of
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s0, the bicharacteristic is at the corner Fi,reg only at s0, giving the other part of
the definition used in [7] and [17]. (The other direction of the equivalence of (i)
with Lebeau’s definition is essentially proved by Lebeau in [7].) One advantage of
the present definition that it can be used also in N -body scattering – indeed, it
appeared there originally [16].

Moreover, (ii) is a strengthening of (i) at diffractive points on boundary hyper-
surfaces (near any other kind of point on a boundary hypersurface (i) implies (ii)),
see [6, Section 24.3]. It reflects that, unlike analytic singularities, C∞ singularities
cannot move into the shadow of a convex obstacle. The propagation of analytic sin-
gularities, as in Lebeau’s case, does not distinguish between gliding and diffractive
points, hence (ii) can be dropped to define what we may call analytic generalized
broken bicharacteristics. It is an interesting question whether in the C∞ setting
there are also analogous diffractive phenomena at higher codimension boundary
faces, i.e. whether the following theorem can be strengthened at certain points.

If X = M × R, M a manifold with corners, g a Riemannian metric on M ,
P = D2

t − ∆g is the wave operator, then Snell’s law is encoded in the statement
that γ is continuous. Thus, any (locally defined) smooth functions on bT ∗X , such
as x, y, t, σ, ζ, τ , are continuous along γ. However, ξj = x−1

j σj is not continuous, so
the normal momentum may jump.

We are now ready to state the main theorem. Recall that H1
0 (X) is the comple-

tion of C∞
c (X◦) in the norm

‖u‖2
H1(X) = ‖du‖2

L2(X) + ‖u‖2
L2(X),

and that elements of H1
0 (X) restrict as 0 to ∂X , i.e. u ∈ H1

0,loc(X) means that u
satisfies the Dirichlet boundary conditions.

Theorem 1.2. (cf. the main theorem in [17].) Suppose Pu = 0, u ∈ H1
0,loc(X).

Then WFb(u) ⊂ Σ̇, and it is a union of maximally extended generalized broken
bicharacteristics of P .

This theorem can be stated in a completely microlocal manner, and one can
also measure the regularity modulo Sobolev spaces. In addition, it also holds for
Neumann boundary conditions. We refer to [17] for these results.

It was proved in the real analytic setting by Lebeau, and in the C∞ setting with
C∞ boundaries (and no corners) by Melrose, Sjöstrand and Taylor. This result
is thus the C∞ version of Lebeau’s theorem: the geometry is similar in the real
analytic vs. C∞ settings, but the analysis is quite different.

It is expected that these results will generalize to iterated edge-type structures
(under suitable hypotheses), whose simplest example is given by conic points, re-
cently analyzed by Melrose and Wunsch [11], extending the product cone analysis of
Cheeger and Taylor [1]. This is subject of an ongoing project with Richard Melrose
and Jared Wunsch [10].

It is an interesting question whether this propagation theorem can be improved in
the following sense. Suppose that there is a bicharacteristic segment γ0 : (0, t0) → Σ̇
in X◦ which emanates from a corner (i.e. q0 = limt→0 γ0(t) lies over the corner),
and suppose that u is a solution of the wave equation. Let Γ denote the set of all
generalized broken bicharacteristics extending γ0 (extending backwards through the
corner is the interesting part here). In many cases (indeed, usually), if u is singular
along any one of the bicharacteristic segments γ|(−ε,0), γ ∈ Γ, then γ0 ⊂ WFb(u).
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(Theorem 1.2 states if all the γ|(−ε,0) as above are disjoint from WFb(u), then so is
γ0.) However, it is reasonable to expect that (under certain non-focussing assump-
tions, which excludes spherical waves collapsing onto the corner) the strength of the
singularity along γ0 will depend on along which γ|(−ε,0) the solution u was singular.
In fact, γ|(−ε,0) geometrically related to γ0, i.e. γ which are the limits of bicharacter-
istics disjoint from the corner, could be expected to propagate a stronger singularity
into γ0 than the (in this sense) geometrically unrelated segments γ|(−ε,0), γ ∈ Γ.
While this is unknown in the present context, the corresponding statement was
proved by Cheeger and Taylor [1] for product cones, and by Melrose and Wunsch
[11] for asymptotically conic metrics in general.

One can see the role of the conic metrics by blowing up a corner which has
dimension 0; the front face is then the cross section of the cone, although it is now
a manifold with boundary unlike in [1, 11]. In [11], the metric is put in a model
form, dx2+x−2h(x, y, dy), h a metric on the cross-section Y of the cone (with the tip
given by x = 0), and state the non-focussing assumption as a requirement involving
the fiber Laplacian ∆Y , i.e. in the corner setting this would be the Laplacian on
the fibers of the blow-down map. Namely they assume that for some N , the rays
γ|(−ε,0), γ ∈ Γ, are disjoint from the wave front set of (1 + ∆Y )−Nu, measured

relative to a Sobolev space Hr′

. Their conclusion (see [11, Theorem I.3]) is that
if R < r′, and one merely assumes that the geometrically related rays γ|(−ε,0) are

disjoint from the wave front set of u, measured relative to a Sobolev space HR, i.e.
from WFR(u), then one can still conclude that γ0 ∩ WFR(u) = ∅. Note that for
conic manifolds, rays hitting the cone tip at t = 0 are disjoint from it for small
non-zero t, which explains why all these statements can be phrased in terms of the
usual wave front set.

While the analogous result (including its precise statement) for manifolds with
corners is still some time away, significant progress has been made on analyzing
edge-type metrics (on manifolds with boundaries) in the project [10]. For manifolds
with corners, these correspond to blowing up corners of arbitrary dimension (not
necessarily 0), although again the fibers of the blow-down map are manifolds with
corners themselves in this setting. For edge-type metrics, one cannot put the metric
into a model form as for conic metrics, so the non-focussing condition must be
phrased microlocally. In addition, one expects the geometric improvement only for
rays not tangential to the edge, i.e. using the manifolds with corners terminology,
for rays that would lie in H over the corner. For such rays, one way to state the
non-focussing assumption is by considering the backward flow-out F of the edge
microlocally near q0. Away from the edge, this is a smooth coisotropic submanifold
of T ∗X◦, and indeed it extends to a smooth submanifold of the edge cotangent
bundle, eT ∗X , which we do not define here. Since non-tangential rays hitting the
edge at t = 0 are disjoint from it for t near 0 but non-zero, we can again phrase
our assumptions using the standard wave front set and the standard ps.d.o’s. So
let M be the set of first order ps.d.o’s with symbol vanishing along F , and let Mj

be the set of finite sums of products of at most j factors, each of which is in M.
The non-focussing condition is that microlocally near Γ|(−ε,0) = {γ|(−ε,0) : γ ∈ Γ},

for some N , u =
∑

Ajvj , where Aj ∈ MN and vj ∈ Hr′

. Note that in the
conic setting, ∆Y ∈ M2, so this is an analogue of the non-focussing assumption
there: u = (∆Y + 1)Nv, with v microlocally in Hr′

. The conclusion of the theorem
for edge metrics will be that under the non-focussing hypothesis, if R < r′ and
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geometrically related bicharacteristics γ(−ε,0) are disjoint from WFR(u), then so is
γ0. The detailed proof is currently being written up; for details see [10].

We remark that this statement is quite natural: the non-focussing condition,
in this form, states that while u ∈ Hr′−N only, it is in a better space, Hr′

, ‘to
finite order along Γ’ (rather than in any neighborhood of Γ), as reflected by the
presence of MN in the condition. (This ‘finite order’ corresponds to saying that
an operator in M, while first order, is in fact zeroth order to ‘first order along
F ’.) Thus, modulo Hr′

, one can expect singularities to follow limits of integral
curves of Hp, i.e. geometrically related broken bicharacteristics. One of the main
applications is to (microlocal) Lagrangian distributions, such as the fundamental
solution with initial condition a delta distribution near, but not at, the edge, which
satisfy the non-focussing condition by virtue of the Lagrangian Λ intersecting the
coisotropic manifold F transversally inside the characteristic set. In fact, inside
Λ, the codimension of this intersection is the dimension f of the fibers (i.e. the
codimension of the corner before the blow up, minus 1), which implies that u
satisfies the non-focussing condition with an improvement of f/2: roughly speaking,
a Lagrangian distribution u associated to Λ is smooth along Λ, so one can divide u
by some first order factors vanishing at F ∩Λ and still improve Sobolev regularity.

2. Ideas of the proof

The basic idea is to use positive commutator estimates to gain b-regularity rel-
ative to the Dirichlet form. Since perhaps the most interesting place is the set H
of hyperbolic points, we concentrate on giving at least a rough description of the
relevant estimates there. In addition, as it is technically easier, we sketch the ellip-
tic estimates in somewhat more detail. But as the very first step, we make some
remarks regarding the relationship between Ψb(X) and Diff(X), which is crucial in
the discussion below. A good reference for the basic properties of Ψb(X) is [13].

The key point in analyzing smooth vector fields on X , and thereby differential
operators such as the wave operator, is that while Dxj

/∈ Vb(X), for any A ∈ Ψm
b (X)

there is an operator Ã ∈ Ψm
b (X) such that

(2.1) Dxj
A − ÃDxj

∈ Ψm
b (X).

This can be seen by writing

Dxj
A = x−1

j (xjDxj
)A = x−1

j [xjDxj
, A] + x−1

j AxjDxj
.

Now, as A ∈ Ψm
b (X), so is Ã = x−1

j Axj . On the other hand, the commutator

[xjDxj
, A] is that of elements of Ψb(X), in fact of an element of Diff1

b(X) and
Ψm

b (X).
In general, such a commutator lies in Ψm

b (X), i.e. while there is a gain in the
differential order, relative to the products (which are order m + 1), there is no
gain (i.e. vanishing) at the boundary. However, for B ∈ Ψb(X), there is a family

N̂j(B)(σj) of indicial operators which measure vanishing of B at the boundary
hypersurfaces Hj ; in particular if the indicial family vanishes identically at Hj ,

then B ∈ xj Ψb(X). For each σj ∈ R, N̂j(B)(σj) is an operator on functions on
Hj , and the indicial family should be considered a non-commutative analogue of the
principal symbol, characterized by the following. If f ∈ C∞(Hj) and u ∈ C∞(X) is
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any extension of f , i.e. u|Hj
= f , then

N̂j(B)(σj)f = (x
−iσj

j Bx
iσj

j u)|Hj
.

Now, as already mentioned above for σj replaced by −i, x
−iσj

j Bx
iσj

j ∈ Ψb(X), and

Ψb(X) preserves C∞(X), so x
−iσj

j Bx
iσj

j u ∈ C∞(X), and indeed the restriction to

Hj is independent of the choice of u. (To be precise, we need to fix the defining

function xj of Hj up to x2
jC

∞(X) for N̂j(B) to be well-defined.)

Now, the relevance of this discussion to (2.1) is that N̂j(xjDxj
)(σj) = σj (i.e.

is a multiplication operator by a constant for each σj ∈ R). Thus, for each σj ,

N̂j(xjDxj
)(σj) commutes with N̂j(A)(σj). Since N̂j is multiplicative, N̂j([xjDxj

, A]) =

[N̂j(xjDxj
), N̂j(A)] = 0. Correspondingly, [xjDxj

, A] ∈ xj Ψm
b (X), so x−1

j [xjDxj
, A] ∈

Ψm
b (X), proving (2.1).
It is worth remarking that σb,m(A) = σb,m(x−1

j Axj), so at the principal symbol

level the fact that Ã is usually not equal to A is irrelevant. Thus A−Ã ∈ Ψm−1
b (X),

and as the tangential vector fields, such as Dyj
, cause no trouble (they are already

in Ψb(X) by virtue of being in Vb(X)), we have the following lemma.

Lemma 2.1. Suppose V ∈ V(X), A ∈ Ψm
b (X). Then [V, A] =

∑

AjVj + B with

Aj ∈ Ψm−1
b (X), Vj ∈ V(X), B ∈ Ψm

b (X).

Similarly, [V, A] =
∑

VjA
′
j + B′ with A′

j ∈ Ψm−1
b (X), Vj ∈ V(X), B′ ∈ Ψm

b (X).

This means in particular that one can define Diffk Ψs
b(X) is the vector space of

operators of the form

(2.2)
∑

j

PjAj , Pj ∈ Diffk(X), Aj ∈ Ψs
b(X),

where the sum is locally finite in X , and show that this is a ring. It is also possible to
define a principal symbol as a function on T ∗X by pulling back σb,s(Aj) via π, but
it does not seem easy to use it (in particular, to give the usual symbol short exact

sequence). Thus, in practice it is easier to write elements if Diffk Ψs
b(X) explicitly in

a form (2.2), even making Pj into coordinate vector fields or constants if k = 1, and
use the symbol calculus on Ψb(X) for the Aj . This is the main explanation for why
the formal version of the commutator estimates, etc, is relatively straightforward,
while the technically correct version requires much more elaboration.

That Ψb(X) is suitable for analyzing the actual boundary value problem follows
from the following simple lemma.

Lemma 2.2. Any A ∈ Ψ0
b(X) with compact support defines a continuous linear

maps A : H1(X) → H1(X), A : H1
0 (X) → H1

0 (X).

Proof. We may assume that A is supported in a coordinate chart. First, by (2.1),
for u ∈ C∞(X),

Dxj
Au = ÃDxj

u + Bu

with Ã, B ∈ Ψ0
b(X). Since Ã, B are bounded on L2(X), we deduce that

‖Dxj
Au‖L2(X) ≤ C‖u‖H1(X).

Similar estimates hold (even more easily) for vector fields tangent to the boundary,
so we deduce that ‖dXAu‖L2(X) ≤ C‖u‖H1(X). Since A is bounded on L2(X),

we also have ‖Au‖L2(X) ≤ C‖u‖H1(X), so by the density of C∞(X) in H1(X), we
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deduce that ‖Au‖H1(X) ≤ C‖u‖H1(X), and hence A extends to a continuous linear

map from H1(X) to itself. As A also preserves Ċ∞(X), which is dense in H1
0 (X),

it is immediate that A has analogous mapping properties on H1
0 (X). �

We already indicated in the introduction that in the proofs we need to measure
b-regularity relative to H1(X). Thus, we make the following definition.

Definition 2.3. Suppose u ∈ H1
loc(X), m ≥ 0. We say that q ∈ bT ∗X \ o is not in

WF1,m
b (u) if there exists A ∈ Ψm

b (X) such that σb,m(A)(q) 6= 0 and Au ∈ H1(X).

For m = ∞, we say that q ∈ bT ∗X \ o is not in WF1,m
b (u) if there exists

A ∈ Ψ0
b(X) such that σb,0(A)(q) 6= 0 and LAu ∈ H1(X) for all L ∈ Diffb(X).

With this definition, Ψb(X) acts microlocally on H1
loc(X) so that for B ∈ Ψk

b(X),

WF1,m−k
b (Bu) ⊂ WF1,m

b (u) ∩ WF′
b(B).

For the actual proofs below, we need a quantitative version of this inclusion, giv-
ing estimates on the H1-norm of A(Bu), with some A as in the definition of

WF1,m−k
b (Bu). Since we do not give full details here, we refer to [17] for further

comments.
We can now turn to the specific case of the wave operator on X = M ×Rt. In a

slight change of convention, we reserve y for tangential coordinates on M , so (y, t)
are the tangential coordinates on X that have so far been denoted by y.

First, we describe the form of p = σ2(P ), P = D2
t − ∆ in some detail. So let

(p, t0) ∈ Fi,reg and let (x, y) be local coordinates on M near p so that Fi,reg is given
by x = 0. In corresponding canonical coordinates (x, y, ξ, ζ) on T ∗M , the metric
function on T ∗M has the form

(2.3) g(x, y, ξ, ζ) =
∑

i,j

Aij(x, y)ξiξj +
∑

i,j

2Cij(x, y)ξiζj +
∑

i,j

Bij(x, y)ζiζj

with A, B, C smooth. Moreover, the coordinates on M can be chosen (i.e. the yj

can be adjusted) so that C(0, y) = 0. Now, if U = bT ∗
UX , U a neighborhood of

(p, t0) in Fi,reg then

p|x=0 = τ2 − ξ · A(y)ξ − ζ · B(y)ζ,

with A, B positive definite matrices depending smoothly on y, so

G ∩ U = {(0, y, t, 0, ζ, τ) : τ2 = ζ · B(y)ζ, (ζ, τ) 6= 0},

H ∩ U = {(0, y, t, 0, ζ, τ) : τ2 > ζ · B(y)ζ, (ζ, τ) 6= 0}.

It is also convenient to break up the set of elliptic points (i.e. points in bT ∗X

which do not lie in Σ̇) into two parts, namely those which lie in the range of π, but
not in that of π̂ = π|Σ, and those which do not lie in the range of π. So we let
˙bT

∗
X ⊂ bT ∗X be the image of T ∗X under π, and we let E be the set of points in

˙bT
∗
X which are disjoint from the image of Σ under π. Thus, in local coordinates,

E ∩ U = {(0, y, t, 0, ζ, τ) : τ2 < ζ · B(y)ζ, (ζ, τ) 6= 0}.

Proposition 2.4. (Microlocal elliptic regularity; cf. [17, Proposition 4.6].) If u ∈
H1

0,loc(X), Pu = 0 then for all m,

WF1,m
b (u) ⊂ ˙bT

∗
X, and WF1,m

b (u) ∩ E = ∅.
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Proof. (Sketch.) Suppose that either q ∈ bT ∗X \ ˙bT
∗
X or q ∈ E . We may assume

iteratively that q /∈ WF
1,s−1/2
b (u); we need to prove then that q /∈ WF1,s

b (u) (note
that the inductive hypothesis holds for s = 1/2 since u ∈ H1

loc(X)). Let A ∈ Ψs
b(X)

be such that WF′
b(A) ∩ WF

1,s−1/2
b (u) = ∅, and have WF′

b(A) in a small conic
neighborhood U of q so that for a suitable C > 0 or ε > 0, in U

(i) τ2 < C
∑

j σ2
j if q ∈ bT ∗X \ ˙bT

∗
X ,

(ii) |σj | < ε(τ2 + |ζ|2)1/2 for all j, and |ζ|
|τ | > 1 + ε, if q ∈ E .

We need a regularization argument, and for this we need the space Ψbc(X)
of b-ps.d.o’s which arise by quantization of symbols satisfying symbol estimates,
rather than the ’classical’ symbols used in defining Ψb(X). So let Λr ∈ Ψ−2

b (X)

for r > 0, such that L = {Λr : r ∈ (0, 1]} is a bounded family in Ψ0
bc(X), and

Λr → Id as r → 0 in Ψε̃
b(X), ε̃ > 0, e.g. the symbol of Λr could be taken as

(1 + r(τ2 + |ζ|2 + |σ|2))−1. Let Ar = ΛrA. Let a be the symbol of A, and let Ar

have symbol (1 + r(τ2 + |ζ|2 + |σ|2))−1a, r > 0, so Ar ∈ Ψs−2
b (X) for r > 0, and

Ar is uniformly bounded in Ψs
bc(X), Ar → A in Ψs+ε̃

bc (X).
Now, it is not hard to see that

∫

X

(

|dMAru|
2 − |DtAru|

2
)

is uniformly bounded for r ∈ (0, 1]. Indeed, for r ∈ (0, 1], Aru ∈ H1
0 (X), so

∫

X

(|dMAru|
2 − |DtAru|

2) = −

∫

X

PAru Aru.

Here the right hand side is the pairing of H−1(X) with H1
0 (X). Writing PAr =

ArP + [P, Ar ], we see that the right hand side can be estimated by

(2.4) |

∫

X

ArPu Aru| + |

∫

X

[P, Ar ]u Aru|,

and the first term vanishes as Pu = 0. The second term can be estimated using
(2.1): for elliptic estimates the commutators are ’negligible’ (can be easily estimated
inductively). This gives the uniform boundedness of

∫

X

(

|dMAru|2 − |DtAru|2
)

; we
refer to [17, Lemma 4.2] for details.

On the other hand, we can expand
∫

X
|dMAru|2 using the form (2.3) of the

metric, with C|x=0 = 0, and freezing the coefficients of A, B at x = 0. Thus, there

exist c > 0, C̃ > 0 and δ0 > 0 such that if δ < δ0 and A is supported in |x| < δ
then

c

∫

X

∑

j

|Dxj
Aru|

2 +

∫

X

((1 − C̃δ)
∑

j

|Dyj
Aru|

2
h − |DtAru|

2)

≤

∫

X

(|dMAru|
2 − |DtAru|

2),

(2.5)

where we used the notation

|Dyj
Aru|

2
h =

∑

ij

Bij(0, y)Dyi
Aru Dyj

Aru,

i.e. h is the metric g restricted to the span of the ∂yj
, j = 1, . . . , l.

Now, if q ∈ E , then for δ > 0 sufficiently small (i.e. A supported near the
corner) the second term on the left hand side of (2.5) can be written as ‖BAru‖

2

XX–11



for an operator B ∈ Ψ1
b(X), modulo a term of the form 〈FAru, Aru〉L2(X) with

F ∈ Ψ1
b(X) (which is controlled by the inductive hypothesis). Letting r → 0, we

deduce that c
∑

j ‖Dxj
Aru‖2+‖BAru‖2 is uniformly bounded, hence Dxj

Au, BAu

are in L2(X), proving the proposition for q ∈ E .

For q ∈ bT ∗X \ ˙bT
∗
X , A supported in |x| < δ, we use
∫

X

δ−2|xjDxj
Aru|

2 ≤

∫

X

|Dxj
Aru|

2

to modify the first term on the left hand side in (2.5). Then the left hand side of
(2.5) can be rewritten as ‖BAru‖2, modulo a term of the form 〈FAru, Aru〉L2(X)

with F ∈ Ψ1
b(X), and the proof is finished as above. �

In fact, related estimates give the equivalence of the L2- and H1-based wave
front sets for solutions of the wave equation:

Lemma 2.5. (cf. [17, Lemma 6.2]) Suppose u ∈ H1
0,loc(X), Pu = 0. Then

WF1,∞
b (u) = WFb(u). Moreover,

WF1,m
b (u)c = {q ∈ bT ∗X \ o : ∃A ∈ Ψm+1

b (X), σb,m+1(A)(q) 6= 0, Au ∈ L2(X)},

where the right hand side is, by definition, WFm+1
b (u)c.

After these preliminary discussions, we turn to the propagation estimate at q ∈
H. As usual, the key ingredient is to find a C∞ function f on bT ∗X such that,
at least near q, Hpπ

∗f has a fixed sign. In our setting, we can take f = η where

η = −x·ξ
|τ | = −

P

σj

|τ | . Indeed, the Hamilton vector field Hp of p is given by

Hp = 2τ∂t − Hg = 2τ∂t − 2Aξ · ∂x − 2Bζ · ∂y − 2
∑

Cijζj∂xi
− 2

∑

Cijξi∂yj

+ 2
∑

(∂xk
Aij)ξiξj∂ξk

+ 2
∑

(∂xk
Cij)ξiζj∂ξk

+ 2
∑

(∂xk
Bij)ζiζj∂ξk

+ 2
∑

(∂yk
Aij)ξiξj∂ζk

+ 2
∑

(∂yk
Cij)ξiζj∂ζk

+ 2
∑

(∂yk
Bij)ζiζj∂ζk

.

(2.6)

Thus,

|τ |Hpη = 2ξ · Aξ + 2
∑

Cijξiζj − 2
∑

(∂xk
Aij)ξiξjxk

− 2
∑

(∂xk
Cij)ξiζjxk − 2

∑

(∂xk
Bij)ζiζjxk,

so at x = 0, where C vanishes,

(2.7) |τ |Hpη = 2ξ · Aξ = 2τ2 − 2ζ · Bζ − 2p = 2τ2 − 2|ζ|2y − 2p.

Thus, Hpη > 0 at π−1(H) ∩ Σ(P ) = π̂−1(H).
We only state the following propagation result for propagation in the forward

direction along the generalized broken bicharacteristics. A similar result holds in
the backward direction, i.e. if we replace η(ξ) < 0 by η(ξ) > 0 in (2.8); the proof
in this case only requires changes in some signs in the argument given below. The
construction of a positive commutator below closely mirrors that of [15] in the
N -body setting.
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Proposition 2.6. (cf. [17, Proposition 6.3].) Let q0 = (0, y0, t0, 0, ζ0, τ0) ∈ H ∩
bT ∗

Freg
X and let η = −x·ξ

|τ | be the π-invariant function defined in the local coordinates

discussed above, and suppose that u ∈ H1
0,loc(X), Pu = 0. If there exists a conic

neighborhood U of q0 in Σ̇ such that

q ∈ U and η(q) < 0 ⇒ q /∈ WF1,∞
b (u)(2.8)

then q0 /∈ WF1,∞
b (u).

In fact, if the wave front set assumption is relaxed to the existence of a conic
neighborhood U of q0 in Σ̇ such that

q ∈ U and η(q) < 0 ⇒ q /∈ WF1,s
b (u),(2.9)

then we can still conclude that q0 /∈ WF1,s
b (u).

We remark that for q ∈ Σ̇, η(q) < 0 implies x 6= 0, so q /∈ bT ∗
FX . Thus, the

hypotheses on u are made away from the corner.

Proof. (Sketch.) As in Proposition 2.4 we use an inductive argument to show that

q0 /∈ WF1,s
b (u), provided that q0 /∈ WF

1,s−1/2
b (u); again the inductive hypothesis

holds for s = 1/2 since u ∈ H1
loc(X). By an estimate closely related to the proof

of Lemma 2.5, which roughly says that for solutions of the wave equation, DtAru
controls dMAru, modulo terms we control a priori, we only need to show that for
some B ∈ Ψs+1

b (X) with σb,s+1(B)(q0) 6= 0, Bu ∈ L2(X).
Below we fix a small neighborhood U0 of q0 such that U0 is inside a coordinate

neighborhood of q0.
The key is to construct an operator A with WF′

b(u) ⊂ U and i[A∗A, P ] positive,
modulo terms that we can estimate either by the a priori assumptions, namely those
on Pu and those on WFb(u), summarized in (2.8) above. Thus, we do not need to
make the commutator positive in η < 0, and also ‘away from Σ(P )’, although the
latter is a moral statement as the locus of the microlocalization is bT ∗X \ o, not
T ∗X \ o. Our A will in fact be formally self-adjoint modulo lower order operators,
and we only take A∗A to avoid having to comment on the subprincipal terms.

As mentioned several times already, the main technical problem below is that P
does not lie in Ψb(X), so we cannot simply use the symbol calculus on Ψb(X) –
we need to write out various expressions semi-explicitly as elements of Diff Ψb(X).
On the other hand, at least formally, we can use the symbol caluclus of Diff Ψb(X),
regarding symbols as functions on T ∗X \ o, in case of Ψb(X) via pull-back by π.
This has the advantage that p is a function on T ∗X , as is the pull-back of symbols
on bT ∗X via π, so one can calculate their Poisson bracket, etc. However, it is
not trivial (although it is relatively straightforward) to make this into a technically
useful computation, since we need to control various expression in Diff Ψb(X). Here
we merely give the formal argument to show why the constructed symbol should be
useful; the actual proof is given in [17, Proposition 6.3].

To set the topology straight, we note that every conic neighborhood U of q0 =
(0, y0, t0, 0, ζ0, τ0) ∈ H ∩ bT ∗

Freg
X in Σ̇ contains an open set of the form

(2.10) {q ∈ Σ̇ : |x(q)|2 + |y(q) − y0|
2 + |t(q) − t0|

2 + |ζ̂(q) − ζ̂0|
2 < δ},

ζ̂ = ζ
τ . Indeed, as Σ̇ is equipped with the subspace topology, this would be standard

if we included a term |σ̂(q)|2, with σ̂ = σ
τ , in the sum. However, in Σ̇, σ̂ can be
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estimated by C|x| (using that |σ̂j | = xj |ξj | ≤ xj |τ | on Σ̇ whenever xj 6= 0, and
σ̂j = 0 if xj = 0), proving the claim surrounding (2.10).

Note also that (2.8) implies the same statement with U replaced by any smaller
neighborhood of q0; in particular, for the set (2.10), provided that δ is sufficiently
small.

We construct the symbol of A in a few steps. The two main ingredients are a
homogeneous degree zero function that is increasing along the Hamilton flow, which
will be η, and a homogeneous degree zero function ω on a conic neighborhood of

q0 in bT ∗X \ o that roughly measures the square of the distance from q0 in ˙bT
∗
X .

Note that ω can also be regarded as a function on a subset of bS∗X , if desired.
Thus, we let

(2.11) ω(q) = |x(q)|2 + |y(q) − y0|
2 + |t(q) − t0|

2 + |ζ̂(q) − ζ̂0|
2,

|.| denoting the Euclidean norm, and ζ̂ = ζ
τ as above. Then ω vanishes quadratically

at q0, in fact is a sum of squares, so |dω| ≤ C′
1ω

1/2, and in particular

(2.12) |τ−1Hpω| ≤ C′′
1 ω1/2.

Next, we use the variable η = −x·ξ
|τ | to measure propagation. Since

η = −
x · ξ

|τ |
= −

∑

j

σj |τ |
−1,

η is a homogeneous degree zero C∞ function on a conic neighborhood of q0 in
bT ∗X \ o, hence its pullback by π is a C∞ function on T ∗X . This function indeed
measures the flow along bicharacteristics near q0 since at points q̃0 in π̂−1({q0}),
where thus p = 0,

(2.13) |τ |Hpη(q̃0) = τ2
0 − |ζ0|

2
y0

= c0τ
2
0 > 0,

due to (2.7), where we used that q0 ∈ H. Thus, for U0 sufficiently small, |τ |Hpη >
c0τ

2/2 > 0 on U0.
We are now ready to define the symbol a of A. For ε > 0, δ > 0, with other

restrictions to be imposed later on, let

(2.14) φ = η +
1

ε2δ
ω,

so φ is a homogeneous degree zero C∞ function on a conic neighborhood of q0 in
bT ∗X \ o – we can again regard it as a function on T ∗X \ o via pull-back by π.
(Here ε−2 plays the role of β in the analogous – normal – propagation estimate of
[15].)

Let χ0 ∈ C∞(R) be equal to 0 on (−∞, 0] and χ0(t) = exp(−1/t) for t > 0.
Thus, χ′

0(t) = t−2χ0(t). Let χ1 ∈ C∞(R) be 0 on (−∞, 0], 1 on [1,∞), with
χ′

1 ≥ 0 satisfying χ′
1 ∈ C∞

c ((0, 1)). Finally, let χ2 ∈ C∞
c (R) be supported in

[−2c1, 2c1], identically 1 on [−c1, c1], where c1 is such that if |σ|2/τ2 < c1/2 in

Σ̇∩U0. Thus, χ2(|σ|
2/τ2) is a cutoff in |σ|/|τ |, with its support properties ensuring

that dχ2(|σ|2/τ2) is supported in |σ|2/τ2 ∈ [c1, 2c1] hence outside Σ̇ – it should be
thought of as a factor that microlocalizes near the characteristic set but effectively
commutes with P . Then, for A0 > 0 large, to be determined, let

(2.15) a = χ0(A
−1
0 (2 − φ/δ))χ1(η/δ + 2)χ2(|σ|

2/τ2);
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so a is a homogeneous degree zero C∞ function on a conic neighborhood of q0 in
bT ∗X . Indeed, as we see momentarily, for any ε > 0, a has compact support inside
this neighborhood (regarded as a subset of bS∗X , i.e. quotienting out by the R

+-
action) for δ sufficiently small, so in fact it is globally well-defined. In fact, on
supp a we have φ ≤ 2δ and η ≥ −2δ. Since ω ≥ 0, the first of these inequalities
implies that η ≤ 2δ, so on supp a

(2.16) |η| ≤ 2δ.

Hence,

(2.17) ω ≤ ε2δ(2δ − η) ≤ 4δ2ε2.

In view of (2.11) and (2.10), this shows that for any ε > 0, a is supported in U ,
provided δ > 0 is sufficiently small. The role that A0 large plays is that it increases
the size of the first derivatives of a relative to the size of a, hence it allows us to
give a bound for a in terms of a small multiple of its derivative along the Hamilton
vector field. This is crucial as we need to deal with weight factors, such as |τ |s+1/2

in the next paragraph, if the weight factors do not commute with P . In this case,
they can be arranged to commute (at least microlocally, which suffices), so we could
eliminate A0, but its presence is helpful if one is to weaken the assumptions on the
structure of P .

Thus, using (2.12), (2.17),

|τ |−1Hpφ = Hpη +
1

ε2δ
Hpω ≥ c0/2 −

1

ε2δ
C′′

1 ω1/2 ≥ c0/2 − 2C′′
1 ε−1 ≥ c0/4 > 0

provided that ε >
8C′′

1

c0
, i.e. that ε is not too small. We fix some such ε for the rest

of the arguments below, and then we will take δ > 0 sufficiently small. With this,

Hpa
2 = −b2 + e, b = |τ |1/2(2|τ |−1Hpφ)1/2(A0δ)

−1/2(χ0χ
′
0)

1/2χ1χ2,

with e arising from the derivative of χ1χ2. Here χ0 stands for χ0(A
−1
0 (2 − φ

δ )),

etc. We let A ∈ Ψ0
b(X) be such that σb,0(A) = a. Since η < 0 on dχ1 while dχ2

is disjoint from the characteristic set, both being regions disjoint from WFb(u),
i[A∗A, P ] is positive modulo terms that we can a priori control, so the standard
positive commutator argument gives an estimate for Bu, where B has symbol b.
Replacing a by a|τ |s+1/2, we still have a positive commutator (in this case τ , or
rather Dt, actually commutes with P , but in any case we could use A0 to bound the
additional commutator term), which now gives (with the new B) that Bu ∈ L2(X),

which means in particular that q0 /∈ WF1,s
b (u).

This argument is of course very imprecise; the commutator calculation needs to
be written up in Diff Ψb(X). We refer to [17, Proposition 6.3] for full details. �

Following Melrose and Sjöstrand [8, 9], see also Lebeau’s paper [7], it is not hard
to prove Theorem 1.2 using this proposition and its companion for glancing points.
As usual, we refer to [17] for details.

We remark that the symbol
∑

σj =
∑

xjξj played a major role, via η, in the
positive commutator estimate yielding Proposition 2.6. This is the symbol of the
vector field that is also used in N -body scattering for the Mourre estimates –
although in the latter case the region of interest is where x is large, while now
where x is small. In fact, the microlocal constructions in N -body scattering are
similar to the one presented above, at least at the formal level, which was the
original reason for my interest in the present topic.
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Finally, I would like to thank Ecole Polytechnique for the invitation and Johannes
Sjöstrand for his hospitality. I would also like to use this occasion to thank Mikhail
Shubin for inviting me to Northeastern University to give a ’Basic Notions’ seminar
talk on the propagation of singularities (without boundaries) in November 2003:
preparing for that talk I decided I should finally try to see if all my previous claims
on the relationship between N -body scattering and the wave equation in domains
with corners were well founded. This turned out to be a very fruitful project, also
aided by many conversations with Richard Melrose which I happily acknowledge.
Finally, I am very grateful to Richard Melrose and Jared Wunsch for the discussions
on our joint project [10], on which the remarks at the end of the introduction are
based.
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[6] L. Hörmander. The analysis of linear partial differential operators, vol. 1-4. Springer-Verlag,

1983.
[7] G. Lebeau. Propagation des ondes dans les variétés à coins. Ann. Scient. Éc. Norm. Sup.,
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