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RENORMALIZATION OF EXPONENTIAL SUMS AND MATRIX

COCYCLES

ALEXANDER FEDOTOV AND FRÉDÉRIC KLOPP

Abstract. In this paper, we present a new point of view on the renormalization of some
exponential sums stemming from number theory. We generalize this renormalization procedure
to study some matrix cocycles arising in spectral problems of quantum mechanics.

Résumé. Dans cet article, nous présentons un nouveau point de vue sur la renormalisa-
tion de certaines sommes exponentielles issues de la théorie des nombres. Nous généralisons
cette procédure pour étudier certains cocycles matriciels liés à des problèmes spectraux de la
mécanique quantique.

0. Introduction

The work we discuss here was motivated by a talk by Michel Mendès-France given at the
University Paris 12 in January, 2005. In his talk, M. Mendès-France discussed geometrical
aspects of some exponential sums coming up in number theory (see e.g. [7, 13] and references
therein).

0.1. Renormalization of exponential sums. On the complex plane, one plots the sequence
of points representing the successive values of the sums

(0.1) S(N, a, k) =
∑

0≤n≤N−1

e

(

−an
k

k

)

, N = 1, 2, 3 . . . , e(z) = e2πiz,

where 0 < a < 1 and k > 1 are fixed parameters. The points S1(a), S2(a), ... , being successively
connected by segments of strait lines, form beautiful curves having a self similar structure, see
Fig. 1. The explanation of some features of this structure given during Mendès-France’s talk
was based on the Poisson summation formula,

(0.2)
∑

n

g(n) =
∑

m

ĝ(m), g(m) =

∫ ∞

−∞

e(−mx)g(x) dx,

which, being applied formally, leads the “relations”

(0.3) S(N, a, 2) ∼ e(−1/8)√
a

S(N1, a1, 2), N1 = aN, a1 = −1

a
;

(0.4) S(N, a, 3) ∼ e(−1/8)

(4a)1/4
S(N1, a1, 3/2), N1 = a(N − 1)2, a1 = − 1√

a

and so on.
For a given N , if a < 1 (and this can always be arrange for by the 1-periodicity of z 7→ e(z)),

the quadratic sum in the left hand side of (0.3) is expressed in terms of a quadratic sum with
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(a) The graph of the exponential sum for k = 2
and a = π3 (500 points)

(b) The graph of the exponential sum for k =
3/2 and a = 1 (2000 points)

Figure 1: The graphs of exponential sums

a smaller number of terms in the right hand side. In (0.4), if a� 1/N , one sees the same kind
of phenomenon.

The described renormalization corresponds to “erasing of small geo-

Figure 2: For k = 2
and a = π/1000

metric details” of the complex curves representing the exponential
sums and to a “rough description” of the long segments of these curves
in terms of shorter segments of curves of similar origin. Note that, if a
is small, the complex curves contain typical “smooth” curlicues (see [1])
as in Fig. 1(b) and 2.
There are three natural questions related to the formulae (0.3)- (0.4).
First, is there a simple analytic description of the correction terms in
these formulae? Second, are these correction terms really error terms
with respect the exponential sums, i.e. are they smaller than the renor-
malized sum? And, last, what is the behavior of these terms for small
values of a?
Though the observations we present in the sequel successfully work in
the general case, in this note, we concentrate on quadratic exponential
sums i.e. we assume that, in (0.1), the constant k is always equal to
2. In this case, one can write a simple exact renormalization formula;
in the general case, one gets an asymptotic formula for N → ∞. It
appears that the correction terms are given by a new special function.
To characterize this function, we note that the exponential sums appearing in (0.3) can be
described in terms to the solutions of the following difference equations

(0.5) s(z) − s(z − 1) = e

(

z2

2a

)

and s(z + a) − s(z) = e

(

− z2

2a

)

, z ∈ C.

The special function mentioned above satisfies the first of these equations; multiplied by a
simple exponential factor, it becomes a solution of the second one, see Lemma 1.1. Moreover,
as a → 0, the leading term of the asymptotics of this function contains the Fresnel integral
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responsible for the curlicue structures, see Fig. 4.
The renormalization of exponential sums has been intensively studied; some of the first papers
were [12, 15, 16, 14]. The articles [6] and [8] are recent papers on the same topic; for more
references and historical remarks, we refer to them. In [12], the authors have estimated the
correction terms; and, in [6] and [8], to study the fine properties of the correction terms, the
Poisson formula was used and a fine geometric analysis of the curves related to the exponential
sums was carried out. In the present note, use of the difference equations (0.5) will immediately
lead to an exact renormalization formula. To our knowledge, the existence of such formulas
was unknown.
In section 1.3, we write down the asymptotics of the special function for a→ 0; this immediately
gives a simple analytic description of the curlicues.

0.2. Renormalization of matrix cocycles. The second motivation for our work was the
paper [3]. There, the author has studied the difference equation

(0.6) ψ(k + 1) = M3/2(k)ψ(k), M3/2(k) = I + k−1/2L3/2(k), k = 1, 2, 3 . . .

where ψ : N → SL(2,C) is an unknown matrix valued function, and L3/2 : N → SL(2,C) is a
matrix valued function of the form

(0.7) L3/2(k) =

(

α1 β1 e(2a1k
3/2/3)

β̄1 e(−2a1k
3/2/3) ᾱ1

)

,

and α and β are two complex constants. Such equations appear naturally in spectral problems
of quantum mechanics as, for example, in the case of the Kronig-Penney electron in a constant
electric field studied in [3].
In [3], it appeared that, in a certain sense, this difference equation is equivalent to the analogous
difference equation with the matrices

(0.8) M3(k) = I + k−1/2L3(k), L3(k) =

(

α̃ β̃ e(−ak3/3)
β̄ e(ak3/3) ᾱ

)

instead of M3/2 and L3/2. The constants a1 and a are related by the same relation as in (0.4).
This result was obtained by an analog of the classical real WKB method (see [9]); the matrix M3

is the transition matrix relating basis solutions having simple asymptotic behavior on intervals
separated by a turning point.
The behavior of solutions of (0.7) and (0.8) are determined respectively by the behavior of the
matrix products

M3/2(N1) · · ·M3/2(2)M3/2(1) and M3(N) · · ·M3(2)M3(1).

If we admit that “products are similar to sums”, then, we have to agree that these two matrix
products are similar to the exponential sums in (0.4): both are defined by the exponentials
e(ak3/3) and e(2a1k

3/2/3) and, as already noted, the law of the transformation a 7→ a1 is the
same.
The above observations lead us to the idea that the “quadratic exponential matrix products”
defined in terms of matrices of the form

(0.9) M2(k) =

(

α β e(−ak2/2)
β̄ e(ak2/2) ᾱ

)

can be exactly renormalized just as the quadratic exponential sums can be; and, that, in result
of this renormalization, one again obtains quadratic exponential matrix products (with new
constant parameters). If this is the case, then, one can expect that such matrix products can
be as effectively analyzed as the quadratic exponential sums. The main result presented in
the present note is the exact renormalization formula for such quadratic matrix cocycles. It
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is described in section 2. This result finds interesting applications in the spectral theory of
ergodic operators [10].
Finally, we note that to renormalize the matrix product, we generalize the ideas of the mo-
nodromization method, a renormalization approach developed recently to study almost periodic
equations, see, for example, [4] and [11]. The exact renormalization formula for the quadratic
exponential sums can also be obtained using the monodromization idea; it is a “one dimen-
sional” version of the exact renormalization formula for the matrix products.

1. Renormalizing quadratic exponential sums

1.1. The special function F . Consider the function F : C → C defined by the formula:

(1.1) F(ξ, a) =

∫

γ(ξ)

e
(

p2

2a

)

dp

e(p− ξ) − 1
,

where the contour γ(ξ) is going up from infinity along l(ξ), the strait

γ(ξ)

l(ξ)

ξ π/4

Figure 3: l(ξ) and γ(ξ)

line ξ + eiπ/4
R, coming infinitesimally close to the point ξ, then, going

around this point in the anti-clockwise direction along an infinitesi-
mally small semi-circle, and, then, going up to infinity again along l(ξ)
(see Fig. 3).
The function F is the special function mentioned in the introduction.
One proves:

Lemma 1.1. For each a > 0, F is an entire function of ξ,
and, for all ξ ∈ C, one has

F(ξ, a) − F(ξ − 1, a) = e

(

ξ2

2a

)

;(1.2)

G(ξ + a, a) − G(ξ, a) = e

(

− ξ2

2a

)

,(1.3)

G(ξ, a) = c(a) e

(

− ξ2

2a

)

F(ξ, a), c(a) = e(−1/8) a−1/2.(1.4)

Proof. The first relation (1.2) follows from the residue theorem. The second relation (1.3)
becomes obvious after the change of variable z = p− ξ in the integral defining F . �

1.2. The exact renormalization formula. We now state the exact renormalization formula
for the quadratic exponential sum S(N, a, 2). One has

Theorem 1.1. Let N ∈ Z and a ∈ R be two positive numbers. Let

(1.5) ξ = {aN}, N1 = [aN ], a1 = −1

a
.

Then,

(1.6) S(N, a, 2) = c(a)

[

S(N1, a1, 2) + e

(

−aN
2

2

)

F(ξ, a) − F(0, a)

]

.

Remark. Note that S(N, a1, 2) is 2-periodic in a1. Therefore, in (1.6), one can replace a1 by
the number defined by

a1 = −1

a
( mod 2 ), −1 < a1 ≤ 1.
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Proof. By (1.3), we get G(Na, a) = S(N, a, 2) + G(0, a) = S(N, a, 2) + c(a)F(0, a). And,
by (1.2),

F(Na, a) =

N1−1
∑

k=0

e

(

(aN − k)2

2a

)

+ F(ξ, a) = e

(

aN2

2

)

S(N1, a1, 2) + F(ξ, a).

Now, (1.4) implies (1.6). �

1.3. The asymptotics of F and the structures of the curlicues. To understand the
curlicue structure seen in Fig. 1 and 2, we first derive the asymptotics of F for a small. The
curlicues are then discussed.

1.3.1. The asymptotics of F . First, discuss the asymptotics of F for a→ 0. One has

Proposition 1.1. Let −1/2 ≤ ξ ≤ 1/2 and 0 < a ≤ 1. Then, F admits the representation:

(1.7) F(ξ, a) = e(1/8) f(a−1/2ξ) +O(a1/2), f(t) = e(t2/2)

∫ t

−∞

e(−τ 2/2) dτ,

where O(a1/2) is bounded by C a1/2, where C is an absolute constant.

Note that, when 0 ≤ ξ < 1 as in Theorem 1.1, we can bring ourselves back to the case of
Proposition 1.1 using (1.2).

Proof. We represent F in the form:

(1.8) F(ξ, a) =
1

2πi

∫

γ(ξ)

e
(

p2

2a

)

dp

p− ξ
+

∫

γ(ξ)

g(p− ξ) e

(

p2

2a

)

dp,

where

g(p− ξ) =
1

e(p− ξ) − 1
− 1

2πi(p− ξ)
.

As −1/2 ≤ ξ ≤ 1/2, the integration contour in the second integral can be deformed into the
curve γ(0) without intersecting any pole of the integrand. Then, the distance between the
integration contour and these poles becomes bounded from below by 1/23/2, and one easily gets
|g(p − ξ)| ≤ Const uniformly in −1/2 ≤ ξ ≤ 1/2 and in p ∈ γ(0). This immediately implies
that the second term in (1.8) is bounded by Const a1/2. Finally, it is easily seen that first term
satisfies the equation I ′(ξ) = −e(1/8)a−1/2 + ξa−1I(ξ), and that it tends to 0 when ξ → −∞
along R. This implies that this term is equal to e(1/8) f(a−1/2ξ) and completes the proof of
Proposition 1.1. �

Remark 1.1. Applying the saddle point method to the second term in (1.8), one can get the
asymptotic expansion for F up to any given order of a1/2.

1.3.2. The curlicues. Now, we can turn to the discussion of the curlicue structures observed in
Fig. 1 and 2. We obtain their asymptotic description for a → 0. We describe the curlicues up
to terms of order O(1). Remark 1.1 made above allows to control all these terms.

We shall write A ∼ B if |A− B| is bounded by an absolute constant.

Let N0 and N1 be two positive integers such that

N1 = [aN0], a(N0 − 1) < N1.

We check
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(a) The graph of the Fresnel integral (b) Sampling points on the graph of the Fresnel
integral

Figure 4: The graph of the Fresnel integral

Lemma 1.2. Let N0 and N1 be fixed as above. If

−1/2 ≤ aN −N1 ≤ 1/2,

then, for a→ 0, one has

(1.9) S(N, a, 2) ∼ Const + a−1/2 e

(

N2
1

2a

)
∫ (aN−N1)/a1/2

−∞

e(−τ 2/2) dτ

where Const denotes an expression independent of N .

Proof. We prove (1.9) only for aN−N1 ≥ 0. For the negative values of aN−N1, the arguments
are similar.
The number [aN ] stays equal to N1 for all N ≥ N0 as long as ξ = {aN} < 1. For these
values of N , the quadratic exponential sum in the right hand side of (1.6) stays constant, and

the variations of S(N, a, 2) are described by the expression E = c(a)e
(

−aN2

2

)

F(ξ, a) where

ξ = aN −N1. As

e

(

−aN
2

2

)

e

(

ξ2

2a

)

= e

(

−(aN)2

2a
+

(aN −N1)
2

2a

)

= e

(

−NN1 +
N2

1

2a

)

= e

(

N2
1

2a

)

,

formula (1.7) implies that

E ∼ a−1/2 e

(

N2
1

2a

) ∫ ξ/a1/2

−∞

e(−τ 2/2) dτ, ξ = aN −N1.

This and (1.6) imply (1.9). �

Lemma 1.2 shows that the curlicue structures of the graphs of the quadratic exponential sums
on the complex plane are described by the Fresnel integral F (t) =

∫ t

−∞
e(−τ 2/2) dτ . To our

knowledge, this was not known (see e.g. [1, 6, 8]). In Fig. 4(a), we show the graph of the Fresnel
integral, and in Fig. 2, we show a typical segment of a quadratic exponential sum. One can
also compare Fig. 4(b) and Fig. 1(a): in the first picture, we sample some points on the graph
of the Fresnel integral and interpolate linearly between consecutive points ; the second figure
is the graph of the sum N 7→ S(N, π3, 2).
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2. Renormalization of the matrix cocycles

2.1. The matrix cocycle. Consider the cylinder R×T, where T is the one dimensional torus
of length 1. Let M2 be the matrix defined in (0.9). We interpret the matrix product

(2.1) M2(N − 1) · · ·M2(2)M2(1)M2(0)

as the matrix cocycle defined by the matrix valued function M : R × T → SL(2,C),

(2.2) M(x) =

(

α β e(−x2)
β̄e(+x2) ᾱ

)

, x =

(

x1

x2

)

∈ R × T.

and T (a), the skew shift on the cylinder i.e. the automorphism of the cylinder defined by

T (a)x = Jx+ ae1, J =

(

1 0
1 1

)

, e1 =

(

1
0

)

.

It is intimately related to the quadratic exponential sums, see [5]. We can write the matrix
product (2.1) in the form

(2.3) M(TN−1(a) x) · · ·M(T (a) x)M(x)

with x1 = a/2, and x2 = 0, i.e. consider it as a matrix cocycle defined on R × T by the pair
(M, T ). We denote this cocycle by (M, T ).

2.2. The monodromy matrix. The analysis of the cocycle (M, T ) is equivalent to the anal-
ysis of the equation

(2.4) Ψ(T (a)x) = M(x)Ψ(x), x ∈ R × T.

To analyze this equation we generalize the ideas of the monodromization method, see, for
example, [4] and [11]. The idea is that, on the cylinder, the map T (a) and the translation
by e1 commute; so, the space of solutions of (2.4) is invariant with respect to the translation
f(·) → f(·+ e1). Hence, Ψ(·) and Ψ(·+ e1) both satisfy this equation. One can easily see that
the space of solutions of (2.4) is a two dimensional module over the ring of functions invariant
with respect to the transformation f(·) → f(T (a) ·). Assume that Ψ is a fundamental solution
to (2.4), i.e., that det Ψ(x) = 1 for all x. Then, this implies that, ∀x ∈ R × T,

(2.5) Ψ(x+ e1) = Ψ(x)M̃t(x),

where t denotes the transposition, and M̃ : R × T → SL(2,C) is a matrix valued function
satisfying the relations

(2.6) M̃(T (a) x) = M̃(x), detM̃(x) = 1, x ∈ R × T.

Define s1, a shift on the cylinder, by s1(x) = x + e1. There is a simple relation between the

matrix cocycles (M, T ) and (M̃, s1). To describe it, we pick x = (x1, x2) ∈ R × T such that
0 ≤ x1, x2 < 1. We fix N , a positive integer, and we represent TN(a)x in the form

TN(a)x = me1 + ne2 + ξ,

where n,m are (non-negative) integers, ξ ∈ T × R, and 0 ≤ ξ1, ξ2 < 1. It is easy to see that

m = [Na + x1].

The definition of the monodromy matrix (2.5) immediately implies
XVI–7



Lemma 2.1. Let Ψ be a fundamental solution to equation (2.4), and let M̃ be the corresponding
monodromy matrix. Then,

(2.7) M(TN−1(a)x) · · ·M(T (a)x)M(x)

= Ψ(ξ)
[

M̃(ξ + (m− 1)e1) · · · M̃(ξ + e1)M̃(ξ)
] t

Ψ(x)−1.

This formula will play a crucial role for the renormalization of the matrix cocycles.

2.3. Self-similarity of the quadratic exponential matrix cocycle. To formulate our re-
sults, we introduce more notations. Consider the matrix defined by (2.2). As this matrix is
unimodular, one has |α|2 = 1 + |β|2. Without loss of generality, we can and do assume that
β ≥ 0 as the matrix with parameters α and |β| is similar to the matrix with parameters α and
β. Then, we get

β = (|a|2 − 1)1/2.

With this in mind, we denote our matrix by M(x, a).
Our main technical result is

Theorem 2.1. Let 0 < a < 1. There exists Ψ, a fundamental (unimodular matrix) solution
to (2.4) with M = M(x, a), such that the corresponding monodromy matrix is

M̃ =





Au Bv

B̄v−1 Āu−1



 , u = e
(

−x1

a

)

, v = e

(

x2 −
x2

1

2a
− x1

a
+
x1

2

)

,

where

A = −e (−1/(2a)) (ᾱ)1/a, B =
(

|α|2/a − 1
)1/2

.

The solution x 7→ Ψ(x) is an entire function of x.

Note that A and B are independent of x. The proof of Theorem 2.1 is not elementary. In the
present note, we only note that the construction of Ψ is closely related to the theory of the
minimal entire solutions of difference equations on the complex plane (as developed in [2]).

By means of Theorem 2.1 and relation (2.7), we get the main result of this note:

Theorem 2.2. Let 0 < a < 1. Define x, m and ξ as for Lemma 2.1. Then,

M (TN−1(a) x, α) · · ·M (T (a) x, α) M (x, α)

= Ψ(ξ)D (ξ1)
−1

·
[

M (Tm−1(a1) y, α1) · · ·M (T (a1) y, α1) M(y, α1)
] t

·D (ξ1 +m) Ψ(x)−1,

(2.8)

where D(t) = diag (e(−t2/(2a)), e(t2/(2a))) and

a1 = −1/a (mod 2), −1 < a1 ≤ 1,

m = [Na + x], α1 = −(ᾱ)1/a,

y =

(

y1

y2

)

, y1 = −(ξ1/a+ 1/2) ( mod1), y2 = −(ξ2
1/(2a) + ξ1/2 + ξ2) ( mod 1)

Relation (2.8) relates the matrix cocycles (M (·, α), T (a) ) and (M (·, α1), T (a1) ). It is a “two-
dimensional” analog to (1.6), the exact renormalization formula relating the exponential sums.
Of course, to make (2.8) useful for applications, one has to obtain an effective description of
the solution Ψ. And, this is possible! Let us outline the idea. To study the input matrix
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product for large N , one makes many consecutive renormalizations; if a is irrational, at each
step, one obtains a new constant a. One can carry out the renormalizations so that each of
these constants satisfies 0 < a < 1. But, then, as the absolute value of the input constant α is
greater than 1, the absolute values of the new constants α will grow. Using standard results
from the metric theory of numbers, one can see that, for almost all values of the input a, the
sequence of the new α tends to infinity. In result, roughly, one can replace the solution Ψ by
their asymptotics for α → ∞. We use this idea in [10].

Finally, we note that the exact renormalization formula for the quadratic exponential sums can
also be obtained using the monodromization idea. Then, the exponential e(−a1z

2/2) arises
from the “one dimensional” analog of the monodromy matrix, and the function F controlling
the correction terms in (0.3) plays the role of the solution Ψ.
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[5] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinăı. Ergodic theory, volume 245 of Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York,
1982. Translated from the Russian by A. B. Sosinskĭı.
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