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Quantum Dynamics and generalized fractal dimensions: an
introduction

Frangois Germinet
UMR 8524 CNRS, UFR de Mathématiques,
Université de Lille 1,
F-59655 Villeneuve d’Ascq Cédex, France
E-mail: germinet@agat.univ-lillel.fr

Abstract

We review some recent results on quantum motion analysis, and in particular
lower bounds for moments in quantum dynamics. The goal of the present exposition
is to stress the role played by quantities we shall call Transport Integrals and by the
so called generalized dimensions of the spectral measure in the analysis of quantum
motion. We start with very simple derivations that illustrate how these quantities
naturally enter the game. Then, gradually, we present successive improvements,
up to most recent result.

1 Introduction to the subject

Let H be a self-adjoint operator acting on a Hilbert space H, and U(t) = e*H! the
strongly continuous one parameter unitary group that H generates. We denote by
D(H) C H the domain of H. The example to keep in mind is H a Schrodinger
operator acting either on ¢?(Z%) or L2(R?). The goal is to study the time behaviour
of the solution 1, of the Schrédinger equation —i0; = H1py, with initial condition
Y=o = ¥ € D(H) of norm 1. The solution is given by 1, = U(t)y. Our basic tool
from operator theory is the spectral theorem, which reads here: there exists a positive
Borel measure piy, of total mass 1, called the spectral measure associated to v, s.t. for
all bounded Borelian function f,

(W, F(H ) = /R F\) (). (1.1)

Replacing f by e leads to (1, U(t)1) = [i,(t), the Fourier transform of p,. So that
looking for the behaviour of (¢, U(t)1) as t — oo reduces to the understanding of the
asymptotic behaviour of fiy(¢). It is thus quite clear that the regularity of 1, plays
an important role in the understanding of the solution ;. The first remark is that,
by the Riemann-Lebesgue Lemma, one has (1, U(t)y) — 0 as soon as j,, is absolutely
continuous with respect to Lebesgue. Note that, in some vague sense, (¢, U(t)y) — 0
means that the solution v; dissociates itself from its initial state, which can be read as
a weak notion of delocalization or quantum transport. On the opposite side one expects
singular measures (say atomic) to be associated to localization or absence of quantum
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transport. Here are further signs that reinforce this picture. Consider the correlation

coefficient
1

T T
cm = [ 1w vk = [ @k (12

Decompose p, into its atomic and continuous parts: fiy, = Y, andyx, + vy, where J, is
the Dirac mass. It is a rather immediate consequence of (1.1) and the Lebesgue Domi-
nated Convergence Theorem that limr_.o, C(T) = " |an|?, a result called the Wiener
Theorem. In particular solutions 1); corresponding to continuous spectral measures
exhibit some delocalization in the sense that limp_,, C(T) = 0, while atoms prevent
¢y from being totally disconnected from %, in the sense that limy_,o, C(7T') # 0. Next
step is to understand how fast C'(T') vanishes if it does. Here again, better regularity of
pp will yield faster delocalization. Imagine y,, = fdA, with f € L?(R), then Parseval
formula implies (C(T) + C(=T)) ~ |[flf.T~'. A more refined statement is due to
Strichartz [St]: Assume that p, is Uniformly o Hélder continuous (UaH), o €]0,1],
namely,

Jeg > 0, 3C, < 400, Ve €]0, 0], for p a.e.x € suppp : pry(B(w,€)) < Coe®, (1.3)
where B(z,e) = (r —&,x +¢). Then C(T) < C'T~®. In particular

| T
lim inf &()

1.4
T—oo logl/T = (14)

We shall recover this result Line (1.10). In other terms, in the sense of correlation coeffi-
cient, the more the spectral measure is regular, the stronger is the delocalization effect.
This picture will be confirmed in the sense of time behaviour of moments M(p, ¢, T)
defined in (1.17) (see (3.8) and below).

However, during the 90’s, thanks to some concrete models, it became clear that
taking only into account the regularity of spectral measures cannot explain totally
quantum transport. Fast delocalization (in terms of moments M(p,,T)) has been
shown to occur even in presence of poor regularity of the spectral measure [La, BCM,
DBF, Ma, DRJLS] (or more recently [JSBS, DT, DST, GKT, Tc2]).

Therefore, thiner properties of measures rather than just regularity, should play
an important role in a theory of quantum transport. In this context, the goal of the
present note is to stress the importance of a family of integrals that we shall call
Transport Integrals, as well as their normalized growth exponents (we note that these
integrals already appeared in the context of quantum dynamics in [SBB]).

Definition 1.1 (Transport Integrals.). Let p be a probability measure on R. For
allg € R and € € (0,1), set

Ia.e)= [ o= eat o dulz) € [0+ (1.5)
Suppy
For q # 1, we further define the lower and upper Hentschel-Procaccia dimensions

log I log I
D, (¢q) = liminf 08\, 8) n(9,€) D (q) = limsup 08 I(9,¢)

: 08 dE) 1.6
# elo (g—1)loge K cl0 (g—1)loge (1.6)

taking values in [0, +00].
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These dimensions D;f(q) have many other names: generalized dimensions, general-
ized fractal dimensions, multifractal dimensions, generalized entropy dimensions.

A simple way to be convinced that these integrals and dimensions play a role in
quantum transport is to do the following calculation:

o) < o f [utanmatay) [ ettt (1.7
¢ [ notae) ([ notamespi-(a - 7)) (18)
~ [ stan) ([ nstamnaata - n0) (19)

= /M¢(dx)u¢(x—€,x+5) =1,,(2,¢), €= —. (1.10)

The equivalence sign in (1.9) means: f ~ g iff there exists C' > 0 finite s.t. C~!g <
f < Cg. It is a consequence of a more general result proved in [BGT3, Tcl]. On the
lower bound side, note that

o) = // sin( T Snle = 9T, () (dy) (1.11)

Y

//kc y<d %uw(di)uw(dy) =d1,,(2, %), (1.12)

since % > sin 1 for u €]0,1]. As a consequence (a result that goes back, at least, to
[SBB, BCM])

1 T 1
lim inf 0g C(T) _ D, (2), lim sup 0

T—oo logl/T — M Tooo log1/T =Dy, 2). (1.13)

Compare to (1.4), and note that D, (2) can be significantly greater than a. For
instance consider u(®(dz) = X[o,1)(®)z~%dz, a € [0,1[. Then short calculations show
that p(@ is uniformly (1 — a)-continuous (and not better), while D;(a) (2) =2(1 —a) if
a € [3,1] and D;(a) (2) = 1 if a €]0, 3] (use the equivalence with the Rényi sums — see
next section — or look at [BGT3, Section 6, Example 5]). In Proposition 2.1 we shall
actually see to which dimension UaH continuity is related.

What makes the difference is that integrals I,,(¢, €) not only exploit local regularities
of the measure u, but they also take advantage of statistical effects of these regularities.
This will be of crucial importance when we shall observe quantum transport in presence
of pure point spectrum. It will be sufficient that, ¢ being given, there are enough points
of local regularity (i.e. with pu(B(z,¢€)) = Cze®) to give large values to the generalized
dimensions. See discussion below Proposition 2.1.

We turn to the main dynamical quantities we want to study: moments. To do that,
we first need to specify a bite more what our setting is. While it is very possible to
investigate moments with respect to any orthonormal basis of the Hilbert space H, we
are mostly interested in operators coming from quantum mechanics, and more precisely,
in Schrodinger operators acting on H = ¢2(Z%) or H = L?(R%). Thus moments should
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refer to “physical position operators” (X)P (namely: multiplication by (x)P), rather
than to an abstract basis®, where for 2 € Z¢ or R% we use the following notations

(r) = V1+|z[* and ((X)¥)(x) = (x)¥(2), ¥ € H. (1.14)

In the continuous case H = L2(R?) we assume that the potential satisfies to the follow-
ing regularity property:

V=vO4v® with 0<VWeLl (R,dz), (1.15)

and V@ is relatively —A form-bounded with relative bound < 1. To fix notations we
thus require the existence of two constants @1 < 1 and ©4 such that

(0, V)| < 01VYl| + O], for all ¥ € D(V). (1.16)

Definition 1.2 (Moments and transport exponents). For p €]0,+oo[, we de-
fine the (time-averaged) moment of order p, with initial state 1 and at time T > 0,
M(p,4,T), and the corresponding (normalized) lower and upper transport exponent,

B (p,v), as
meﬂzéfwwmwmm 6 (p, ) = lim WP 18MP 0. T)

= . 1.1
Tioo i plogT (1.17)

Note that we implicitely assume that 1, belongs to the domain of (X)P for all time t.
As a general result,

Proposition 1.1 ([GK]). Let f € C(R), and p = f(H)xo. Then 1; belongs to the
domain of (X)P for allp >0 and t € R. And one has

(i) BF(p, %) are increasing functions of p.
(ii) B*(p, ) € (0,1], for all p.

The central result we want to present and to discuss here is the

Theorem 1.1 ([BGT1]). Let f € C(R), and ¢ = f(H)xo. For all p > 0, there
exists a finite constant Cp, > 0, such that

1
C, q 1
M T) > —%1,,(q,T! =—. 1.18
(Pﬂp, )— <logT M¢(Q7 )) ) q l—l—p/d ( )
As a consequence, for all p > 0,
Fpoe) > SDE (@), g= (119)
pa - d Py q 9 q - 1 —|—p/d N .

A similar result but under stronger hypotheses is proved in [GSB2|. For previous
works on lower bounds, see [G, C, La, BCM, GSB1, BT, KL] and the discussion made
in Section 3. A generalized version of Theorem 1.1 that takes into account the space
behaviour of generalized eigenfunctions is obtained in [Tcl]. We also refer the reader

'In the discrete case H = £*(Z%), these two points of view coincide if one considers the orthonormal
basis (0n),czd¢- Then Position operators are given by (X)? =3 _,4(n)"(dn,)dn.
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to [BGSB] for another interesting extension of Theorem 1.1 in the context of self-dual
operators.

The rest of the discussion is organized as follows.
In Section 2 we go over some basic properties of these transport integrals, and in
particular the equivalence with other definitions that will turn out to be quite crucial.
We also get immediate lower bounds on these integrals, first using only regularity
properties of the measure, and second, using the statistical effect of these integrals.
In Section 3 we present the derivation of Theorem 1.1, following Guarneri’s idea but
showing how transport integrals enter the game.
In Section 4 we review the analysis of wave-packets performed in [GKT], which leads to
a characterization of transport exponents for both small and large values of the order
p.
In Section 5 we present a general lower bound for moments in one dimension. This
result is a continuation of Theorem 1.1 and Theorem 2.1 using transfer matrices. It
will allow to get the first examples of Schrodinger operators with non trivial generalized
dimensions, and thereby the first applications of Theorem 1.1 to Schrédinger operators.

2 Generalized dimensions: equivalent definitions and prop-
erties

We start with the

Definition 2.1 (Generalized Rényi Dimensions.). Let p be a probability measure
on R, and ¢ > 0. The associated generalized Rényi sums, resp. integrals, are given by

Sul0.0) = S ulie G+ DD resp. Lula.e) = 1 [ p(Ble.c)iar. @)

JEZ

The generalized lower and upper Rényi dimensions, resp. integral Rényi dimensions,
are defined, for q # 1, as:

log S,.(q,¢)
+ BT sup g ou\d,
RD(g) = lim —_—

; IRD*(g) = lim 5P 108 Lu(2:5)
el0 Inf (g —1)loge ’ #

10 inf (g —1)loge ’

taking values in [0, +00].

To our best knowledge, sums S,(q,€) have been introduced by Rényi in the 50’s
[Re] when he developed Information Theory, generalizing the Shannon entropy. They
have been shown to play a role in hyperbolic dynamical systems [Pe, TV].

That the above definitions are actually equivalent is a well-known fact for ¢ > 1, and
the proof is very simple. If ¢ €]0, 1], it is a different story. If the measure is “doubling”
then the proof for ¢ €]0, 1] reduces to the proof for ¢ > 1 (see [Ol, Pe]). But in full
generality, this equivalence for ¢ €]0,1[ is proved in [BGT3] and it is the content of
Theorem 2.1 below. For ¢ < 0, the above Rényi dimensions do not make sense. They
are replaced by discrete sums over packings or coverings of supppu. Their equivalence
to integrals I,(q,€) is treated rigorously in [GT].
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Theorem 2.1 ([BGTS3]). Let u be a probability measure on R, and g €]0, 1[U]1, +oo[.
Transport integrals, Rényi sums and Rényi integrals, either all diverge, or are equivalent
if they converge: there exists constants c;(q) >0, i =1,2,3, s.t. for all e € (0, 1),

1u(g,€) < c1()Su(g,€) < caq)Lu(g,€) < e3(g) (g, ). (2.2)

As a consequence for all g €]0,1[U]1, 400],

D, (q) = RD, (q) = IRD, (q) and D;(q) = RDj(q) =IRD;(q).  (2:3)

Following Theorem 2.1, and for ¢ €]0, 1{U]1, 400, we shall refer to any of these
dimensions as to generalized dimensions, and use the notation fo(q). One has the
following basic properties.

Theorem 2.2 ([BGT3]). Let p be a probability measure on R. Set

g, = inf{g e R\ {1}, D (¢q) < oo}. (2.4)

Then

(i) g, < 1 and for all ¢ > 1, Di(q) € [0,1].

(ii) Dimensions Df(q) are decreasing functions of ¢ on R\ {1}, and continuous on
q €lq;, 1{U]1, +ool.

(ii1) If p is compactly supported, then g;, <0 and one has D;f(q) € [0,1], for g > g,
(iv) For all ¢ <1 and ¢’ > 1, one has

Dy (q) > dimg () > D, (¢), and D} (q) > dimp(u) > D;f(¢),

where dimg (p) and dimg () stand for, respectively, the Hausdorff and Packing dimen-
sions of u (see e.g. [SBB, BGT3]).

Relations between Uniformly Holder continuous measure and the generalized di-
mensions are given by the following Proposition. It says that the best rate of UaH
continuity is actually given by D (+00).

Proposition 2.1. Set fo(—i—oo) = limg— 4 fo(q).

(i) Suppose that p is UaH continous for some a €]0,1], then ¥V ¢ > 1, D (q) > «, and
thus D, (+00) > a.

(ii) Assume that for some ¢ > 1, D, (q) > 0. Then p is UaH continous with o =

D, (q)(1 — %) —v >0, for any v > 0 small enough. Moreover one has D/jf(—l—oo) =

supq>1{Df(q)(1 - %)} As a consequence D, (+00) > 0 and p is UaH continous with
a= D, (+00) —v >0, for any v > 0.
(iii) More generally, one has

D,jf(—i-oo) — iy SUP log(sup, u(B(z,¢))) .

el0 inf loge (2:5)

And it is nonzero iff D*(q) > 0 for some q > 1.

Remark 2.1. The case ¢ = 2 has already been observed in [La, Theorem 3.1].
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Proof: (i) is immediate. For (ii), notice that for ¢ > 1 and all « € suppy, I,(gq,€) >
f$+f w(B(y, ) du(y) > p(B(z,5))?. On the other hand for all ¥ > 0 and & small
2

o
enough, I,(q,e) < ePu@=)a=1) Tt follows, recalling (1.3) that x is UaH contin-
uous with o = D (g)(1 — %) —v forall ¢ > 1and v > 0. It is a consequence
of [BGT3, Proposition 3.4 (iii)], that fo(—l—oo) = supq>1{Di(q)(1 — %)} Thus for
all ¢ > 1, D;(q) > D;(—l—oo) > 0. As a consequence, p is UaH continuous with
a = sup,1{D, (¢)(1 - é)} —v =D, (+00) —v for all v > 0. And (iii) is a simple
generalization of (i) and (ii). O

We now show how to obtain lower bounds on the transport integrals 1,(g,e) and
thus on the dimensions Df(q), q €]0,1[, by taking advantage of the equivalence given
by Theorem 2.1.

Of course if p is UaH continuous (recall (1.3)), then, with ¢ €]0,1[: I,(¢q,e) >
Cpel=De and thus D, (q) > a. But this is of little interest for the best such « is
related to the smallest possible dimensions, i.e. D (o) (Proposition 2.1). Let us have
a look now to what the Rényi sums (or integrals) give, and how statistics can play
a role. Assume that there are O(%) disjoints intervals I; = [je, (j + 1)e[ such that
p(I;) = ce®. Then, as an immediate consequence S, (q,€) > 4=, and D (q) > Sliq;,
a bound that gets better as ¢ goes to zero. Note that the latter situation is only possible
with a > s (since for ¢ = 1, S,(¢,e) = 1). In other words, in the regime ¢ €]0, 1], a
sufficiently large number intervals of very small weight gives a better contribution.

Looking at L,(q,€), the natural condition to ask is that

deg > 0, 3C, > 0, Ve €]0, e[, for Lebesgue a.e. x € suppu: pu(B(x,e)) > Cue®.
(2.6)
(We implicitely assume that |suppu| > 0). Compare (2.6) to (1.3). The following can
then easily be derived.

Theorem 2.3. Define

sup log(inf:c :U(B(:Ev 5))) .

+ 1 + + _1;
Dy(=00) = lim Di(q), and g, = lim ;¢ og 2 (2.7)
Assume that |suppu| > 0 and that g:‘ < 0o. Then
1 —qg}
Dii(q) > —=. (2.8)

l—q
Remark 2.2. The quantity g:[ turns out to be of special importance. Its finiteness is
crucial to get finite generalized dimensions for ¢ < 0. It is indeed proved in [GT] for
compactly supported measures:

(i) g, <oo<:>Vq<0Df(q) <oo<:>q;:—oo<:>Df(—oo)<oo.

(i) If g < oo then fo(—oo) = gff.

It also follows that if g7 < oo then dimensions fo(q) are continuous on R\ {1},
and D/jf(O) = dimg(suppu), where dimfg, denotes the lower and upper box counting

D (0)—qg)

dimensions. Then one checks that (2.8) can actually be improved to D;f(q) > S

(see [Tcl]).

Compare Theorem 2.3 and Remark 2.2 (ii) to Proposition 2.1.
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3 Bounding moments from below: following Guarneri’s
approach

Let us first slightly extend the simple calculation (1.7). Pick ¢ € ‘H and ¢ = f(H),
¢ =g(H), f,g € L2(R,duy). Set Ay p = (p,)¢. If h € C°(R) is s.t. |h| decays faster
than any polynomial:

[ nm e o0y (3.)
- /] f<x>mh<<x—y)Tdem(dy)\ 3.2
< Wlanplstien ([ motan ( [ntanlipe-nm))" @)
< oot (5. 5)" (3.40)
Note that [|Aggllis = l¢ll#lléll+. And the above computation can indeed be extended

from rank one operators to Hilbert-Schmidt ones?:

[ nerrywion aven T < latus (1, <2,%>)é. (35)

This is enough to understand Guarneri’s way to bound from below moments of the
dynamics. Assume that for some compact energy interval I, v = Ep(I)1. One has,
for N > 0 and h € C§°([0, 1]) as above,

D (36)

) , (3.7)

M(p, 4, T)

%
N[ &

v (ol = | [ W/, Py B

N? (11012 = Py Ex (1)l (I, (2, T7)

D=

Y

where we used (3.5). That ||PnEu(I)||gs < CN% is immediate if H = 2(Z%). In
the continous case, under hypotheses (1.15)-(1. 16) the latter follows from [KKS] (see

1
[GKT]). Choosing the biggest N such that CN% (14, (2,T71))2 < 2lv[? leads to

d

MG, > ool ()™ (3:9)
- 1, (2,77)

As a consequence 3% (p, 1)) > %Dip (2). It implies Guarneri’s initial result [G]: 57 (p,¢) >

éa if p1y is UaH continuous. However it is not as good as what we announced in

Theorem 1.1. It is not even sufficient to imply results of [La, BCM] and [GSB1],

®To have an idea, consider the special case H = (*(Z%), Pxn = > inj<n (0n;)0n.  According

to the spectral theorem, (¢1,6,) = [e g, (z)duy(z), with lgnllzz(an,) = [Pudllz < 1, where
P, is the projection onto the cychc subspace of ¢. Then the Lh.s. of (3.5), is bounded, after

1 .
a Cauchy-Schwarz, by [|Snlz2(ap, xdpu) Ly (2, )2, where Sn(z,y) = X, <y gn(@)gn(y). Writ-
ing |Sn|> = SySy as a double sum, and noting that [ gn(z)gm(z)duy(z) = (Pydn,dm), leads to
||SNH§,2(d,u¢><de) < Z\n\,\m\g\r |<Pw5m5m>‘2 < Z\n\gN ||P¢5n”2 < caN?.
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which asserts, respectively, 5~ (p,v) > édimH(u¢) and BT (p,v) > édimp(,uw) (re-
call Proposition 2.2 (iv)). In particular (3.8) is still too rough to enable one to
extract transport in presence of pure point measure; since atomic measures satisfy
dimpy(p) = dimp(p) = D/jf (g9) =0, ¢ > 1. However almost all the conceptual tools we
shall need to reach Theorem 1.1 are already in place: bounding M(p,,T) by cutting
out a ball of radius N, use transport integrals, take the best N. It is now mostly a
matter of being more clever and more careful.

Introduce ¥ = ¢ + x, ¢ L x, into the expression of M(p,1,T). Rewrite x as
X = % — ¢ in the crossed term. It leads to the following quantity that we bound as
follows:

< WAl (182 7) | (3:9)

/ h<t/T><U<t>so,AU<t>w>‘§f

where we set I;Lw( = [ py(dz)bl (2, e)T” 1 with bh (z,€) = [ dpy@)|h)?((z—y)eD).
Compare to (3.5). The proof is however trickier, and we refer to [BGT1, Theorem 3.2].
A derivation in the same spirit as before leads to

4 p/d
M T)>C 2 (__lel” . 3.10
(p,,T) > sgpllsoll <I£,¢(27T1) (3.10)

As noticed in [BT], one may now choose the best ¢ for each time 7. It is a new degree
of freedom that will enable us to extract from 1, at time 7', the best possible part of
the wave-packet, i.e. the part with best statistics. The result, which clearly implies
Theorem 1.1, is that

c ; el \"" :
— 7T 71 < 3 L — <C'I T 1a 3.11
<logT o @ >> < sup el (IQW,TU) < ChwleT)r, 34

with ¢ = (14+p/d)~!. The upper bound is Hélder inequality and equivalence of transport
integrals (in the spirit of (1.8)-(1.9)). The lower bound is obtained by choosing ¢ =

o, (H)y, with Q, = {z, b (z,T1) € [T"" 0T, T7")}, and such that I, (¢, T"") >
logTI,%( T-1) for all T > 0%.
4 Characterization of the transport exponents at low and
large order
Varying the order p of moments from 0 to +o0o should favorize different parts of the

wave-packet. Since normalized transport exponents 3% (p,) increase with p, it seems
natural to expect that fastest parts of the wave-packet will play a bigger role as p gets

3Here is an alternative derivation of the latter which is due to S. Tcheremchantsev (in the
spirit of [Tcl]): for s €]0,1] set ¢ = xo,(H)¥, with Q, = {z,b}(z,7"") < s}. The bound

/d

(3.10) thus implies that M(p,¢,T) > (C'sup, uw(Qs)sflip/d)H’p/d. But notice that sup, f(s) >
__p/d

fol f(s)s™'¥ds. As a consequence, and after Fubini, with b = py, (B(z, T™")): sup, e (Qs)s T¥57a >

p/d_ 44, _p/d 14, —pld L, . .
[ dp(z) fbls trp/d g > [ dp(z) f2bs a1 g > ¢ [du(z)b At I implies that
BE(p,y) > 1D o (tp7a +v) for all v > 0, and thus BE(p,v) > £D;, ( by continuity of
the generahzed dlmensions

1
1+p/d)
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large, while a slow but essential part of the wave-packet should have more influence on
moments behaviour as p goes to zero. In this section, we want to give a precise contain
to this rough intuition.

Set, for a € [0, +o0],

1

T .
PlaT) = 7 [ Qe e it (41)

where @Qn is the spatial projection outside the ball of radius N and center the origin.
Define S* () the growth exponents of P(a, T):

logP, T loo P T
S7(a) = — liminf 8L T) Sg(a):_nmsupogwi@).

4.2
¥ T—+o00 IOgT T— 400 IOgT ( )

If Py(a,T) = 0 for some a > 0 starting from 7" > Ty, we set Sfpt (o) = +00. Definitions
are so that 0 < S;r(a) < 8, (a) < 4o0. Then, natural quantities to define are

o =sup{a >0 | Sqf(a) =0}, of =sup{a>0| Si(a) < +oo}. (4.3)

Since Sqf(a) are non decreasing functions, 0 < ozli

oeli as the (lower and upper) rates of propagation of the essential part of the wave

packet, and oF as the rates of propagation of the fastest (polynomially small) part of

the wave packet. Indeed, if Sy(a) = 0 then roughly Py (a,T) ~ T~5%(®) = O(1): most

of the wave-packet escapes the ball of radius T'%, meaning that the essential part of the

wave-packet travels faster than 7'; while if Sy (o) = 400 then Py(a,T) = O(T~):

parts of the wave-packet that may escape from the ball of radius T'“ are negligeable.
One proves

< af < +00. One can interpret

Theorem 4.1 ([GKT]). Assume that 37 (c0,) < & (for example, under assumptions
of Proposition 1.1, £ =1). Then 0 < aljE <abr<¢ and

ST (a
L) < BE(py) < in mex (a,ai - M) . (4.4)

p ae(ali,af b

where g* denotes the Legendre transform of g: g*(p) = sup,(pa — g()). As a conse-
quence,
BEO+0,9) = afF, [F(+oo,¥) = af . (4.5)

5 A lower bound in dimension 1

In this section, we assume the potential V' to be polynomially bounded: there exists
a,b > 0 such that

V()] < afz)?, (5.1)
for all x € Z* in the discrete case, and x € R™ in the continuous case.

For a given operator H on ¢%([1,4+o0)), resp. L%([0,+0o0)), we define the transfer
matrices T'(F, z,y) between sites y and x as:

o) = ug(E,x +1) uqp(E, x4+ 1) e uy(E, ) u;/ (E,z)
rEan = (s rn )= (e uﬂ/iw,w? 2
5.2
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where ug(E, z) denotes the solution of Hu = Fu, E € R, satisfying ug(E,y) = sinb,
ug(E,y+1) = cos b, resp. ug(E,y) =sinb, uy(E,y) = cosf (note that T(F,z,z) = Id).
It follows from the definitions that if u is a solution of the eigenvalue equation Hu = Fu,
E € R, then

(i ) =@ (M) e () = rE e ()

)
(5.3)

Boundedness of transfer matrices is known to be related to a.c. spectrum [Sil]. By
exploiting this fact in a spirit close to [CM], we show that on a spectral scale ¢ (i.e. on
a time scale T = £~ 1), it is enough to know the behaviour of the transfer matrices up
to a length scale N = e~ (1*¥), 1 > 0, in order to get a useful control on the spectral
measure.

Proposition 5.1 ([GKT]). Let H = —A+V where V satisfies (5.1), and in addition
(1.15)-(1.16) in the continuous case. Let f € CX(R), ¥ = f(H)xo, and let I be a
compact interval. There exist a universal constant C1 and for all M >0 and o > 0, a
constant Cr b, © = 1,2, such that for all € €]0,1] and all X € I, one has (setting
N = [e7179] is the discrete case and N = €~'=7 in the continuum,)

M5 k(E)dE
o] ()\ —&, A+ 6) >Cy / T o A CI,M,a,a,b EM ) (54)
v vz |T(E,N,0)[2

k(E) is a finite constant, positive for Lebesgue a.e. E, given by

(5.5)

k(E) = Ko, 0, [(uo (B),x0)|? on H = LQ([O, +00)),

{ k(E) =1 on H = £?([1, +00))
1+|E|

where the constant Ko, 0, > 0 depends only on ©1,0,.

Corollary 5.1. Assume that |suppu,| > 0 and that for some v < oo, and for all
E € suppu: ||T(E,N,0)|| < C(E)N?, where C(E) is positive and finite for Lebesgue
almost all E € supppiy. Then g;‘m <14 2v. As a consequence,

(i) M(p, ,T) > C, TP= for all T, 5~ (p,¢) > 1 — 22,

(ii) o, = B~ (00,7) =1

Application of this corollary to sparse potential models and random decaying poten-
tials are given in [GKT]. Examples include models with pure point spectrum, models
with a spectral transition pp / sc spectrum, models for which the nature of the spec-
trum is not known. However it is not the application we would like to put the accent
on in this introductive review. While Corollary 5.1 requires some strong and uni-
form statement on the polynomial behaviour of the | T(E, N,0)|’s, one can see from
Proposition 5.1 that, at a given scale ¢, it is enough to get a polynomial behaviour of
|T(E,N,0)|| on a scale of order N ~ 1, and not for all N. Moreover, it is enough to
get such informations on ||T'(E, N,0)|| on sets of positive Lebesgue measure that may
tend to zero as € does. Both these possibilities are contained in the following general
statement. And both these possibilities will be useful to re-visit a by now well-known
“pathological” example that is due to Last [La] and Del Rio, Jitomirskaya, Last, Simon
[DRJLS].
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Theorem 5.1 ([GKT]). Let H be as in Proposition 5.1. Let S be a set of positive
Lebesgue measure. Pick f € C2%(R), f >0 and f =1 on S. For any q € (0,1) and
o > 0 there exists constants Cy > 0 and Cy f.5.4 < 00 (depending only on the indicated
parameters) such that for all € € (0,1),
k(E)dE
, ()

—1
Hf(H)po (q,&) 2 Cq et /S HT(E,N, 0)”2(1 — Ugfoab€ s (56)

where N = [e=(19)] in the discrete case and N = e~ 119 in the continuous case, and
where k(E) is given in Theorem 5.1 Eq. (5.5). As a consequence, for any p > 0 and

T >0,
p+1
1 kE(E)dE
M, .72 G (o [ NP )G, 60
el Js |[T(E, N, 0)]| 757
with N = [T'*°] in the discrete case and N = Tt in the continuous case. The

constants Cp, > 0 and Cp f5qp < 00 in (5.7) depend also on ©1,04 in the continuous
case.

We turn to the following application:
Hg o) =—A+ Acos(man + 6) + X(61,-)01 . (5.8)

Here we take « irrational and A > 2 so that the Lyapunov exponent is positive every-
where: as a consequence the spectrum Hy , o is purely singular for a.e. § [He, CFKS],
and so is the one of Hy , » for all given A [RS].

The result is the following

Theorem 5.2 ([GKT]). There exists a dense G5 set of irrationals Q0 such that for
any o € Q, for all 6 € [0,2n] and X\ € [0,1], for any q € (0,1), there exist a constant
Cq and a sequence €, — 0 such that

%@m>—3%(ifq. (5.9)

I
~ logle, €k
As a consequence D/‘fél (q) =1 for q € (0,1), and thus 5 (p,61) = 1.

To prove Theorem 5.2 we proceed by induction as in [La, DRJLS], and rely on
Theorem 5.1. One constructs periodic approximants of Hy , x. The spectrum of these
approximants operators is then a.c. and transfer matrices are bounded. By pertur-
bation, it implies the following for Hy , x: Fix o > 0, then there exists a sequence of
e €]0,1[ and of bounded sets Sy, such that

sup  sup || Tpan(E,N,0)|? <logle;!|, (5.10)
EeSy NS($)1+0

and

1
|Sk| >

= - (5.11)
log [e;,

-
|
The result follows from Theorem 5.1.
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