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Pseudospectrum for differential operators.

Johannes Sjöstrand*

Résumé. Dans cet exposé nous décrivons des résultats obtenus avec N. Dencker et M. Zworski sur le

comportement du pseudospectre des opérateurs différentiels dans la limite semiclassique. Ces résultats sont

des adaptations de résultats connus dans d’autres domaines des équations aux dérivées partielles et de

l’analyse semiclassique. Nous décrivons aussi un résultat récent avec M. Hager sur l’asymptotique de Weyl

des valeurs propres de certains opérateurs perturbés.

0. Introduction.

Non-selfadjoint operators appear naturally in many problems:

Scattering theory and the study of scattering poles (resonances),

The damped wave equation,

Other problems, like linearizations of certain non-linear problems, Fokker-Planck equa-
tions.

A typical difficulty is that the norm of the resolvent may be large even far from
the spectrum, and hence violating the estimate ‖(z−P )−1‖ ≤ (dist (z, σ(P )))−1 which
holds when P is a selfadjoint (or more generally normal) operator, acting in some
complex Hilbert space. Clearly this is a substantial difficulty for instance if we want
to study the operator e−itP , and while we may still believe that the spectrum of P is
the most relevant quantity for the asymptotics when t → ∞, it is far from clear how
to study these evolution operators when |t| is very large but confined to some bounded
interval.

In recent years there has been a trend pursued by people like N. Trefethen [Tr],
E.B. Davies [Da2,Da] and M. Zworski [Zw], to recognize the region where the resolvent
is large as a set of interest in its own right. This set, called somewhat vaguely the
pseudospectrum, might even be more important than the spectrum in certain situa-
tions.

In this talk we first review (in Section 1) some general facts about the pseudospec-
trum, following a recent survey of E.B. Davies [Da]. The main part of this talk (Section
2) is a description of some results from a joint paper with N. Dencker and M. Zworski
[DeSjZw]. We conclude (in Section 3) by describing a recent result with M. Hager
about Weyl asymptotics for certain perturbed operators in dimension 1.

1. Pseudospectrum

In this section we follow basically the survey [Da] and refer to that work for further
references. Let H be a complex Hilbert space and let A : H → H be a closed densely
defined operator. Let ρ(A) ⊂ H be the resolvent set and let σ(A) = C \ ρ(A) be the
spectrum of A. Recall that if A is selfadjoint or more generally normal, we have

‖(z − A)−1‖ ≤ 1

dist (z, σ(A))
, z ∈ ρ(A), (1.1)
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where dist denotes the standard distance on the complex plane.

Definition 1.1. Let ε > 0. Then the ε-pseudospectrum is defined by

σε(A) = σ(A) ∪ {z ∈ ρ(A); ‖(z − A)−1‖ ≥ 1

ε
}. (1.2)

Notice that unlike the spectrum itself, the pseudospectrum is not independent
of the choice of norm on H; if we replace the given norm on H by some equivalent
norm, then in general, σε(A) changes. We know of course (for instance from the
theory of resonances) that the choice of norm is important for many problems, and the
modification of norms is usually done in such a way that the pseudospectrum decreases
in some given region of interest. This idea is used in the proof of Theorem 2.3 below.

The pseudospectrum is related to spectral instability:

Theorem 1.2. (Roch–Silberman)

σε(A) =
⋃

B∈L(H); ‖B‖≤ε

σ(A + B).

We can also consider the numerical range

Num (A) = {(Au|u); u ∈ D(A), ‖u‖ = 1}.

Here D(A) is the domain of A and (u|v) denotes the scalar product on H. This is
a convex set as shown by Davies. If C \ Num(A) is connected and has a non-empty
intersection with the resolvent set, then

σε(A) ⊂ {z ∈ C; dist (z, Num (A)) ≤ ε}.

Example 1. Let

Aδ =















0 1 0 .. .. 0
0 0 1 0 .. 0
.. .. .. .. .. ..
.. .. .. .. .. ..
0 .. .. .. 0 1
δ 0 .. .. 0 0















: Cn → Cn,

with n � 1. Then σ(A0) = {0} and we check that for z 6= 0, we have |z|−n−1 ≤
‖(z − A0)

−1‖, while for |z| > 1: ‖(z − A)−1‖ ≤ (|z| − 1)−1. This implies that for
0 < ε < 1:

D(0, ε1/(n+1)) ⊂ σε(A0) ⊂ D(0, 1 + ε), (1.3)

where D(z, r) denotes the open disc of center z0 and radius r. We also verify that

D(0,
n − 1

n
) ⊂ Num(A0) ⊂ D(0, 1). (1.4)
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Now switch on the perturbation. An easy calculation gives

σ(Aδ) = {δ1/neij2π/n; j = 0, 1, ..., n− 1}.

If δ > 0 is fixed, we see that σ(Aδ) is in an arbitrarily small neighborhood of the
boundary of σε(Aδ), if we first choose ε > 0 small enough and then let n → ∞.

Example 2. The non-selfadjoint harmonic oscillator has recently been explored by
Davies and L. Boulton. Let c ∈ C with Re c, Im c > 0. Consider

Hu(x) = −u′′(x) + cx2u(x) on L2(R),

with domain D(H) = {u ∈ L2(R); u′′, x2u ∈ L2}. It is well-known, and easy to check
using complex scaling, that

σ(H) = {(2k + 1)c1/2; k = 0, 1, 2, ...}.

Boulton showed, using the uncertainty relation, that

Num (H) = {s + tc; s, t > 0, st ≥ 1

4
},

and that
‖(z − H)−1‖ = O(1), when Re z → +∞, |Im z| ≤ O(1).

Davies showed that ‖(z − H)−1‖ → ∞ if z = reiθ and θ ∈]0, arg c[ is fixed, while
r → +∞. The last result was complemented by Boulton, who obtained the same
conclusion for Im z = (Re z)α with Re z → +∞ and α fixed in the interval ]1/3, 1].
Numerically, Boulton and M. Embree have found that the exponent 1/3 is optimal and
a preliminary result of N. Kaidi indicates that this exponent is indeed optimal. Notice
that the study of this operator can be viewed as a semiclassical problem, since

H − z = |z|(−(h∂y)2 + cy2 − z

|z| ), with h =
1

|z| , x = |z|1/2y.

2. Results in the semiclassical case.

This is the main section of this exposé and we here describe some results from the
joint work with N. Dencker and M. Zworski [DeSjZw].

a. Quasi-modes and pseudospectrum. Let 1 ≤ m(X) ∈ C∞(R2n) be a weight function
satisfying

m(X) ≤ C0〈x − y〉N0m(Y ), X, Y ∈ R2n.

We will consider in parallel the C∞-case and the analytic case with the following more
precise assumptions:

C∞-case. We let p ∈ S(m), i.e. we assume that p ∈ C∞(R2n) and that

∂α
Xp(X) = Oα(m(X)). (2.1)
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Analytic case. We assume that p is holomorphic in a tubular neighborhood of R2n in
C2n satisfying: p(X) = O(m(Re X)). By the Cauchy inequalities, we see that (the
restriction of p to R2n) belongs to S(m).

If h > 0 is small enough, we can consider P = pw(x, hD) as a closed densely
defined operator: L2 → L2 whose domain is equal to H(m), the naturally defined
Sobolev space associated to the weight function m.

Theorem 2.1. ([DeSjZw]) Consider the C∞-case. Let (x0, ξ0) ∈ R2n and assume
that

1

i
{p, p}(x0, ξ0) > 0. (2.2)

Then there exists a family u = uh ∈ S(Rn) with ‖uh‖L2 = 1, 0 < h ≤ h0 > 0, such
that

‖(P − z)u‖ = O(h∞), (2.3)

where z = p(x0, ξ0). Moreover, WFh(u) = {(x0, ξ0)}, where WFh(u) denotes the
frequency set. {f, g} = f ′

ξ · g′
x − f ′

x · g′
ξ is the Poisson bracket.

Notice that this result is an adaptation to the semiclassical frame-work of a clas-
sical non-hypoellipticity result of Hörmander subsequent to the classical work of H.
Lewy on non-solvable operators (see [Hö,Hö2]).

Example 3. Let P = −h2∆ + V (x) be a non-selfadjoint Schrödinger operator on Rn

with smooth potential. Then p(x, ξ) = ξ2 + V (x) and 1
i {p, p} = −4ξ · Im V ′(x). For

such operators in dimension 1, Davies [Da2] proved the above theorem, without any
explicit reference to the Poisson bracket. Zworski [Zw], observed the link between the
two results.

The proof of the theorem is also an easy adaptation of that of Hörmander’s theo-
rem. We try uh(x) = h−n/4a(x; h)eiφ(x)/h, where a(x; h) ∼ ∑∞

ν=0 aν(x)hν , a0(x0) 6= 0,
p(x, φ′(x)) − z = O(|x − x0|∞). This can be done locally in a neighborhood of x0 in
such a way that φ′(x0) = ξ0 and Im φ′′(x0) > 0, and after we have found φ we construct
a0 by solving a sequence of transport equations to ∞-order at x = x0. #

Theorem 2.2. ([DeSjZW]) In the analytic case we have the same conclusion with
O(h∞) replaced O(e−1/(C0h)) for some fixed C0 > 0, and with WFh(u) replaced by the
corresponding analytic frequency set.

This is an adaptation of a classical result of Sato–Kawai–Kashiwara [SaKaKa].
A similar result for finite difference operators on the circle was recently obtained by
Trefethen and S.J. Chapman [TrCh].

Notice that the sets of points z in the theorems are open. The last theorem can be
applied to the non-selfadjoint harmonic oscillator and provides an improvement of the
result of Davies that we mentioned earlier. Indeed, it suffices to apply the reduction to
a semiclassical situation explained at the end of the previous section, and we see that
we have a family of functions uz ∈ S(R) with ‖uz‖ = 1 such that

(H − z)uz = O(e−|z|/C0), for arg z ∈]ε0, arg a − ε0[,
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for every fixed ε0 > 0 with a C0 > 0 that depends on ε0.
In [DeSjZw] we also give some elementary geometrical and topological arguments

which show that the assumptions of our theorems are fulfilled ”most of the time”
and for ”most values” of z ∈ p(R2n). Notice however that if z ∈ ∂p(R2n), then the
assumptions are not fulfilled. We will in the following slightly abuse our terminology by
calling Σ(p) := p(R2n), the pseudospectrum of P . This is justified by the observation
that if z0 ∈ C and dist (z0, Σ(p)) < ε, then z0 belongs to σε(P ) if h > 0 is small enough
and if dist (z0, Σ(p)) > ε, and the assumption (2.4) below holds, then z0 /∈ σε(P ) when
h is small enough.

b) Study of boundary points of the pseudospectrum. Let z0 ∈ ∂Σ(p) and assume that

|p(x, ξ)− z0| >
m(x, ξ)

C
, for |(x, ξ)| ≥ C, (2.4)

for some C > 0. Notice that if z ∈ neigh (z0), then (z − P )−1 exists with ‖(z − P )−1‖
bounded when h → 0, if and only if z /∈ Σ(p).

We also assume

If ρ ∈ R2n and p(ρ) = z0, then dp(ρ) 6= 0, (2.5)

∃ε0 > 0, θ0 ∈ R, such that (z0+]0, ε0[e
i]θ0−ε0,θ0+ε0[) ∩ Σ(p) = ∅. (2.6)

If we put q = ie−iθ0(p − z0), then dRe q 6= 0 on p−1(z0). Assume

No Hq-trajectory can remain in p−1(z0) during an unbounded interval of time.
(2.7)

Theorem 2.3 ([DeSjZw]). We make the assumptions above.

a) In the C∞-case, we have for every C > 0 that

D(z0, Ch log
1

h
) ∩ σ(P ) = ∅ for 0 < h ≤ h0(C) > 0.

b) In the analytic case, there exist C0 > 0, h0 > 0 such that

D(z0,
1

C0
) ∩ σ(P ) = ∅, 0 < h ≤ h0.

This result is analogous to results about absence of resonances when there are no
trapped trajectories, due to Helffer-Sjöstrand (implicit in [HeSj]) in the analytic case
and more recently to A. Martinez [Ma] in the smooth case . The idea of the proof
is similar, namely to modify the norm by means of a weight eεG(x,ξ)/h, where (in our
case) G ∈ C∞

0 with HRe qG > 0 on q−1(0). In the analytic case we can take ε > 0
fixed and small and in the C∞-case we choose ε of the order h log(1/h). In the latter
case our proof is related to the approach to propagation of singularities by means of
pseudodifferential operators of variable order that has been developed by J. and A.
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Unterberger ([BoUn, Un]. The analytic case is also related to the propagation result
for micro-hyperbolic operators of M. Kashiwara and T. Kawai [KaKa].

We shall next describe what happens if we replace (2.6), (2.7) by a basically
stronger assumption. The assumptions (2.4), (2.5) remain. Let us say that z0 ∈ ∂Λ(p)
is of finite type if for every (x0, ξ0) ∈ p−1(z0) there exists k ≥ 1 and I ∈ {1, 2}k such
that

pI(x0, ξ0) 6= 0, where pI = Hp1
Hp2

· · ·Hpik−1
pik

,

where p1 = Re p, p2 = Im p. The order of p at w = (x0, ξ0) is then defined as
max{j ∈ N; pI(w) = 0, |I| ≤ j} and the order of z0 is defined to be the maximum of
the orders of p at all points w ∈ p−1(z0).

Theorem 2.4 ([DeSjZw]) We consider the C∞-case and assume (2.4), (2.5). Also
assume that z0 is of finite type and of order k ≥ 1. Then k is even and for 0 < h ≤
h0 > 0 we have:

‖(P − z0)
−1‖ ≤ Ch− k

k+1 . (2.8)

In particular, ∃C > 0 such that

D(z0,
h

k
k+1

C
) ∩ σ(P )) = ∅, 0 < h ≤ h0. (2.9)

The proof is an adaptation of Hörmander’s treatment of subelliptic operators of
principal type (see [Hö]).
Example 4. We consider again the complex harmonic oscillator and recall the scaling
at the end of Section 1:

H − ζ = −∂2
x + cx2 − ζ = |ζ|(−(h∂y)2 + cy2 − ζ

|ζ|), h =
1

|ζ| .

Choose z0 = 1. Then Theorem 2.4 applies with k = 2 and we find

‖(H − ζ)−1‖ ≤ O(1)

|ζ| (
1

|ζ|)
− 2

3 = O(1)|ζ|− 1
3 ,

for |ζ/|ζ| − 1| ≤ O(1)−1|ζ|−2/3, i.e. for |ζ − |ζ|| ≤ |ζ|1/3/O(1). (Compare with one of
the results of Boulton that we mentioned in Section 1.)

Example 5. Let P be the complex harmonic oscillator in 2 dimensions, given by

P = (hDx1
)2 + x2

1 + (hDx2
)2 + ix2

2, Dxj
= −i∂xj

.

Then σ(P ) = {(h(2n+1+ eiπ/4(2k +1)); k, n ∈ N and Σ(p) is the first quadrant. The
assumptions of Theorem 2.3 are fulfilled at the point z = i, but not at the point z = 1.
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3. Spectral instability.

Zworski ([Zw2]) considered the non-selfadjoint operator

P = (hDx)2 + i(hDx) + x2 = ex/2h ◦ ((hDx)2 + x2 +
1

4
) ◦ e−x/2h.

Using the second representation it is easy to show that the spectrum of P is equal
to { 1

4 + (2k + 1)h; k = 0, 1, 2, . . .}. When doing numerical calculations however, the
computer ignores that P is a conjugation of a selfadjoint operator and due to instability
(due to large resolvent norm), it makes larger and larger errors when h → 0. In [Zw2]
the numerical computations give the correct eigenvalues when h = 0, 1 but for h = 0, 01
we get a cloud of eigenvalues in the complex domain. For h = 0, 001 the numerically
calculated eigenvalues seem to fill up the boundary of the set Σ(p) = {z ∈ C; Re z ≥
(Im z)2}.

One may interpret this result by saying that the computer calculates the spectrum
of a small perturbation of P and we are then led to the general mathematical problem
of describing what happens with the spectrum in some given bounded domain of the
complex plane if we switch on a small perturbation of the operator.

We end this exposé by describing a very recent joint result with M. Hager [Ha]
about the distribution of eigenvalues for suitable perturbations of a simple differential
operator. This result does not show accumulation of most of the eigenvalues to the
boundary of the pseudospectrum, but rather a nice distribution according to a natural
Weyl law.

Let g(x) be an analytic function on S1 = R/2πZ and assume that Im g(x) has
only two critical points, the point xmax of maximum and the point xmin of minimum.
We consider

hDx + g(x) on L2(S1), (3.1)

with domain H1(S1). The symbol of this operator is

p(x, ξ) = ξ + g(x), (3.2)

and
Σ(p) = p(T ∗S1) = {z ∈ C; Im g(xmin) ≤ Im z ≤ Im g(xmax)}.

For every z ∈ int (Σ(p)) there exist exactly two points ρ± = (x±, ξ±) ∈ T ∗(S1) with
p(ρ±) = z and the Poisson bracket takes opposite signs at the two points:

±1

i
{p, p}(ρ±) > 0.

More explicitly x± is determined by the condition

Im g(x±(z)) = Im z, ∓(Im g)′(x±(z)) > 0,

and
ξ±(z) = Re (z − g(x±(z))).
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A simple computation gives the spectrum of P :

σ(P ) = {〈g〉+ kh; k ∈ Z}, where 〈g〉 :=
1

2π

∫ 2π

0

g(x)dx. (3.3)

Now consider a perturbation

Pδ = P + δQ.

Here

δ = e−ε/h, (3.4)

where ε > 0 is small but independent of h, and Q is an integral operator with kernel

KQ(x, y) =

N(ε)
∑

j=1

eiφj(x,y)/hχ(x − xj)χ(y − yj), (3.5)

where χ ∈ C∞
0 (] − π, π[) is equal to 1 near x = 0 and independent of ε. Further,

φj(x, y) = (x − xj)ξj +
i

2
(x − xj)

2 − (y − yj)ηj +
i

2
(y − yj)

2,

where (xj , ξj; yj, ηj) ∈ (T ∗S1)2. Here χ is independent of ε, while (xj , ξj; yj, ηj) and
the number N(ε) will depend on ε. (We identify the x, y-variables on S1 with suitable
lifts to R in such a way that Q becomes well defined on L2(S1).)

In order to avoid accidental cancellations for the restriction to the diagonal of a
certain FBI-transform of KQ, we assume,

(xj , ξj; yj, ηj) /∈ Γ(xk, ξk; yk, ηk), j 6= k, (3.6)

where Γ(x, ξ; y, η) ⊂ (T ∗S1)2 is a certain analytic submanifold of dimension 2 which
depends analytically on (x, ξ; y, η). Notice that this is a generic assumption.

Let γ ⊂ int (Σ) be a simple closed C1-loop with γ̇ 6= 0, and assume, for ε ∈]0, ε0[,
for some ε0 > 0:

∀z ∈ γ, ∃j ∈ {1, 2, . . . , N(ε)}, such that dist ((xj, ξj; yj, ηj), (ρ−(z), ρ+(z))) ≤
√

ε

C0
,

(3.7)
where C0 > 0 is sufficiently large but independent of ε.

Theorem 3.1 (M. Hager, J. Sjöstrand) Under the above assumptions, the number of
eigenvalues of Pδ in the interior of γ is equal to

1

2πh

(

VolΩ+(γ) + VolΩ−(γ) + O(
√

ε)
)

, h → 0,
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for h > 0 small enough depending on ε. Here Ω±(γ) ⊂ T ∗S1 is the bounded domain
whose boundary is given by the image of ρ± ◦ γ. The O-term is uniform with respect
to h.

It is clear from the proof that this result can and will be considerably generalized
to more general unperturbed operators P and more general perturbations. This will
be treated in [Ha].
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[Ha] M. Hager, Thèse, In preparation.
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